
Annotation Methods and Application Abstractions

R. Shankar1, H. Kalva1, A. Agarwal1, A. Jain2
1Center for System Integration, Florida Atlantic University, Boca Raton, FL

2iDEN Group, Motorola, Plantation, FL

Abstract – Embedded System complexity is increasing with time.
This impacts negatively the product development cycle (PDC).
The increasing software and hardware concurrency, and need
for architectural optimization, will also complicate PDC.
Innovations in PDC are needed to reduce product cost and time-
to-market. Modeling a system can help in addressing architect’s
design concerns. To be effective in reducing PDC, a system
model must incorporate performance parameters and quality of
service (QoS) metrics of the modeled components. We discuss
three different annotation methods for obtaining such metrics.

I. INTRODUCTION

A system design process is inherently complex. The
design involves multiple representations, multiple (design)
groups working on different design phases, and a complex
hierarchy of data and applications [1]. The different groups
bring different perspectives towards system design. The
system or product inconsistencies primarily arise out of lack
of appropriate communication among various design teams.
For example, concerns of a hardware (HW) design engineer
are different from that of a software (SW) designer and they
are often unable to understand and help address the problems
of the other [2]. Such constraints lead to increase in PDC and
product development cost, thereby reducing system design
productivity [3].

To enhance this declining productivity, one will have to
exploit the principle of “design-and-reuse” to its full potential
[4]. Then, a system (subsystem) would be composed of
reusable sub-systems (components). For example, Network-
on-Chip (NOC) architecture can serve as a reusable
communication sub-system for an embedded device [5]. This
NOC architecture may comprise of components such as,
routers, input and output buffers, network interface, switch,
virtual channel allocator, scheduler and a switch allocator. To
develop a system from such reusable components, one will
have to design and develop variants of each component. For
example, buffer size is a customizable parameter for an input
buffer. Similarly, scheduling criteria provides customizability
for scheduler component. A system architect estimates
performance and QoS parameters for various system
configurations. Components need to encapsulate their
performance metrics for various useful parameter
combinations, in order to help the architect to make informed
decisions. We propose that a system be modeled in advance
of the architect’s design phase. Such a model is analyzed to
ensure system functionality at an abstract manner. This model
can then be ported to architect’s design phase, for analyzing

the performance of a system and for estimating the resources
needed for mapping an application on to the system. This
model must allow one to manipulate a set of parameters to
fine tune system performance. Such a system model needs to
have high level representation of various performance and
QoS parameters for subsystems and components. These
performance and QoS parameters can then be traded-off
against each other in the system model, to yield a global
optimization. Such a model at the design phase will allow one
to make key decisions and reduce the scope of the
multidimensional search space. These key decisions may
include the number of processors, HW/SW partitioning,
estimated performance values for new components, and the
use of existing components in software or hardware.

Such design decisions have the potential to significantly
enhance productivity of system design. Such system
modeling, analysis and design will not be an effective
solution until we have a mechanism for abstracting the
parameter values from different applications and components
of the system, and to represent these values in our model. For
example, we may abstract the performance parameters for a
multimedia application (e.g. MPEG4) on a particular
architecture and capture the resource requirements in terms of
processor speed, cache size, protocol requirements, power
consumption, latency, and silicon area.

II. PERFORMANCE ANNOTATION IN DESIGN PHASE

Requirements
& Specification

Modeling &
Analysis

System
Development

System Testing
& Prototyping

Annotation Methods

Literature Survey

SW Estimation

Subsystem Modeling

Rapid Prototyping

SW Emulation

Requirements
& Specification

Modeling &
Analysis

System
Development

System Testing
& Prototyping

Annotation Methods

Literature Survey

SW Estimation

Subsystem Modeling

Rapid Prototyping

SW Emulation

Figure 1: High level system design process
System design process comprises of the phases of

requirement and specification, and system design,
development and prototyping. Our focus in this paper is on
the system design phase. We propose to provide annotation of
QoS and performance metrics, to help system architect make
appropriate design decisions. We document various
annotation methods. These methods include annotation from
literature survey, software estimation, software emulation,
rapid prototyping, and subsystem modeling. See Figure 1. A

1-4244-1039-8/07/$25.00 ©2007 IEEE
1

system model then will be a more realistic model for
performing system level analysis.

