

QOS DRIVEN NETWORK-ON-CHIP DESIGN

FOR REAL TIME SYSTEMS

Ankur Agarwal, Mehmet Mustafa, A. S. Pandya

 CSE Dept. FAU, Verizon Laboratories, CSE Dept. FAU,
 Boca Raton, FL 33431 Waltham, MA 02451 Boca Raton, FL 33431
 email: ankur@cse.fau.edu email: mm01@rcn.com email: pandya@fau.edu

Abstract
Real Time embedded system designers are facing extreme

challenges in underlying architectural design selection. It
involves the selection of a programmable, concurrent,
heterogeneous multiprocessor architecture platform. Such a
multiprocessor system on chip (MPSoC) platform has set new
innovative trends for the real-time systems and system on Chip
(SoC) designers. The consequences of this trend imply the shift
in concern from computation and sequential algorithms to
modeling concurrency, synchronization and communication in
every aspect of hardware and software co-design and
development. With a billion transistors era, some of the main
problems in deep sub-micron technologies characterized by
gate lengths in the range of 60-90 nm arise from non scalable
wire delays, errors in signal integrity and un-synchronized
communication. These problems have been addressed by the
use of packet switched Network on Chip (NOC) architecture
for future SoCs and thus, real-time systems. Such a NOC based
system should be able to support different levels of quality of
service (QoS) to meet the real time systems requirements.
Thus, it becomes extremely critical to properly design a
network interface (NI) and the communication backbone for
NOC. In this paper we present a component based design of
network interface and communication backbone which
supports different levels of QoS. The design has been tested for
an adaptive wormhole routing with proactive turn prohibition
to guarantee deadlock free on chip communication for NOC
architecture. In this work we propose to use the modified turn
prohibition (MTP), which has been shown to perform better
than up/down and the turn prohibition.

Keywords: Network-on-chip, network interface, quality-of-
service, real-time-systems

1. Introduction
Motivated by increasing needs for concurrent computation

requirements for embedded systems, and advances in deep sub-
micron technologies, the integration of an entire system onto a
single die has become technically feasible, giving rise to the
system-on-chip (SoC) era [1]. The System Level Design era
where creativity, innovative ideas, ingenuity and inspiration
come to the fore, is approaching and pushing technology at
every turn. Moore’s law predicts that a chip in 2010 will count
more than four billion transistors operating in multi GHz range
[2] [3]. It is expected that the future Systems-on-chip (SoCs)

will integrate from several dozens to hundreds of cores,
making huge amounts of computation power available in a
single billion transistor chip. These cores can be memory
banks, I/O blocks, general purpose programmable processors,
DSP processors, co-processors or dedicated hardware blocks.
This is mainly due to the exponential decrease in the transistor
size enabling faster transistor switching times and more
densely integrated circuits. Such computation power is
required to support complex multimedia algorithms (for 3-D
video, gaming, and other applications) and communications
algorithms onto handheld systems. It is further assumed that in
future embedded systems, memory will occupy more than 60%
of the total hardware block area [2]. Such computation power
has posed some challenges: gate delays have been constantly
scaling down, while global wire delays typically have either
increased or remained constant as repeaters are inserted [4]. It
is estimated that in 50nm technology, global wire delays will
reach up to 6-10 clock cycles [5] [6]. As a result, achieving
synchronization onto the system will be very difficult if not
unfeasible. System designers also need to keep the power
consumption of the system at a manageable level. Under such
considerations, a single-processor implementation will not
suffice, thus driving the development of more and more
complex multi-processor SoCs (MPSoCs) [7]. Another
dominant factor is to be able to design the system in an
acceptable timeline known as time-to-market. Also, system
level designers are constantly looking for ways to support a set
of demanding Quality of Service (QoS) parameters and
performance metrics, as customers became more savvy.

Technology scaling at the same time has unwanted side
effects which include cross coupling, noise, and transient errors
[1]. This will raise further reliability concerns for system-level
designers. This has again led us to reuse of design blocks,
sometimes referred as components, which have been carefully
designed by expert designers. However it can never be
guaranteed that those sub-micron effects will not pop-up again
while reusing those components in a design of a sub-system or
a system. Thus it can be concluded that components or the sub-
system which perform as expected might not perform in the
same way after system integration [8]. This has led to a new
domain of research work for system level integration and
verification viz, the Network-on-Chip (NOC) architecture [9,
10].

