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Abstract 
Real Time embedded system designers are facing extreme 

challenges in underlying architectural design selection. It 
involves the selection of a programmable, concurrent, 
heterogeneous multiprocessor architecture platform. Such a 
multiprocessor system on chip (MPSoC) platform has set new 
innovative trends for the real-time systems and system on Chip 
(SoC) designers. The consequences of this trend imply the shift 
in concern from computation and sequential algorithms to 
modeling concurrency, synchronization and communication in 
every aspect of hardware and software co-design and 
development. With a billion transistors era, some of the main 
problems in deep sub-micron technologies characterized by 
gate lengths in the range of 60-90 nm arise from non scalable 
wire delays, errors in signal integrity and un-synchronized 
communication. These problems have been addressed by the 
use of packet switched Network on Chip (NOC) architecture 
for future SoCs and thus, real-time systems. Such a NOC based 
system should be able to support different levels of quality of 
service (QoS) to meet the real time systems requirements. 
Thus, it becomes extremely critical to properly design a 
network interface (NI) and the communication backbone for 
NOC. In this paper we present a component based design of 
network interface and communication backbone which 
supports different levels of QoS. The design has been tested for 
an adaptive wormhole routing with proactive turn prohibition 
to guarantee deadlock free on chip communication for NOC 
architecture. In this work we propose to use the modified turn 
prohibition (MTP), which has been shown to perform better 
than up/down and the turn prohibition. 
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1. Introduction 
Motivated by increasing needs for concurrent computation 

requirements for embedded systems, and advances in deep sub-
micron technologies, the integration of an entire system onto a 
single die has become technically feasible, giving rise to the 
system-on-chip (SoC) era [1]. The System Level Design era 
where creativity, innovative ideas, ingenuity and inspiration 
come to the fore, is approaching and pushing technology at 
every turn. Moore’s law predicts that a chip in 2010 will count 
more than four billion transistors operating in multi GHz range 
[2] [3]. It is expected that the future Systems-on-chip (SoCs) 

will integrate from several dozens to hundreds of cores, 
making huge amounts of computation power available in a 
single billion transistor chip. These cores can be memory 
banks, I/O blocks, general purpose programmable processors, 
DSP processors, co-processors or dedicated hardware blocks. 
This is mainly due to the exponential decrease in the transistor 
size enabling faster transistor switching times and more 
densely integrated circuits. Such computation power is 
required to support complex multimedia algorithms (for 3-D 
video, gaming, and other applications) and communications 
algorithms onto handheld systems. It is further assumed that in 
future embedded systems, memory will occupy more than 60% 
of the total hardware block area [2]. Such computation power 
has posed some challenges: gate delays have been constantly 
scaling down, while global wire delays typically have either 
increased or remained constant as repeaters are inserted [4]. It 
is estimated that in 50nm technology, global wire delays will 
reach up to 6-10 clock cycles [5] [6]. As a result, achieving 
synchronization onto the system will be very difficult if not 
unfeasible. System designers also need to keep the power 
consumption of the system at a manageable level. Under such 
considerations, a single-processor implementation will not 
suffice, thus driving the development of more and more 
complex multi-processor SoCs (MPSoCs) [7].  Another 
dominant factor is to be able to design the system in an 
acceptable timeline known as time-to-market. Also, system 
level designers are constantly looking for ways to support a set 
of demanding Quality of Service (QoS) parameters and 
performance metrics, as customers became more savvy.  

Technology scaling at the same time has unwanted side 
effects which include cross coupling, noise, and transient errors 
[1]. This will raise further reliability concerns for system-level 
designers. This has again led us to reuse of design blocks, 
sometimes referred as components, which have been carefully 
designed by expert designers. However it can never be 
guaranteed that those sub-micron effects will not pop-up again 
while reusing those components in a design of a sub-system or 
a system. Thus it can be concluded that components or the sub-
system which perform as expected might not perform in the 
same way after system integration [8]. This has led to a new 
domain of research work for system level integration and 
verification viz, the Network-on-Chip (NOC) architecture [9, 
10]. 

It can be realized from the ITRS graph [11] that the 
manufacturing non recurring expense (NRE) of the chip with 
RTL design methodology alone would have been enormous 
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had future improvements not come about. In the past few 
decades, it is due to such improvements that teams of engineers 
and managers were able to bring the cost of a product 
development down to an affordable price for the customers, 
while enhancing quality of service and customer support 
relative to previous releases. However, if such innovations and 
future trends are not brought into the early stage of the product 
development cycle, the NRE cost of the product can increase to 
an unaffordable amount of one billion dollars by 2010 [11].  
Thus it is expected that the future systems will have increasing 
roles of design automation, reusability and componentization, 
thus increasing the market share for the electronic design 
automation (EDA) Industry. For such scenario, System-level 
modeling environment should be developed that essentially 
supports the middle-out design philosophy to exploit reuse to 
the maximum in order to reduce the design effort [12]. The 
high volume of reuse should cut down the overall system 
design cycle [13].  