A. Literature Surveys

Literature survey (from published papers, technical
specifications, and reviews) can often result in useful
abstractions. Such information may relate to performance of a
particular component, application, or the whole system.
However such information may be incomplete and may
require additional effort to map such information to a high
level system model with a sub-system modeling tool such as
Matlab; unknown information is estimated there with one of
the other methods and combined [6]. It also involves a
thorough study of various benchmarks and extraction of their
abstractions.

B. Software Emulator

An example is the ARMulator from ARM Inc. We can
flash a particular application on to an ARMulator and capture
various required parameters. One will have to specify the
target application in a high level language such as C before
collecting the performance parameters. Such tools often
provide platform specific measures [7]. Such measures are
good enough to make initial decisions even if the targeted
platform is different, since precise values are not necessary at
this stage. Consider the fact that today’s system architect may
still use excel spreadsheets with estimates gleaned from
various groups.

C. Software Estimation

Software estimation has been a popular way of
abstraction. Researchers have used Lines of code (LOC) for
estimating the time/cost required for software development.
Cocomo cost model is one such popular method. Our method
involves separation of computing and communication costs
(see below) of the software and concurrency cost of mapping
it to an architecture [8]. Others have proposed a function
based cost/time estimation model.

D. Rapid Prototyping with FPGA

FPGA industry has evolved and progressed rapidly over
last two decades. In the past FPGA was mainly used for
developing hardware. Today’s FPGA can also be used as a
software or system prototyping environment. We have used
rapid prototyping with ImpulseC to facilitate HW and SW co-
prototyping. Impulse C is a set of platform libraries written
for C. Using these libraries, the developer can create
partitioning, and rapidly debug hardware and software
simultaneously on the same virtual prototype [9].

E. Sub-System Modeling

We have used Matlab to model subsystems, such as
VOIP and OMAP, to extract relevant parameters. This
method is useful when lack of information on some
components precludes one from estimating the subsystem
metrics.

In this paper we describe three of these annotation
methods. We show their application with different examples.
These examples demonstrate their application in system
design.

III. ANNOTATION WITH SOFTWARE ESTIMATION

A module’s COMM (Communication) and COMP
(Computation) costs are calculated in terms of high-level
attributes of RWXM (Read, Write, Execute and Multiply).
COMP is calculated by determining the number of X and M
instructions and their cycle usage. COMM is calculated by
determining number of R and W instructions and their cycle
usage. COMP is the execution time required by a software
module to execute on a processor (excludes the CPU time
associated with memory access). COMM is the time it would
require to load instruction and data from memory/cache.
COMP is eventually used to determine the size and/or the
number of cores required to execute the software in a certain
timeframe. COMM similarly is useful to determine the size
and speed of cache and memory needed. This analysis is
similar to source level timing scheme in Wolf [10]. The time
function there has been given here a practical shape using a
set of rules. Software behavior changes with respect to data
input. There could be several data dependent control
structures in the modules being analyzed [10]. In such cases
we estimate a probability that the control structure is accessed.
COMP and COMM of the control structure is multiplied by
the probability of its usage. The probability factor here can be
manipulated to simulate and generate multiple use cases for
modules (such as worst case, best case and typical case
scenarios). Size of data being processed also affects the
COMP and COMM of the module. Data can only be known
at run-time; however data can be considered constant for
different use cases [10]. Analysis results of any scenario can
be taken into consideration, depending on the type of multi-
core decomposition required. This eliminates the need for
dynamic analysis, while providing a simple, controlled
environment. We recommend the use of results from typical
use case scenarios.

A. Application

We have used the example of digital camera software
(DCS) [11] to process a small 8 x 8 pixel size image. We
computed the COMM and COMP using static analysis
methods. In order to estimate hardware resource (processor

2

and bus) usage, the COMP and COMM are multiplied with
the number of CPU cycles needed to complete the execution
of four abstract instruction types, viz., R, W, X, and M.
Tables 1 and 2 illustrate the number of cycles we assumed for
RWXM costs. Note that CPU may or may not be actively
involved in each of the CPU cycles of RWXM; the ‘CPU
cycle’ merely indicates a unit of time used to express
different execution/processing times.