It can be realized from the ITRS graph [11] that the
manufacturing non recurring expense (NRE) of the chip with
RTL design methodology alone would have been enormous

1-4244-0038-4 2006
IEEE CCECE/CCGEI, Ottawa, May 2006

1291

had future improvements not come about. In the past few
decades, it is due to such improvements that teams of engineers
and managers were able to bring the cost of a product
development down to an affordable price for the customers,
while enhancing quality of service and customer support
relative to previous releases. However, if such innovations and
future trends are not brought into the early stage of the product
development cycle, the NRE cost of the product can increase to
an unaffordable amount of one billion dollars by 2010 [11].
Thus it is expected that the future systems will have increasing
roles of design automation, reusability and componentization,
thus increasing the market share for the electronic design
automation (EDA) Industry. For such scenario, System-level
modeling environment should be developed that essentially
supports the middle-out design philosophy to exploit reuse to
the maximum in order to reduce the design effort [12]. The
high volume of reuse should cut down the overall system
design cycle [13].

Figure 1. NOC Architecture

In traditional systems all the resources share one or more

common buses and thus the same bandwidth. As a
consequence, with the linear increase in the number of the
processors onto the bus, the system performance decreases
exponentially [14]. At the same time, with the advances in
technology, it can be realized that gates relatively cost less than
the wires. However, many innovations have been introduced in
the design of bus architectures. These include pipelining, split-
and-retry techniques, removal of tri-state buffers and multi-
phase clocks, and various efforts to define the standard
communication sockets [15]. However, in many cases
introducing new bus architectures such as AMBA, ASB to
AHB2.0, AMBA-lite and AMBA AXI, has required many
changes in bus implementation, and more importantly bus
interfaces, thus impacting IP reusability. Another reason that
the buses are not scalable is that they cannot decouple the
activities of the transaction, transport and physical layers [9].

On the other hand, network based communication strategies
provide a reusable, scalable and highly flexible solution to
coup with the current technology trends. Thus, most of the
future systems would have several SoCs that will use network
architecture and a packet based communication protocol for on
chip communication, referred as NOC. The NOC architecture
is represented in Figure 1. In Figure 1, the larger “R” block
represents a resource, which in turn may consist of memory,

processor, cache memory resource interface network, etc.,
connected by a local bus based connection. The smaller “S”
block in Figure 1 represents a NOC router and switch. In NOC
different local regions (synchronous regions) would
communicate with other synchronous regions by switches and
routers. As a whole, the system would be asynchronous in
nature.

NoC’s can improve design productivity by supporting
modularity and reuse of complex cores, thus enabling a higher
level of abstraction in the architectural modeling of future
systems [9], [10]. No delays are experienced for accessing the
communication infrastructure, since multiple outstanding
transactions originated by multiple cores can be handled at the
same time, resulting in more efficient network resource
utilization. However, given a certain network dimension (e.g.,
number of instantiated switches), large latency fluctuations for
packet delivery could be experienced as a consequence of
network congestion. Such delays would be unacceptable in
real-time systems. There are two plausible solutions to this
problem: (1) over-dimensioning the network to achieve the
worst case scenarios for a definite traffic pattern; (2) providing
priority levels to the traffic. The second solution is a cost-
effective solution in terms of the power consumption. In this
way real-time requirements can be met by providing priority to
real-time traffic. Such real-time traffic can be guaranteed for its
delivery to its destination by either reserving some paths for
real-time data, or implementing priority-based scheduling
criteria.

2. Network Interface
Network Interface (NI) is the network protocol block. It

defines and sets the protocol specification to be employed by
the on chip communication network. Figure 2 depicts the block
level details of NI.

NI gets the traffic from resource (R). The resources for the
NOC can be any general purpose processor core, memory,
specified controller, FPGA, ASIC etc. The data traffic from the
resource will come to one of the Ports. There are three ports
shown in the Figure 2 are corresponding to three priority levels
(or service levels) for the data traffic. The priority levels are
customizable. The ports will then pass the data traffic to the
Input Queues (3 queues for three levels of service) through
Open Core Protocol (OCP) layer.

