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Abstract – Embedded System complexity is increasing with time. 
This impacts negatively the product development cycle (PDC). 
The increasing software and hardware concurrency, and need 
for architectural optimization, will also complicate PDC. 
Innovations in PDC are needed to reduce product cost and time-
to-market. Modeling a system can help in addressing architect’s 
design concerns. To be effective in reducing PDC, a system 
model must incorporate performance parameters and quality of 
service (QoS) metrics of the modeled components. We discuss 
three different annotation methods for obtaining such metrics. 
 

I. INTRODUCTION 
 

A system design process is inherently complex. The 
design involves multiple representations, multiple (design) 
groups working on different design phases, and a complex 
hierarchy of data and applications [1]. The different groups 
bring different perspectives towards system design. The 
system or product inconsistencies primarily arise out of lack 
of appropriate communication among various design teams. 
For example, concerns of a hardware (HW) design engineer 
are different from that of a software (SW) designer and they 
are often unable to understand and help address the problems 
of the other [2]. Such constraints lead to increase in PDC and 
product development cost, thereby reducing system design 
productivity [3].  

To enhance this declining productivity, one will have to 
exploit the principle of “design-and-reuse” to its full potential 
[4]. Then, a system (subsystem) would be composed of 
reusable sub-systems (components). For example, Network-
on-Chip (NOC) architecture can serve as a reusable 
communication sub-system for an embedded device [5]. This 
NOC architecture may comprise of components such as, 
routers, input and output buffers, network interface, switch, 
virtual channel allocator, scheduler and a switch allocator. To 
develop a system from such reusable components, one will 
have to design and develop variants of each component. For 
example, buffer size is a customizable parameter for an input 
buffer. Similarly, scheduling criteria provides customizability 
for scheduler component. A system architect estimates 
performance and QoS parameters for various system 
configurations. Components need to encapsulate their 
performance metrics for various useful parameter 
combinations, in order to help the architect to make informed 
decisions.  We propose that a system be modeled in advance 
of the architect’s design phase. Such a model is analyzed to 
ensure system functionality at an abstract manner. This model 
can then be ported to architect’s design phase, for analyzing 

the performance of a system and for estimating the resources 
needed for mapping an application on to the system. This 
model must allow one to manipulate a set of parameters to 
fine tune system performance.  Such a system model needs to 
have high level representation of various performance and 
QoS parameters for subsystems and components. These 
performance and QoS parameters can then be traded-off 
against each other in the system model, to yield a global 
optimization. Such a model at the design phase will allow one 
to make key decisions and reduce the scope of the 
multidimensional search space. These key decisions may 
include the number of processors, HW/SW partitioning, 
estimated performance values for new components, and the 
use of existing components in software or hardware.  

Such design decisions have the potential to significantly 
enhance productivity of system design. Such system 
modeling, analysis and design will not be an effective 
solution until we have a mechanism for abstracting the 
parameter values from different applications and components 
of the system, and to represent these values in our model. For 
example, we may abstract the performance parameters for a 
multimedia application (e.g. MPEG4) on a particular 
architecture and capture the resource requirements in terms of 
processor speed, cache size, protocol requirements, power 
consumption, latency, and silicon area.    
 

II. PERFORMANCE ANNOTATION IN DESIGN PHASE 
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Figure 1: High level system design process 
System design process comprises of the phases of 

requirement and specification, and system design, 
development and prototyping. Our focus in this paper is on 
the system design phase. We propose to provide annotation of 
QoS and performance metrics, to help system architect make 
appropriate design decisions. We document various 
annotation methods. These methods include annotation from 
literature survey, software estimation, software emulation, 
rapid prototyping, and subsystem modeling. See Figure 1. A 
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system model then will be a more realistic model for 
performing system level analysis. 

 
A. Literature Surveys 
 

Literature survey (from published papers, technical 
specifications, and reviews) can often result in useful 
abstractions. Such information may relate to performance of a 
particular component, application, or the whole system. 
However such information may be incomplete and may 
require additional effort to map such information to a high 
level system model with a sub-system modeling tool such as 
Matlab; unknown information is estimated there with one of 
the other methods and combined [6]. It also involves a 
thorough study of various benchmarks and extraction of their 
abstractions. 
 
B. Software Emulator  
 

An example is the ARMulator from ARM Inc. We can 
flash a particular application on to an ARMulator and capture 
various required parameters. One will have to specify the 
target application in a high level language such as C before 
collecting the performance parameters. Such tools often 
provide platform specific measures [7]. Such measures are 
good enough to make initial decisions even if the targeted 
platform is different, since precise values are not necessary at 
this stage. Consider the fact that today’s system architect may 
still use excel spreadsheets with estimates gleaned from 
various groups. 
 
