
A Modi�ed Low Complexity Digit-Level Gaussian

Normal Basis Multiplier

Reza Azarderakhsh and Arash Reyhani-Masoleh

Department of Electrical and Computer Engineering
The University of Western Ontario
London, ON, CANADA, N6A 5B9

{razarder and areyhani}@uwo.ca

Abstract. Gaussian normal bases have been included in a number of
standards, such as IEEE [1] and NIST [2] for elliptic curve digital sig-
nature algorithm (ECDSA). Among di�erent �nite �eld operations used
in this algorithm, multiplication is the main operation. In this paper, we
consider type T Gaussian normal basis (GNB) multipliers over GF (2m),
where m is odd. Such �elds include �ve binary �elds recommended by
NIST for ECDSA. A modi�ed digit-level GNB multiplier over GF (2m)
is proposed in this paper. For T > 2, a complexity reduction algorithm is
proposed to reduce the number of XOR gates without increasing the gate
delay of the digit-level multiplier. The original and modi�ed digit-level
GNB multipliers are implemented on the Xilinx® Virtex5� FPGA fam-
ily for di�erent digit sizes. It is shown that the modi�ed digit-level GNB
multiplier requires lower space complexity with almost the same delay
as compared to the original type T, T > 2, GNB multiplier. Moreover,
the bit-parallel GNB multiplier obtained from the proposed modi�ed
digit-level multiplier has the least space and time complexities among
the existing fast bit-parallel type T GNB multipliers for T > 2.

Keywords: Finite �eld, Gaussian normal basis, digit-serial multiplier,
complexity reduction.

1 Introduction

Elliptic curve cryptosystem, which is proposed independently by Miller [3] and
Koblitz [4], requires extensive �nite �eld operations for the point multiplication.
Multiplication is the main operation and its structure depends strongly on the
representation of the �eld element. There are a number of ways to represent �eld
elements. Among them, the most common bases are the polynomial basis and
the normal basis representations [1]. In normal basis representation, squaring of
a �eld element is free in hardware. Recently, implementation of the point multi-
plication for elliptic curve cryptography (ECC) using normal basis has received
attention in the literature, see for example [5], [6] and [7].

The �rst normal basis multiplier over GF (2m) was invented by Massey and
Omura [8]. This bit-serial multiplier, which has a parallel-in serial-out structure,

generates a bit of the result in each clock cycle. Therefore, the coordinates of
the multiplication are generated after m clock cycles with the least complexity.
There are also other bit-serial multipliers with parallel outputs, see for example
[9], [10]. To make a fast hardware implementation, a bit-parallel multiplier is
proposed in [11] by having m copies of identical bit-serial structure of [8] with
shifted inputs. In such a multiplier, once 2m bits of two inputs are received, m
bits of the product are obtained after propagation delay through gates. Various
e�cient bit-parallel architecture for normal basis multiplication over GF (2m)
have been developed in the literature, see for example [11], [12] and [13] for
arbitrary normal basis as well as [14], [15], [16], and [17] for special classes of
normal basis.

Bit-parallel multipliers require a lot of silicon area and it is impractical for
resource constrained environments such as smart cards. To obtain an optimum
multiplier for such applications, a digit-level multiplier can be utilized, where
the digit size can be chosen depending on the available resources. Using a digit-
level multiplier allows the designers to trade-o� between speed and area. Among
di�erent digit-level normal basis multipliers available in the literature, the ones
with the parallel outputs run at much higher frequency than the other ones.
Such a multiplier is proposed in [15] and [7] for GNB over GF (2m), where m is
odd.

A special classes of normal basis called GNBs, have been included in the
recent standards, such as IEEE and NIST for ECDSA. In this paper, a com-
plexity reduction algorithm is proposed to reduce the number of XOR gates for
the original parallel-output type T digit-level GNB multiplier proposed in [15]
and [7] for T > 2. This algorithm uses sub-expression sharing without increasing
the gate delay of the multiplier. It is noted that no such common terms is ob-
tained for T = 2. Thus, the algorithm is coded using MATLAB for the GF (2163)
(T = 4) and GF (2283) (T = 6) �nite �elds in terms of di�erent digit sizes. Then,
based on the results obtained from the algorithm, the original digit-level multi-
plier structure is modi�ed. The modi�ed GNB multiplier requires fewer number
of XOR gates without impacting the gate delay. Both the original GF (2163) and
GF (2283) multipliers and the modi�ed ones are compared in terms of number
of XORs for di�erent digit sizes. To obtain the actual implementation results,
the original and modi�ed structures are coded in VHDL and they are imple-
mented on a Xilinx® Virtex5� �eld-programmable gate array (FPGA) device
for di�erent digit sizes. The comparison results show that the modi�ed struc-
ture outperforms the original one in terms of area without signi�cantly a�ecting
the multiplication time. It is also shown that for the highest digit size, the bit-
parallel multiplier obtained from the modi�ed digit-level multiplier requires the
least number of XOR gates with the same gate delay compared to the existing
fast GNB multipliers.