OCP aims at achieving the goal of design re-use. It defines
protocols to unify all of the inter-core communication and a
high-performance, bus-independent interface between IP cores
or other resources that reduces design time, design risk, and
manufacturing costs for SOC designs. The OCP transforms the
resource making them independent of the underlying
architecture and design of the systems in which they are used.
OCP helps in optimizing the die area by configuring only those
features needed by the communicating cores. OCP further
simplifies system verification and testing by providing a firm
boundary around each IP core that can be observed, controlled,
and validated. Synchronous unidirectional signaling in the
OCP produces simplified core implementation, integration, and
timing analysis. Any on-chip interconnects can be interfaced to

1292

the OCP rendering it appropriate for many forms of on-chip
communications. These communications include (1) Dedicated
peer-to-peer communications, as in many pipelined signal
processing applications such as MPEG2 encoding and
decoding (2) A simple slave-only applications such as slow
peripheral interfaces (3) High-performance, latency-sensitive,
multi-threaded applications, such as multi-bank DRAM
architectures. For a core to be considered OCP compliant, it
must satisfy the conditions dictated in the OCP specification.
Data from the OCP layer gets stored into one of the input
queues as per the priority of the data. The scheduler chooses
the data based on the given queuing discipline. Queuing
discipline for the scheduler is a customizable parameter.

O
P
E
N

C
O
R
E

P
R
O
T
O
C
O
L

P
O
R
T
2

P
O
R
T
1

P
O
R
T
3

IP QUEUE

SCHEDULER

SCHEDULER

IP QUEUE

IP QUEUE

OP QUEUE

OP QUEUE

OP QUEUE

FLIT
BUILDER

PACKET
BUILDER

BUFFER

FLIT
STRIPPER

PACKET
STRIPPER

BUFFER

CREDIT CONTROLLER

SOURCE ADDRESS

DESTINATION ADDRESS

VIRTUAL CHANNEL

DATA
PACKET

DATA
PACKET

DATA IN

DATA IN

DATA IN

DATA OUT

DATA OUT

DATA OUT

O
P
E
N

C
O
R
E

P
R
O
T
O
C
O
L

P
O
R
T
2

P
O
R
T
1

P
O
R
T
3

IP QUEUEIP QUEUE

SCHEDULER

SCHEDULER

IP QUEUEIP QUEUE

IP QUEUEIP QUEUE

OP QUEUEOP QUEUE

OP QUEUEOP QUEUE

OP QUEUEOP QUEUE

FLIT
BUILDER

PACKET
BUILDER

BUFFER

FLIT
STRIPPER

PACKET
STRIPPER

BUFFER

CREDIT CONTROLLER

SOURCE ADDRESS

DESTINATION ADDRESS

VIRTUAL CHANNEL

DATA
PACKET

DATA
PACKET

DATA IN

DATA IN

DATA IN

DATA OUT

DATA OUT

DATA OUT

Figure 2. Network Interface Architecture

Data from these queues is sent to the flit builder. Along with

the data field, the source address (SA) destination address
(DA), and virtual channel (VC) information are also passed to
flit builder block. SA is the address of the resource which
passed the data through the ports. The DA is the address
location where the data is finally sent to. The VC field refers to
the number of the virtual channel through which this data will
travel to the next node in form of flits. All flits corresponding
to this data will travel through the same virtual channel. The
flit builder makes a flit as per the specification defined in the
Flit Structure part of the document. The flits are then passed to
the packet builder block. Packet builder block takes the flits
and prepares the packet. The packets are then buffered in a
buffer from where are scheduled to their destination address
through the communication backbone. The lower of part of
Figure 2 refers to the part of the NI which behaves as a
destination location for a packet. When the data packet reaches
its final destination (Virtual Channel Router), it is then passed
to the NI. NI de-packetizes the data and then passes it to the
corresponding resource (R). The data flits are first buffered
into the buffer, from where they are passed to the packet
stripper block. The packet stripper removes the packet details
and divides the packet in form of flits. These flits are then
passed to the flit stripper part. The flit stripper part removes the
flit details such as VC, SA, DA etc, and passes the data stream
to one of the output queues. The data is sent to the
corresponding output queue as per the priority level of the data