C. Software Estimation 
 

Software estimation has been a popular way of 
abstraction. Researchers have used Lines of code (LOC) for 
estimating the time/cost required for software development. 
Cocomo cost model is one such popular method. Our method 
involves separation of computing and communication costs 
(see below) of the software and concurrency cost of mapping 
it to an architecture [8]. Others have proposed a function 
based cost/time estimation model.  

 
D. Rapid Prototyping with FPGA 
 

FPGA industry has evolved and progressed rapidly over 
last two decades. In the past FPGA was mainly used for 
developing hardware. Today’s FPGA can also be used as a 
software or system prototyping environment. We have used 
rapid prototyping with ImpulseC to facilitate HW and SW co-
prototyping. Impulse C is a set of platform libraries written 
for C. Using these libraries, the developer can create 
partitioning, and rapidly debug hardware and software 
simultaneously on the same virtual prototype [9].  
 

E. Sub-System Modeling 
 

We have used Matlab to model subsystems, such as 
VOIP and OMAP, to extract relevant parameters. This 
method is useful when lack of information on some 
components precludes one from estimating the subsystem 
metrics. 

In this paper we describe three of these annotation 
methods. We show their application with different examples. 
These examples demonstrate their application in system 
design. 
 

III. ANNOTATION WITH SOFTWARE ESTIMATION 
 

A module’s COMM (Communication) and COMP 
(Computation) costs are calculated in terms of high-level 
attributes of RWXM (Read, Write, Execute and Multiply). 
COMP is calculated by determining the number of X and M 
instructions and their cycle usage. COMM is calculated by 
determining number of R and W instructions and their cycle 
usage. COMP is the execution time required by a software 
module to execute on a processor (excludes the CPU time 
associated with memory access). COMM is the time it would 
require to load instruction and data from memory/cache. 
COMP is eventually used to determine the size and/or the 
number of cores required to execute the software in a certain 
timeframe. COMM similarly is useful to determine the size 
and speed of cache and memory needed. This analysis is 
similar to source level timing scheme in Wolf [10]. The time 
function there has been given here a practical shape using a 
set of rules. Software behavior changes with respect to data 
input. There could be several data dependent control 
structures in the modules being analyzed [10]. In such cases 
we estimate a probability that the control structure is accessed. 
COMP and COMM of the control structure is multiplied by 
the probability of its usage. The probability factor here can be 
manipulated to simulate and generate multiple use cases for 
modules (such as worst case, best case and typical case 
scenarios). Size of data being processed also affects the 
COMP and COMM of the module. Data can only be known 
at run-time; however data can be considered constant for 
different use cases [10]. Analysis results of any scenario can 
be taken into consideration, depending on the type of multi-
core decomposition required. This eliminates the need for 
dynamic analysis, while providing a simple, controlled 
environment. We recommend the use of results from typical 
use case scenarios.  

 
A. Application 
 

We have used the example of digital camera software 
(DCS) [11] to process a small 8 x 8 pixel size image. We 
computed the COMM and COMP using static analysis 
methods. In order to estimate hardware resource (processor 
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and bus) usage, the COMP and COMM are multiplied with 
the number of CPU cycles needed to complete the execution 
of four abstract instruction types, viz., R, W, X, and M.  
Tables 1 and 2 illustrate the number of cycles we assumed for 
RWXM costs. Note that CPU may or may not be actively 
involved in each of the CPU cycles of RWXM; the ‘CPU 
cycle’ merely indicates a unit of time used to express 
different execution/processing times. 
 

TABLE I: CPU CYCLE TIME UNITS NEEDED FOR 
COMMUNICATION TYPE INSTRUCTIONS 

COMM 
CPU Cycles-Data Access 

from Memory 
CPU Cycles – Data 
Access from Cache 

Read 2 1 
Write 2 1 

 
TABLE II: CPU CYCLE TIME UNITS NEEDED FOR 

COMPUTATION TYPE INSTRUCTIONS 
COMP CPU Cycles 
Execute 1 

Multiply 10 
The RWXM cycle estimates associated with software 

units in all the modules of the digital camera software are 
provided below. The base RWXM instruction estimate of a 
software unit is obtained by applying a set of rules to every 
LOC (Line of Code) of the C program, while considering the 
usage probability of a software unit. The final RWXM 
instruction estimate of a software unit is determined by 
calculating the number of times the software unit is invoked. 
In tables shown below ‘Iteration’ refers to the number of 
times the corresponding software unit is invoked. We 
restricted the final RWXM estimates to be whole numbers; 
the base RWXM instruction estimates were not similarly 
restricted as they are based on probabilities.  
 