The organization of the remaining parts of this paper is as follows. In Section
2, we state the preliminaries required in this paper. Also, the original digit-level
Gaussian normal basis multiplier with parallel output is presented in this section.
A modi�ed version of this multiplier is proposed in Section 3 using a complexity

2

reduction algorithm. Moreover, in this section a bit-parallel GNB multiplier ob-
tained from the proposed digit-level GNB multiplier is presented and compared
with its counterparts in terms of time and area complexities. Results of the
hardware implementations of the proposed multiplier on the Xilinx® Virtex5�
FPGA are presented in Section 4. We �nally conclude the paper in Section 5.

2 Preliminaries

It is well known that there is always a normal basis N = {β, β2, β22
, · · · , β2m−1},

for a �nite �eld GF (2m) over GF (2) for any positive integer m, where β is
called normal element [18]. The elements of N are linearly independent and each
element, say A = (a0, a1, · · · , am−1), can be represented as a linear combination
of the elements in N , as A =

∑m−1
i=0 aiβ

2i

, where coe�cients ai ∈ GF (2), 0 ≤
i ≤ m − 1, denote the coordinates of A. The merit of the normal basis is that,
squaring of an element A in the normal basis representation is a right cyclic
shift of its coordinates, i.e., A2 = (am−1, a0, a1, · · · , am−2), and it is free in
hardware.

De�nition 1. Let p = mT + 1 be a prime number and gcd(mT/k, m) = 1,
where k is the multiplication order of 2 module p. Then, the normal basis N =
{β, β2, · · · , β2m−1} over GF (2m) is called the Gaussian normal basis of type T ,
T > 0.

It is noted that the GNBs exist over GF (2m) whenever m is not divisible by 8
[1]. In this paper, we only consider the GNBs with odd values of m. This implies
that T is an even number. It is noted that such GNBs are important since they
include the �ve binary �elds, i.e., m ∈ {163, 233, 283, 409, 571}, recommended by
NIST for ECDSA [2]. The corresponding types for these �elds are T = 4, 2, 6, 4,
and 10, respectively.

2.1 Normal Basis Multiplication

Let A = (a0, a1, · · · , am−1) =
∑m−1
i=0 aiβ

2i

and B = (b0, b1, · · · , bm−1) =∑m−1
j=0 bjβ

2j

be two �eld elements over GF (2m). Let C ∈ GF (2m) be their

product, i.e., C = (c0, c1, · · · , cm−1) = AB =
∑m−1
i=0

∑m−1
j=0 aibjβ

2i+2j

. Let us

represent the �eld element β2i+2j ∈ GF (2m), 0 ≤ i, j ≤ m − 1, with respect to

N as β2i+2j

=
∑m−1
l=0 µ

(l)
i,jβ

2l

.Then, one can �nd C as

C =
m−1∑
i=0

m−1∑
j=0

aibj

m−1∑
l=0

µ
(l)
i,jβ

2l

=
m−1∑
l=0

m−1∑
i=0

m−1∑
j=0

aibjµ
(l)
i,jβ

2l

. (1)

By representing C with respect to N , i.e., C =
∑m−1
l=0 clβ

2l

, and equating it with

(1), the l-th coordinate of C can be written as cl =
∑m−1
i=0

∑m−1
j=0 aibjµ

(l)
i,j . Then,

it can be written in a matrix form as

cl = aM(l)btr, 0 ≤ l ≤ m− 1, (2)

3

where M(l) = [µ(l)
i,j]

m−1
i,j=0, µ

(l)
i,j ∈ GF (2), 0 ≤ i, j ≤ m− 1, a = [a0, a1, · · · , am−1]

and btr denotes the matrix transpose of row vector b = [b0, b1, · · · , bm−1]. In
(2), M(l) is obtained from the l-fold right and down circular shifts of the mul-

tiplication matrix M = M(0). The computation of entries of M can be found
from [1]. Massey and Omura in [8] proposed the bit-serial multiplier by im-
plementing (2) for one coordinate, say c0 = aMbtr = F (A,B). Then, the lth
coordinate of C can be obtained by cyclic shifts of the coordinates of A and B,
i.e., cl = F (A� l, B � l) [8].

The number of non-zero entries in the multiplication matrix M = M(0) in
(2) is called the complexity of the normal basis and is denoted by CN [19]. This
can be used to estimate the area complexity of hardware implementation of the
multiplier. Gao et al. in [20] proved that CN ≥ 2m − 1. The normal basis is
said to be optimal if CN = 2m − 1. The optimal normal bases are extended to
another class of low complexity normal basis called Gaussian normal basis by
Ash et. al [21]. For type T GNB, T ≥ 2, the complexity of multiplication matrix
M satis�es CN ≤ mT − 1 [21]. A slightly tighter upper bound for CN is found
in [10] as CN = mT − T + 1. Therefore, if there is no optimal normal basis for a
given m, the GNB with the least value of T is an alternative for choosing normal
bases.