packet. The scheduler chooses one of the output queues and
forwards it data to the resource. The scheduling discipline is
the user defined parameter such as round-robin, first-in-first-
out or priority based. In this report we are assuming priority
based scheduling. The credit controller block controls the end-
to-end flow control by keeping track of the number of credits
in the virtual channel buffer of the router circuit. Number of
credits corresponding to a virtual channel signifies the amount
of space for holding the number of flits. When a flit is
forwarded to the virtual channel router through the buffer, one
credit corresponding to the particular VC is reduced. In a
similar way, once we receive a flit from the virtual-channel-
router in the NI, one credit is added to the corresponding
virtual channel. If the credit count of any virtual channel
becomes zero, then the NI stops sending the flits to that
particular VC until sufficient number (at least one) of credits
are available again.

3. Flit Structure & Virtual Channel Router
In this section we discuss the wormhole router with two

virtual channels and the flit structure. We assume that there is
one flit-wide physical communication channel between
adjacent routers. To make most effective use of the
communication channel, we use the virtual channel bit in the
flit that identifies which virtual channel will be used. This
permits interleaving of flits in the physical channel and reduces
the header blocking delay [16]. Since the NI forwards
messages to the router with the highest priority first, all that the
router needs to do is to route the messages to the indicated
virtual channel or the output port. Note that blocking would
occur if the requested output virtual channel is in use. In the
router, the flit is first stored in one of the two input flit buffers
as determined by the V bit. When the destination address flit is
the flit buffer, router determines which physical output channel
must be used. This could be done with a small look-up table in
the router. In this arrangement, both the input and output
channels have flit buffers; one for each virtual channel and the
necessary multiplexer de-multiplexer circuits. As shown in
Figure 3, input channel is de-multiplexed into either upper or
lower flit buffer depending on the state of the V-bit in the flit.
Since the state of the V-bit dictates which virtual channel will
be taken on the output port, if the required virtual channel is
busy, the incoming flit will be blocked and it will be waiting at
the input flit buffer.

Wormhole environment is prone to deadlocks [17], [18], [19]
and special measures must be taken to prevent deadlock
formation. It was proved [17] that the absence of cycles in the
channel dependency graph (CDG) is a sufficient condition for
deadlock-free routing. It was later shown [20] that this is also a
necessary condition for deadlock-free coherent routing
algorithms. Authors in a series of publications [21], [22], [23],
[24], [25] have shown that elimination of cycles in the channel
dependency graph can be eliminated with a turn prohibition
algorithm which operates on the network topology graph
instead of the CDG. This algorithm guarantees minimality of
fraction of prohibited turns that will not exceed 1/3 in any
connected topology.

1293

Figure 3. Flit Struture

Figure 4. Virtual Channel Router

This algorithm is by no means the only turn prohibition

algorithm in use. For example the spanning tree approach
prohibits the use of non tree edges and therefore does not make
efficient use of network resources. A more efficient variant
known as the up/down approach also makes use of a spanning
tree in the topology, but permits use of cross links in such a
way that all cycles are broken. In the up/down approach the
fraction of prohibited turns is non-minimal and its performance
cannot be guaranteed [26].

4. Simulation Results
In this work we propose to use the modified turn prohibition

(MTP) as described in [25], which has been shown to perform
better than up/down and the turn prohibition [21]. One measure
of the effectiveness of turn prohibition is the average dilation,
which is defined as the ratio of the average distance in a
topology with prohibition to the average distance without
prohibition. In Figure 5 we show the average distance after
each of the MTP, the TP, and the Up/Down approaches have
been applied to the family of topologies. We show the average
distance as a function of the bisection widths of topologies
studied. Each experimental point in the plot corresponds to the
average distance of 100 different topologies with the given
bisection width. All nodes in the topologies studied had
average degree of four. We also show the average distance in
the same topologies without any turn prohibition.