B. CCD Cost Analysis and Results 
 

Table 3 enumerates the base RWXM instruction and 
iteration counts for CCD, one of the software modules of 
DCS. Table 4 provides the final RWXM instruction estimates 
for CCD. Table 5 shows the estimated cost associated with 
CCD as per Tables 1 and 2. Figure 2 shows the COMP and 
COMM for all the modules that make up DCS. We 
determined CODEC as the module of interest because its 
COMP and COMM are substantially higher than those of 
other modules. We used this annotated information to map 
CODEC to multiple concurrent processors. A substantial 
speed-up was achieved [8]. 

TABLE III: CCD - Base RWXM Instructions 
 R W X M Iterations

Preprocessor statements 0 2 1 0 1 
Initialize Function 9 17 0 0 1 
Capture Function 1686 882 1200 240 1 

R Pop Pixel Function 9.2 6.125 5.2 1 80 
G Pop Pixel Function 9.2 6.125 5.2 1 80 
B Pop Pixel Function 9.2 6.125 5.2 1 80 

 

TABLE IV: TOTAL RWXM   INSTRUCTIONS 

 
COMM  
(RW) 

Instructions 
COMP  (XM) 
Instructions 

Total  
(RWXM) 

Instructions  
Preprocessor statements 2 1 3 

Initialize Function 26 0 26 
Capture Function 2568 1440 4008 

R Pop Pixel Function 1226 496 1722 
G Pop Pixel Function 1226 496 1722 
B Pop Pixel Function 1226 496 1722 
Total (all functions) 6274 2929 9203 

 
TABLE V: ESTIMATED COST, IN NUMBER OF CPU CYCLES 

 COMM COMP Total Cost 
Preprocessor statements 6 1 7 

Initialize Function 78 0 78 
Capture Function 7704 3600 11304 

R Pop Pixel Function 3678 1216 4894 
G Pop Pixel Function 3678 1216 4894 
B Pop Pixel Function 3678 1216 4894 
Total (all functions) 18822 7249 26071 
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Figure 2: COMM and COMP comparison of DCMImage size: 8 x 8. 

 
IV. ANNOTATION WITH FPGA RAPID PROTOTYPING 

 
A system is defined in terms of processes. These 

processes can be declared as a hardware or software process. 
If the component is defined as a hardware process, then it 
gets implemented on the FPGA hardware. If defined as a 
software process, then the component is implemented in a 
soft-core processor. ImpluseC code for all the processes in a 
system is developed in any C++ compiler. 

ImpulseC provides multiple methods for process 
communication, such as registers, streams, signals, and 
shared memory. Once these processes are developed they can 
be mapped on to the FPGA without the need for writing 
hardware description language (HDL) code. Execution of the 
processes on the FPGA will yield appropriate performance 
metrics. Figure 3 shows the implementation of an application 
on to Xilinx ISC platform. Performance parameters extracted 
from FPGA implementation will be platform dependent 
(based on the underlying FPGA architecture). However, they 
will have sufficient information in providing an estimate to 
aid in the early design phase. We extracted parameters such 
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as gate count (silicon area), maximum clock frequency 
(design latency), slack time, and critical path time. One can 
also use utilities such as XPower to extract power 
consumption information of a system or its processes.  

 

 
Figure 3: Application implementation in Xilinx 

A. Design Example and Results 
 
We modeled a Network-on-Chip (NOC) architecture. 

NOC is a multi-core packet switched communication 
backbone for use in designing complex embedded systems 
[12]. Figure 4 represents 3×3 mesh based NOC block 
diagram. NOC may have the following components: Input 
and Output Buffers (B), Producer (P), Consumer (C), Node 
(N), Scheduler (S) and Network-Interface (NI). Each of these 
components can be modeled either as a hardware or a 
software process. This NOC architecture offers various 
performance tradeoffs. For example, one would be able to 
analyze the impact of a particular routing strategy or 
scheduling criteria in terms of latency, power and area. In 
practice, about 60% of the area of the communication 
backbone will be occupied by the buffers. For a 3×3 mesh 
based NOC, there will be ninety buffers. Thus, the buffer size 
is a key parameter of NOC architecture. We prototyped Input 
Buffer as a hardware process. We provide in Table 6 the 
computed area of B for sizes of one to ten. This size 
parameter became an input parameter to a high level abstract 
model built to analyze effect of buffer size on system 
performance. Such an analysis allows one to make area-
performance tradeoffs.  