 
Figure 1. NOC Architecture 

 
In traditional systems all the resources share one or more 

common buses and thus the same bandwidth. As a 
consequence, with the linear increase in the number of the 
processors onto the bus, the system performance decreases 
exponentially [14]. At the same time, with the advances in 
technology, it can be realized that gates relatively cost less than 
the wires. However, many innovations have been introduced in 
the design of bus architectures. These include pipelining, split-
and-retry techniques, removal of tri-state buffers and multi-
phase clocks, and various efforts to define the standard 
communication sockets [15]. However, in many cases 
introducing new bus architectures such as AMBA, ASB to 
AHB2.0, AMBA-lite and AMBA AXI, has required many 
changes in bus implementation, and more importantly bus 
interfaces, thus impacting IP reusability. Another reason that 
the buses are not scalable is that they cannot decouple the 
activities of the transaction, transport and physical layers [9].  

On the other hand, network based communication strategies 
provide a reusable, scalable and highly flexible solution to 
coup with the current technology trends. Thus, most of the 
future systems would have several SoCs that will use network 
architecture and a packet based communication protocol for on 
chip communication, referred as NOC. The NOC architecture 
is represented in Figure 1. In Figure 1, the larger “R” block 
represents a resource, which in turn may consist of memory, 

processor, cache memory resource interface network, etc., 
connected by a local bus based connection. The smaller “S” 
block in Figure 1 represents a NOC router and switch. In NOC 
different local regions (synchronous regions) would 
communicate with other synchronous regions by switches and 
routers. As a whole, the system would be asynchronous in 
nature.  

NoC’s can improve design productivity by supporting 
modularity and reuse of complex cores, thus enabling a higher 
level of abstraction in the architectural modeling of future 
systems [9], [10]. No delays are experienced for accessing the 
communication infrastructure, since multiple outstanding 
transactions originated by multiple cores can be handled at the 
same time, resulting in more efficient network resource 
utilization. However, given a certain network dimension (e.g., 
number of instantiated switches), large latency fluctuations for 
packet delivery could be experienced as a consequence of 
network congestion. Such delays would be unacceptable in 
real-time systems. There are two plausible solutions to this 
problem: (1) over-dimensioning the network to achieve the 
worst case scenarios for a definite traffic pattern; (2) providing 
priority levels to the traffic. The second solution is a cost-
effective solution in terms of the power consumption. In this 
way real-time requirements can be met by providing priority to 
real-time traffic. Such real-time traffic can be guaranteed for its 
delivery to its destination by either reserving some paths for 
real-time data, or implementing priority-based scheduling 
criteria. 

2. Network Interface 
Network Interface (NI) is the network protocol block. It 

defines and sets the protocol specification to be employed by 
the on chip communication network. Figure 2 depicts the block 
level details of NI. 

NI gets the traffic from resource (R). The resources for the 
NOC can be any general purpose processor core, memory, 
specified controller, FPGA, ASIC etc. The data traffic from the 
resource will come to one of the Ports. There are three ports 
shown in the Figure 2 are corresponding to three priority levels 
(or service levels) for the data traffic. The priority levels are 
customizable. The ports will then pass the data traffic to the 
Input Queues (3 queues for three levels of service) through 
Open Core Protocol (OCP) layer.  

OCP aims at achieving the goal of design re-use. It defines 
protocols to unify all of the inter-core communication and a 
high-performance, bus-independent interface between IP cores 
or other resources that reduces design time, design risk, and 
manufacturing costs for SOC designs. The OCP transforms the 
resource making them independent of the underlying 
architecture and design of the systems in which they are used. 
OCP helps in optimizing the die area by configuring only those 
features needed by the communicating cores. OCP further 
simplifies system verification and testing by providing a firm 
boundary around each IP core that can be observed, controlled, 
and validated. Synchronous unidirectional signaling in the 
OCP produces simplified core implementation, integration, and 
timing analysis. Any on-chip interconnects can be interfaced to 
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the OCP rendering it appropriate for many forms of on-chip 
communications. These communications include (1) Dedicated 
peer-to-peer communications, as in many pipelined signal 
processing applications such as MPEG2 encoding and 
decoding (2) A simple slave-only applications such as slow 
peripheral interfaces (3) High-performance, latency-sensitive, 
multi-threaded applications, such as multi-bank DRAM 
architectures. For a core to be considered OCP compliant, it 
must satisfy the conditions dictated in the OCP specification. 
Data from the OCP layer gets stored into one of the input 
queues as per the priority of the data. The scheduler chooses 
the data based on the given queuing discipline. Queuing 
discipline for the scheduler is a customizable parameter.  