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

0 4 8 12 16 20 24
Minimum Bisection Width

A
ve

ra
ge

 D
is

ta
nc

e
(h

op
s)

NP
MTP
Up/Down
TP

 MTP

No Prohibition(NP)

Up/Down(UD)

TP

 Figure 5 Experimental Results Comparing Average Distances

We see that for all of the topologies studied, the MTP
algorithm [27] introduced the minimal dilation. In Figure 6 we
compare the performance of the three algorithms with single virtual
channel version of the wormhole router. In these simulations all flits
were eleven bits wide with 8 bits for payload and 3 bits for the flit
type. All messages were 200 flits long. The vertical axis shows the
minimal sustained throughput in terms of worms/node-second
showing MTP algorithms outperforming both the TP and the
Up/Down algorithms.

2.00E+04

4.00E+04

6.00E+04

8.00E+04

1.00E+05

1.20E+05

1.40E+05

0 4 8 12 16 20

Minimum Bisection Width

S
at

ur
at

io
n

Po
in

t [
w

or
m

s/
(s

ec
.n

od
e)

]

UD
TP
MTP

MTP

TP

Up/Down (UD)

Figure 6. Saturation Points Comparing MTP, TP, and

Up/Down Approaches in Single Virtual Channel Version of
the Wormhole Router.

5. Conclusion
In this paper we propose to use a packet based

communication for a multiprocessor based embedded systems.
We propose to use the modified turn prohibition (MTP), which
has been shown to perform better than up/down and the turn
prohibition. in order to avoid the possible deadlock in inter-
core communication. We show the average distance after each
of the MTP, the TP, and the Up/Down approaches have been
applied to the family of topologies. Each experimental point in
the plot corresponds to the average distance of 100 different
topologies with the given bisection width. All nodes in the

1294

topologies studied had average degree of four. We also show
the average distance in the same topologies without any turn
prohibition. It can be analyzed that for all of the topologies
studied, the MTP algorithm introduced the minimal dilation. We
also provide the simulation results for the performance of the
three algorithms with single virtual channel version of the wormhole
router. In these simulations all flits were eleven bits wide with 8 bits
for payload and 3 bits for the flit type. All messages were 200 flits
long. The vertical axis shows the minimal sustained throughput in
terms of worms/node-second showing MTP algorithms outperforming
both the TP and the Up/Down algorithms.

References

[1] T. Das, C. Washburn, P. R. Mukund, S. Howard, K.

Paradis, J. G. Jang, J. Kolnik, “Effects of technology and
dimensional scaling on input loss prediction of RF
MOSFETs,” International Conference on VLSI Design
held jointly with 4th International Conference on
Embedded Systems Design, pp. 295-300, 2005.

[2] L. Benini and G. De Micheli, “Networks on chip: a new
SOC paradigm,” IEEE Computer, Volume 35, No. 1, pp.
70-78, January, 2002.

[3] Xu, Jiang, W. Wolf, J. Hankel, S. Charkdhar, “A
Methodology for design, modeling and analysis for
networks-on-Chip,” IEEE International Symposium on
Circuits and Systems, pp. 1778-1781, May 2005.

[4] S. Kumar, A. Jantsch, J-P. Soininen, M. Forsell, M.
Millberg, J. Oberg, K. Tiensyrja, and A. Hemani, “A
network on Chip Architecture and Design Methodology,”
In IEEE Computer Society Annual symposium on VLSI,
pp. 117-124, April 2002.

[5] A. Hemani, A. Jantsch, S. Kumar A. Postula, J. Öberg, M.
Millberg, D. Lindqvist, “Network on Chip: an architecture
for billion transistor era,” Proc. of IEEE NorChip
Conference, pp. 8, November 2000.

[6] P. Wielage, K. Goossens, “Network on silicon: blessing or
nightmare?,” Euromicro Symposium on Digital System
Design, Dortmund, Genmany, Keynote Speech, September
2003.

[7] Jerraya Ahmed Meine, Wolf Wayne, MULTIPROCESSOR
SYSTEM-ON-CHIPS. Morgan Kaufamann Publisher,
2005.