TABLE I: CPU CYCLE TIME UNITS NEEDED FOR
COMMUNICATION TYPE INSTRUCTIONS

COMM
CPU Cycles-Data Access

from Memory
CPU Cycles – Data
Access from Cache

Read 2 1
Write 2 1

TABLE II: CPU CYCLE TIME UNITS NEEDED FOR

COMPUTATION TYPE INSTRUCTIONS
COMP CPU Cycles
Execute 1

Multiply 10
The RWXM cycle estimates associated with software

units in all the modules of the digital camera software are
provided below. The base RWXM instruction estimate of a
software unit is obtained by applying a set of rules to every
LOC (Line of Code) of the C program, while considering the
usage probability of a software unit. The final RWXM
instruction estimate of a software unit is determined by
calculating the number of times the software unit is invoked.
In tables shown below ‘Iteration’ refers to the number of
times the corresponding software unit is invoked. We
restricted the final RWXM estimates to be whole numbers;
the base RWXM instruction estimates were not similarly
restricted as they are based on probabilities.

B. CCD Cost Analysis and Results

Table 3 enumerates the base RWXM instruction and
iteration counts for CCD, one of the software modules of
DCS. Table 4 provides the final RWXM instruction estimates
for CCD. Table 5 shows the estimated cost associated with
CCD as per Tables 1 and 2. Figure 2 shows the COMP and
COMM for all the modules that make up DCS. We
determined CODEC as the module of interest because its
COMP and COMM are substantially higher than those of
other modules. We used this annotated information to map
CODEC to multiple concurrent processors. A substantial
speed-up was achieved [8].

TABLE III: CCD - Base RWXM Instructions
 R W X M Iterations

Preprocessor statements 0 2 1 0 1
Initialize Function 9 17 0 0 1
Capture Function 1686 882 1200 240 1

R Pop Pixel Function 9.2 6.125 5.2 1 80
G Pop Pixel Function 9.2 6.125 5.2 1 80
B Pop Pixel Function 9.2 6.125 5.2 1 80

TABLE IV: TOTAL RWXM INSTRUCTIONS

COMM
(RW)

Instructions
COMP (XM)
Instructions

Total
(RWXM)

Instructions
Preprocessor statements 2 1 3

Initialize Function 26 0 26
Capture Function 2568 1440 4008

R Pop Pixel Function 1226 496 1722
G Pop Pixel Function 1226 496 1722
B Pop Pixel Function 1226 496 1722
Total (all functions) 6274 2929 9203

TABLE V: ESTIMATED COST, IN NUMBER OF CPU CYCLES

 COMM COMP Total Cost
Preprocessor statements 6 1 7

Initialize Function 78 0 78
Capture Function 7704 3600 11304

R Pop Pixel Function 3678 1216 4894
G Pop Pixel Function 3678 1216 4894
B Pop Pixel Function 3678 1216 4894
Total (all functions) 18822 7249 26071

0

100000

200000

300000

400000

500000

600000

CCD CCDPP CNTRL REDEYE CODEC

Overall Initial Distribution

Communication cost Computation Cost
Figure 2: COMM and COMP comparison of DCMImage size: 8 x 8.

IV. ANNOTATION WITH FPGA RAPID PROTOTYPING

A system is defined in terms of processes. These

processes can be declared as a hardware or software process.
If the component is defined as a hardware process, then it
gets implemented on the FPGA hardware. If defined as a
software process, then the component is implemented in a
soft-core processor. ImpluseC code for all the processes in a
system is developed in any C++ compiler.

ImpulseC provides multiple methods for process
communication, such as registers, streams, signals, and
shared memory. Once these processes are developed they can
be mapped on to the FPGA without the need for writing
hardware description language (HDL) code. Execution of the
processes on the FPGA will yield appropriate performance
metrics. Figure 3 shows the implementation of an application
on to Xilinx ISC platform. Performance parameters extracted
from FPGA implementation will be platform dependent
(based on the underlying FPGA architecture). However, they
will have sufficient information in providing an estimate to
aid in the early design phase. We extracted parameters such

3

as gate count (silicon area), maximum clock frequency
(design latency), slack time, and critical path time. One can
also use utilities such as XPower to extract power
consumption information of a system or its processes.