O
P
E
N

C
O
R
E

P
R
O
T
O
C
O
L

P
O
R
T
2

P
O
R
T
1

P
O
R
T
3

IP QUEUE

SCHEDULER

SCHEDULER

IP QUEUE

IP QUEUE

OP QUEUE

OP QUEUE

OP QUEUE

FLIT 
BUILDER

PACKET 
BUILDER

BUFFER

FLIT
STRIPPER

PACKET 
STRIPPER

BUFFER

CREDIT CONTROLLER

SOURCE ADDRESS

DESTINATION ADDRESS

VIRTUAL CHANNEL

DATA 
PACKET

DATA 
PACKET

DATA IN

DATA IN

DATA IN

DATA OUT

DATA OUT

DATA OUT

O
P
E
N

C
O
R
E

P
R
O
T
O
C
O
L

P
O
R
T
2

P
O
R
T
1

P
O
R
T
3

IP QUEUEIP QUEUE

SCHEDULER

SCHEDULER

IP QUEUEIP QUEUE

IP QUEUEIP QUEUE

OP QUEUEOP QUEUE

OP QUEUEOP QUEUE

OP QUEUEOP QUEUE

FLIT 
BUILDER

PACKET 
BUILDER

BUFFER

FLIT
STRIPPER

PACKET 
STRIPPER

BUFFER

CREDIT CONTROLLER

SOURCE ADDRESS

DESTINATION ADDRESS

VIRTUAL CHANNEL

DATA 
PACKET

DATA 
PACKET

DATA IN

DATA IN

DATA IN

DATA OUT

DATA OUT

DATA OUT

 
Figure 2. Network Interface Architecture 

 
Data from these queues is sent to the flit builder. Along with 

the data field, the source address (SA) destination address 
(DA), and virtual channel (VC) information are also passed to 
flit builder block. SA is the address of the resource which 
passed the data through the ports. The DA is the address 
location where the data is finally sent to. The VC field refers to 
the number of the virtual channel through which this data will 
travel to the next node in form of flits. All flits corresponding 
to this data will travel through the same virtual channel. The 
flit builder makes a flit as per the specification defined in the 
Flit Structure part of the document. The flits are then passed to 
the packet builder block. Packet builder block takes the flits 
and prepares the packet. The packets are then buffered in a 
buffer from where are scheduled to their destination address 
through the communication backbone. The lower of part of 
Figure 2 refers to the part of the NI which behaves as a 
destination location for a packet. When the data packet reaches 
its final destination (Virtual Channel Router), it is then passed 
to the NI. NI de-packetizes the data and then passes it to the 
corresponding resource (R). The data flits are first buffered 
into the buffer, from where they are passed to the packet 
stripper block. The packet stripper removes the packet details 
and divides the packet in form of flits. These flits are then 
passed to the flit stripper part. The flit stripper part removes the 
flit details such as VC, SA, DA etc, and passes the data stream 
to one of the output queues.  The data is sent to the 
corresponding output queue as per the priority level of the data 

packet. The scheduler chooses one of the output queues and 
forwards it data to the resource. The scheduling discipline is 
the user defined parameter such as round-robin, first-in-first-
out or priority based. In this report we are assuming priority 
based scheduling. The credit controller block controls the end-
to-end flow control by keeping track of the number of credits 
in the virtual channel buffer of the router circuit. Number of 
credits corresponding to a virtual channel signifies the amount 
of space for holding the number of flits. When a flit is 
forwarded to the virtual channel router through the buffer, one 
credit corresponding to the particular VC is reduced. In a 
similar way, once we receive a flit from the virtual-channel-
router in the NI, one credit is added to the corresponding 
virtual channel. If the credit count of any virtual channel 
becomes zero, then the NI stops sending the flits to that 
particular VC until sufficient number (at least one) of credits 
are available again. 