[8] A. M. Amory, É. Cota, M. Lubaszewski, F. G. Moraes,
“Reducing test time with processor reuse in network-on-
chip based systems,” Proceedings of the 17th ACM
symposium on Integrated circuits and system design, pp.
111 – 116, 2004.

[9] X., Jiang, W. Wolf, J. Hankel, S. Charkdhar, “A
methodology for design, modeling and analysis for
networks-on-Chip,” IEEE International Symposium on
Circuits and Systems, pp. 1778-1781 May 2005.

[10] A. Jantsch and H. Tenhunen. NETWORKS ON CHIP
Kluwer Academic Publisher, 2003.

[11] Semiconductor Industry Association, The international
Technology Roadmap for Semiconductors. 2001.
http://public.itrs.net/Files/2001ITRS/Home.htm

[12] Y. Xiong, “An extensible type system for component-
based design,” Ph.D. dissertation University of California
Berkeley, May 2002.

[13] E. Cota, M. Kreutz, C.A. Zeferino, L. Carro, M.
Lubaszewski, A. Susin, “The impact of NoC reuse on the
testing of core-based systems,” 21st Proceedings of VLSI
Test Symposium, pp. 128-133, April 2003.

[14] D. Bertozzi and L. Benini, “Xpipes: A network-on-chip
architecture for gigascale system-on-chip,” IEEE Circuits
and Systems., vol. 4, no.1 pp. 18-31, 2004

[15] K. K.l Ryu, E. Shin, V. J. Mooney, “A comparison of five
different multiprocessor SoC bus architectures,” IEEE
Euromicro symposium on Digital Systems, Design, pp.
202-209, 2001.

[16] J. Duato, S. Yalamanchili and L. Ni, M. "Interconnection
Networks: An Engineering Approach," 1997.

[17] J. Duato "A New Theory of Deadlock-Free Adaptive
Routing in Wormhole Networks," IEEE Trans. on Parallel
and Distributed Systems vol. 4, pp. 1320-1331, 1993.

[18] E. Fleury and P. Fraigniaud "A General Theory for
Deadlock Avoidance in Wormhole-Routed Networks,"
IEEE Trans. on Parallel and Distributed Systems vol. 9,
pp. 626-638, 1998.

[19] L. Ni, M. and P. McKinley, K. "A Survey of Wormhole
Routing Techniques in Directed Networks," Computer vol.
26, pp. 62-76, 1993.

[20] L. Schwiebert "Deadlock-Free Oblivious Wormhole
Routing With Cyclic Dependencies," IEEE Trans. on
Computers vol. 50, no. 9, pp. 865-876, 2001.

[21] L. Zakrevski "PhD Thesis: Fault-Tolerant Wormhole
Message Routiing in Computer Communication
Networks," Boston University College of Engineering pp.
21-27, 2000.

[22] - L. Zakrevski, S. Jaiswal, L. Levitin and M. Karpovsky
"A New Method for Deadlock Elimination in Computer
Networks with Irregular Toplologies," Pro. of the IASTED
Conf. PDCS-99 vol. 1, pp. 396-402, 1999.

[23] L. Zakrevski and M. Karpovsky, G. "Fault-Tolerant
Message Routing in Computer Networks," Proc. of Int.
Conf. on PDPA-99 pp. 2279-2287, 1999.

[24] L. Zakrevski, S. Jaiswal and M. Karpovsky "Unicast
Message Routing in Communication Networks With
Irregular Topologies," Proc. of CAD-99, 1999.

[25] L. Zakrevski, M. Mustafa and M. Karpovsky "Turn
Prohibition Based Routing in Irregular Computer
Networks," Proc. of the IASTED International Conference
on Parallel and Distributed Computing and Systems pp.
175-179, 2000.

[26] - D. Starobinski, M. Karpovsky and L. Zakrevski
"Application of Network Calculus to General Topologies
Using Turn Prohibition," IEEE/ACM Transactions on
Networking vol. 11, no. 3, pp. 411-421, 2003

[27] M. Mustafa, M. Karpovsky and L. Levitin "Cycle
Breaking in Wormhole Routed Computer Communication
Networks," OpnetWork2005, 2005

1295