Figure 3: Application implementation in Xilinx

A. Design Example and Results

We modeled a Network-on-Chip (NOC) architecture.

NOC is a multi-core packet switched communication
backbone for use in designing complex embedded systems
[12]. Figure 4 represents 3×3 mesh based NOC block
diagram. NOC may have the following components: Input
and Output Buffers (B), Producer (P), Consumer (C), Node
(N), Scheduler (S) and Network-Interface (NI). Each of these
components can be modeled either as a hardware or a
software process. This NOC architecture offers various
performance tradeoffs. For example, one would be able to
analyze the impact of a particular routing strategy or
scheduling criteria in terms of latency, power and area. In
practice, about 60% of the area of the communication
backbone will be occupied by the buffers. For a 3×3 mesh
based NOC, there will be ninety buffers. Thus, the buffer size
is a key parameter of NOC architecture. We prototyped Input
Buffer as a hardware process. We provide in Table 6 the
computed area of B for sizes of one to ten. This size
parameter became an input parameter to a high level abstract
model built to analyze effect of buffer size on system
performance. Such an analysis allows one to make area-
performance tradeoffs.

We designed the Input Buffer as a smart buffer with a
built-in scheduler. The scheduler forwards the data as per
certain scheduling criteria. Further, a buffer can be designed
as 32-bit or 64-bit wide. In the 64-bit buffer, the chip area
will increase but the number of packets to be transmitted will
reduce to about half as compared to the 32-bit buffer.
Therefore, it is likely that the latency of a system will reduce
by transmitting a bigger packet. But it will require support for
more parallel transmission lines (bus) in case of a parallel
data transmission.

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

Figure 4: NOC architecture block diagram

TABLE VI: GATE COUNT FOR VARIOUS BUFFER SIZES

Buffer Size Gate Count for
32-Bit

Gate Count for
64-Bit

Size 1 11,427 16,733
Size 2 13,381 20,135
Size 3 14,510 22,207
Size 4 14,920 23,292
Size 5 15,526 24,594
Size 10 16,108 24,940

V. ANNOTATION WITH SOFTWARE EMULATION

The resources consumed by an application depend on the

complexity of the application, the target platform, and any
data dependencies. Multimedia applications have significant
data dependencies and hence resource consumption is heavily
data dependent. The application abstraction methodology
used had two components: 1) resource abstraction; and 2)
data dependency abstraction. The resource abstraction
methodology used software profiling with Intel VTune
Performance Analyzer to determine the resources consumed
for a given platform [13]. The metrics used for resources
consumption were the reads (R), writes (W), executions (E),
cache hits and cache misses. Data dependencies were
abstracted by measuring resource consumption for different
data input streams and then modeling the variation in
resource consumption due to data dependencies. An
application is then annotated with the resource consumption
rate and the data dependency model. The annotated
application also used a model of the target platform to
estimate resources. High level target platform metrics such as
the processor speed, and average number of instruction
retired per second are sufficient to estimate the resources
consumed for that platform. We developed a methodology to
estimate resources for multimedia applications.

A. Resource Estimation Methodology

We demonstrate the methodology with the H.264 video
decoder. The key factors that influenced the approach are: 1)
data dependencies and 2) target architecture. We abstracted
the data dependencies using a process called Bitstream

4

Abstraction (BA). The decoder is componentized and
component level resource requirements determined in a
process called Decoder Abstraction (DA). We used BA
together with DA to develop a resource estimation model. We
describe below the methodology and the integrated flow.

Content dependencies are inherent in video coding and
resources required to encode/decode a video also depend on
the content and the quality of the video. Our BA refers to the
characterization of a compressed Bitstream with a few
parameters that significantly influence the amount of
computing resources required to decode the bitstream. The
BA is specific to compression algorithms. The BA developed
for the H.264 video used the following key Bitstream metrics:
IntraMB 16x16, IntraMB 4x4, Inter MB 16x16, Inter MB
16x8, Inter MB 8x16, Inter MB 8x8, skipped MB, and non-
zero coefficients. The per-frame averages of these metrics
were used to represent the complexity of a Bitstream. Our
results showed that the variation in resource consumption is
strongly correlated with variation in one or more of the BA
metrics. Modeling these variations will lead to resource
estimation. The DA is the process of representing the decoder
complexity with target platform independent metrics. We
abstracted the decoder complexity by abstracting the
complexity of the components in the decoder. The component
complexity description should enable resource estimation for
a given architecture. We used three metrics: R, W. and E. For
the high level resource estimation we considered, further sub-
classifying the instructions was not necessary. The Intel
VTune performance analyzer was used to obtain the metrics.
This was then used to develop a resource estimation model.