We designed the Input Buffer as a smart buffer with a 
built-in scheduler. The scheduler forwards the data as per 
certain scheduling criteria. Further, a buffer can be designed 
as 32-bit or 64-bit wide. In the 64-bit buffer, the chip area 
will increase but the number of packets to be transmitted will 
reduce to about half as compared to the 32-bit buffer. 
Therefore, it is likely that the latency of a system will reduce 
by transmitting a bigger packet. But it will require support for 
more parallel transmission lines (bus) in case of a parallel 
data transmission.  
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Figure 4: NOC architecture block diagram 

 
TABLE VI: GATE COUNT FOR VARIOUS BUFFER SIZES 

Buffer Size Gate Count for 
32-Bit 

Gate Count for 
64-Bit 

Size 1 11,427 16,733 
Size 2 13,381 20,135 
Size 3 14,510 22,207 
Size 4 14,920 23,292 
Size 5 15,526 24,594 
Size 10 16,108 24,940 

  
V.  ANNOTATION WITH SOFTWARE EMULATION 

 
The resources consumed by an application depend on the 

complexity of the application, the target platform, and any 
data dependencies. Multimedia applications have significant 
data dependencies and hence resource consumption is heavily 
data dependent. The application abstraction methodology 
used had two components: 1) resource abstraction; and 2) 
data dependency abstraction. The resource abstraction 
methodology used software profiling with Intel VTune 
Performance Analyzer to determine the resources consumed 
for a given platform [13]. The metrics used for resources 
consumption were the reads (R), writes (W), executions (E), 
cache hits and cache misses. Data dependencies were 
abstracted by measuring resource consumption for different 
data input streams and then modeling the variation in 
resource consumption due to data dependencies. An 
application is then annotated with the resource consumption 
rate and the data dependency model. The annotated 
application also used a model of the target platform to 
estimate resources. High level target platform metrics such as 
the processor speed, and average number of instruction 
retired per second are sufficient to estimate the resources 
consumed for that platform. We developed a methodology to 
estimate resources for multimedia applications. 
 
A. Resource Estimation Methodology 
 

We demonstrate the methodology with the H.264 video 
decoder. The key factors that influenced the approach are: 1) 
data dependencies and 2) target architecture. We abstracted 
the data dependencies using a process called Bitstream 
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Abstraction (BA). The decoder is componentized and 
component level resource requirements determined in a 
process called Decoder Abstraction (DA). We used BA 
together with DA to develop a resource estimation model. We 
describe below the methodology and the integrated flow. 

Content dependencies are inherent in video coding and 
resources required to encode/decode a video also depend on 
the content and the quality of the video. Our BA refers to the 
characterization of a compressed Bitstream with a few 
parameters that significantly influence the amount of 
computing resources required to decode the bitstream. The 
BA is specific to compression algorithms. The BA developed 
for the H.264 video used the following key Bitstream metrics: 
IntraMB 16x16, IntraMB 4x4, Inter MB 16x16, Inter MB 
16x8, Inter MB 8x16, Inter MB 8x8, skipped MB, and non-
zero coefficients. The per-frame averages of these metrics 
were used to represent the complexity of a Bitstream. Our 
results showed that the variation in resource consumption is 
strongly correlated with variation in one or more of the BA 
metrics. Modeling these variations will lead to resource 
estimation. The DA is the process of representing the decoder 
complexity with target platform independent metrics. We 
abstracted the decoder complexity by abstracting the 
complexity of the components in the decoder. The component 
complexity description should enable resource estimation for 
a given architecture. We used three metrics: R, W. and E. For 
the high level resource estimation we considered, further sub-
classifying the instructions was not necessary. The Intel 
VTune performance analyzer was used to obtain the metrics. 
This was then used to develop a resource estimation model. 
 
B. Experimental Results 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Complexity of Intra Prediction component and corresponding data 

dependencies in H.264  
Nokia H.264 baseline encoder and decoder were used at 

different bit rates to develop a model for resource estimation. 
Nokia H.264 employs frame and macroblock level rate 
control. The experiments were conducted with three different 
videos, Akiyo, Foreman, and Football, with same resolution 
of 176 x 144 and 15 Fps. The video sequences were encoded 
at 9 different bitrates from 15 to 740 Kbps. The complexity of 
the components of a H.264 video decoder was measured 
using the VTune performance analyzer. The relationship 

between BA and DA for the Intra prediction component is 
shown in Figure 5. It shows that the Bitstream complexity 
metric of the average number of non-zero coefficients per 
frame follows the instructions per frame closely and can be 
used to obtain high level resource estimates.  
 

VI. CONCLUSION 
 

Increasing system complexity will adversely impact 
design productivity. Tighter integration of hardware and 
software will be required to attain performance gains. A 
system architect’s design blue print will have to be 
significantly more precise to address both these concerns. In 
this paper, we document three different annotation 
mechanisms that can help the architect make more informed 
decisions. This should help avoid down-stream integration 
delays and unit cost run-ups due to the use of expensive, 
albeit unnecessary, components. 
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