3. Flit Structure & Virtual Channel Router 
In this section we discuss the wormhole router with two 

virtual channels and the flit structure. We assume that there is 
one flit-wide physical communication channel between 
adjacent routers. To make most effective use of the 
communication channel, we use the virtual channel bit in the 
flit that identifies which virtual channel will be used. This 
permits interleaving of flits in the physical channel and reduces 
the header blocking delay [16]. Since the NI forwards 
messages to the router with the highest priority first, all that the 
router needs to do is to route the messages to the indicated 
virtual channel or the output port. Note that blocking would 
occur if the requested output virtual channel is in use. In the 
router, the flit is first stored in one of the two input flit buffers 
as determined by the V bit. When the destination address flit is 
the flit buffer, router determines which physical output channel 
must be used. This could be done with a small look-up table in 
the router. In this arrangement, both the input and output 
channels have flit buffers; one for each virtual channel and the 
necessary multiplexer de-multiplexer circuits. As shown in 
Figure 3, input channel is de-multiplexed into either upper or 
lower flit buffer depending on the state of the V-bit in the flit. 
Since the state of the V-bit dictates which virtual channel will 
be taken on the output port, if the required virtual channel is 
busy, the incoming flit will be blocked and it will be waiting at 
the input flit buffer.  

Wormhole environment is prone to deadlocks [17], [18], [19] 
and special measures must be taken to prevent deadlock 
formation. It was proved [17] that the absence of cycles in the 
channel dependency graph (CDG) is a sufficient condition for 
deadlock-free routing. It was later shown [20] that this is also a 
necessary condition for deadlock-free coherent routing 
algorithms. Authors in a series of publications [21], [22], [23], 
[24], [25] have shown that elimination of cycles in the channel 
dependency graph can be eliminated with a turn prohibition 
algorithm which operates on the network topology graph 
instead of the CDG. This algorithm guarantees minimality of 
fraction of prohibited turns that will not exceed 1/3 in any 
connected topology. 
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Figure 3. Flit Struture 

 

 
Figure 4. Virtual Channel Router 

 
This algorithm is by no means the only turn prohibition 

algorithm in use. For example the spanning tree approach 
prohibits the use of non tree edges and therefore does not make 
efficient use of network resources. A more efficient variant 
known as the up/down approach also makes use of a spanning 
tree in the topology, but permits use of cross links in such a 
way that all cycles are broken. In the up/down approach the 
fraction of prohibited turns is non-minimal and its performance 
cannot be guaranteed [26].   

4. Simulation Results 
In this work we propose to use the modified turn prohibition 

(MTP) as described in [25], which has been shown to perform 
better than up/down and the turn prohibition [21]. One measure 
of the effectiveness of turn prohibition is the average dilation, 
which is defined as the ratio of the average distance in a 
topology with prohibition to the average distance without 
prohibition. In Figure 5 we show the average distance after 
each of the MTP, the TP, and the Up/Down approaches have 
been applied to the family of topologies. We show the average 
distance as a function of the bisection widths of topologies 
studied. Each experimental point in the plot corresponds to the 
average distance of 100 different topologies with the given 
bisection width. All nodes in the topologies studied had 
average degree of four. We also show the average distance in 
the same topologies without any turn prohibition. 
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 Figure 5 Experimental Results Comparing Average Distances 
 

We see that for all of the topologies studied, the MTP 
algorithm [27] introduced the minimal dilation. In Figure 6 we 
compare the performance of the three algorithms with single virtual 
channel version of the wormhole router. In these simulations all flits 
were eleven bits wide with 8 bits for payload and 3 bits for the flit 
type. All messages were 200 flits long. The vertical axis shows the 
minimal sustained throughput in terms of worms/node-second 
showing MTP algorithms outperforming both the TP and the 
Up/Down algorithms. 
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Figure 6. Saturation Points Comparing MTP, TP, and 

Up/Down Approaches in Single Virtual Channel Version of 
the Wormhole Router. 

5. Conclusion 
In this paper we propose to use a packet based 

communication for a multiprocessor based embedded systems. 
We propose to use the modified turn prohibition (MTP), which 
has been shown to perform better than up/down and the turn 
prohibition. in order to avoid the possible deadlock in inter-
core communication. We show the average distance after each 
of the MTP, the TP, and the Up/Down approaches have been 
applied to the family of topologies. Each experimental point in 
the plot corresponds to the average distance of 100 different 
topologies with the given bisection width. All nodes in the 
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topologies studied had average degree of four. We also show 
the average distance in the same topologies without any turn 
prohibition. It can be analyzed that for all of the topologies 
studied, the MTP algorithm introduced the minimal dilation. We 
also provide the simulation results for the performance of the 
three algorithms with single virtual channel version of the wormhole 
router. In these simulations all flits were eleven bits wide with 8 bits 
for payload and 3 bits for the flit type. All messages were 200 flits 
long. The vertical axis shows the minimal sustained throughput in 
terms of worms/node-second showing MTP algorithms outperforming 
both the TP and the Up/Down algorithms. 
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