B. Experimental Results

Figure 5. Complexity of Intra Prediction component and corresponding data

dependencies in H.264
Nokia H.264 baseline encoder and decoder were used at

different bit rates to develop a model for resource estimation.
Nokia H.264 employs frame and macroblock level rate
control. The experiments were conducted with three different
videos, Akiyo, Foreman, and Football, with same resolution
of 176 x 144 and 15 Fps. The video sequences were encoded
at 9 different bitrates from 15 to 740 Kbps. The complexity of
the components of a H.264 video decoder was measured
using the VTune performance analyzer. The relationship

between BA and DA for the Intra prediction component is
shown in Figure 5. It shows that the Bitstream complexity
metric of the average number of non-zero coefficients per
frame follows the instructions per frame closely and can be
used to obtain high level resource estimates.

VI. CONCLUSION

Increasing system complexity will adversely impact
design productivity. Tighter integration of hardware and
software will be required to attain performance gains. A
system architect’s design blue print will have to be
significantly more precise to address both these concerns. In
this paper, we document three different annotation
mechanisms that can help the architect make more informed
decisions. This should help avoid down-stream integration
delays and unit cost run-ups due to the use of expensive,
albeit unnecessary, components.

REFERENCES

[1] G. Desoli, E. Filippi, “An outlook on the evolution of mobile terminals:

from monolithic to modular multi-radio, multi-application platforms”,
IEEE magazine on Circuits and Systems, vol. 6, No. 2, pp. 17-29, 2006

[2] W.C. Rhines, “Sociology of design and EDA”, IEEE transaction of
design and test, vol. 23, issue 4, pp. 304-310, April 2006.

[3] E. A. Lee, Yuhing Xiong, “System level types for component-based
design, Workshop on Embedded Software, California, October 2001

[4] Y. Xiong and E. A. Lee, “An extensible type system for component-
based design”, International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, Berlin, Germany, April 2000.

[5] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L.
Benini, and G. De Micheli, “NoC synthesis flow for customized
domain specific multiprocessor SoC”, IEEE Trans. on Parallel and
Distributed Systems, vol. 16, no. 2, pp. 113-129, February 2005.

[6] C. Yue, R. Song, R. Li, X. Zhou, “Study on the development of real-
time digital simulation based on Matlab”, International Conference on
Power System Technology, Vol. 4, pp. 13-17, 2002

[7] H. Kalva, B. Furht, “Complexity estimation of the H.264 coded video
bitstreams,” Computer Journal. vol. 48, no. 5, pp. 504-513. 2005

[8] A. Jain, R. Shankar, Software decomposition on multi-core
architecture”, 10th IEEE Annual Workshop on High Performance
Embedded Computing, MIT, Boston, October 2006 (accepted)

[9] Dylan McGrath, “Impulse add support for Xilinx virtext-4 FPGA to
CoDeveloper tool”, EE Times, July 2005

[10] F. Wolf, “Behavioral intervals in embedded software,” Kluwer
Academic Publishers, Boston, MA, 2002

[11] F. Vahid, T. Givargis, “Embedded system design a unified HW/SW
introduction”, John Wiley and Sons, New Jersey, 2002

[12] A. Agarwal, R. Shankar, “A layered architecture for NOC design
methodology”, IASTED International Conference on parallel and
Distributed Computing and Systems, pp. 659-666, November 2005

[13] J. Reinders, “VTune performance analyzer essentials: measurement and
tuning techniques for software developers,” Intel Press, 2004.

Resource Estimation for Intra Prediction

0.00

0.20

0.40

0.60

0.80

1.00

1.20

15kbps 50kbps 128kbps 256kbps 384kbps 512kbps 740kbps
Bit Rates in Kbps

Average Non Zero Coefficients

Instructions/Frame

N
o

rm
al

iz
ed

 U
n

it
s

5