2.2 Digit-Level Gaussian Normal Basis Multiplier with Parallel

Output

Let A = (a0, a1, · · · , am−1) and B = (b0, b1, · · · , bm−1) be the GNB elements
over GF (2m), and let d, 1 ≤ d ≤ m, be the digit size. Reyhani-Masoleh in [15]
and Kim et al. in [7] proposed a digit-level Gaussian normal basis multiplier with
parallel output (DLGMp). It requires q, 1 ≤ q ≤ m, clock cycles to generate all
m coordinates of C = AB simultaneously at the end of the �nal clock cycle.
The original multiplier structure of DLGMp is shown in Figure 1. Let X =
(x0, x1, · · · , xm−1) and Y = (y0, y1, · · · , ym−1) be the input registers of this
multiplier. Then, it implements [15]

J(X, Y) =
m−1∑
k=0

xm−ks
′

0(k, Y)β2i

, (3)

where

s
′

0(k, Y) =
∑
i∈Rk

yi−k, (4)

and Rk is a set containing the locations of non-zero entries of row 2k, 0 ≤
2k ≤ m − 1, of the multiplication matrix M = M(0) de�ned in (2). Based on
the properties of M for GNB, one can �nd s

′

0(0, Y) = y1 and s
′

0(k, Y) =
s
′

0(m−k, Y), 1 ≤ k ≤ m−1
2 [15]. Also, it is shown in [10] and [15] that the number

of elements in Rk is even and less than or equal to T, i.e., |Rk| ≤ T . The J block
in Figure 1 performs (3) using m AND gates. For the multiplication operation,

4

Ctrl

Adder

GF
m

)2(

2

1m

0

2

1m

m

2

1m

1d

d

1d

r
r

),(YXJX

Y 0P

1P

1d
P

m

m

m
m

m

mm

m

m

m
P

P

P

Y

X

Z

J

J

c
J

m

m

d

0

r

1d

d

Fig. 1: Digit-serial Gaussian normal basis multiplier proposed in [15], [7], where

the i-fold right cyclic shift is denoted by
i
� and r is a number 0 ≤ r ≤ d − 1

such that m = qd− r.

the registers X and Y of this �gure are initially loaded by the coordinates of A
and B, respectively. Also, the output register Z should be cleared before starting
the multiplication operation. Then, after q clock cycles, the output register Z
contains the coordinates of C = AB. In the following section, we modify this
multiplier to reduce the number of XOR gates.

3 Modi�ed Digit-Level GNB Multiplier

The number of XOR gates of the DLGMp multiplier presented in the previous
section can be reduced by reusing the common terms appeared at the outputs
of the P blocks. The complexity reduction scheme presented in [15] cannot be
applied for a practical �eld, such as, GF (2163) and GF (2283). For the GF (27)
example used in [15], the P block is optimized �rst and then the same block
is copied for all P blocks used in the multiplier. It is interesting to note that
for type 4 GNB over GF (2163), no common pair can be found in the P block of
Figure 1 if one applies the method presented in [15]. For this purpose, we modify
this multiplier by replacing all P blocks that generate P1, · · · , Pd in Figure 1 with
one block. As seen in Figure 1, the number of outputs of an unoptimized P block
in this �gure is m+1

2 . These are based on the following signals [15]

5

Adder

GF
m

)2(

2

1m

0

m

r

m

d

r

m

m

d

m

m

d

2

)1(md

2

1m

1 2

J

J

Y

X

Z
n

Ctrl

1d

m

1d

2

1m

c
J

m

m

d

Fig. 2: Modi�ed Digit-level Gaussian Normal Basis Multiplier (MDLGMp).

Pk(Y) = (y1−k, s
′

0(1, Y � k), s
′

0(2, Y � k), · · ·
, · · · , s′0(m−1

2 , Y � k)), 0 ≤ k ≤ d− 1, (5)

for the P block that generates Pk(Y). The modi�ed digit-level multiplier is shown
in Figure 2. The combination of all P blocks in Figure 1 is shown by ρ in Figure
2. All signals in (5) are used to build the block ρ in Figure 2. As shown in this
�gure, y1−ks are removed from the block ρ. To reduce the complexity of the
ρ block in Figure 2, we divide the ρ block in two blocks ρ1 and ρ2, where ρ1

includes all common pairs used to generate all signals in (5). In the following
section, a complexity reduction algorithm is presented for a given GNB to obtain
the optimized blocks of ρ1 and ρ2 so that the time delay (in terms of gate delays)
of the original block ρ is the same as the one in the modi�ed multiplier, i.e., the
addition of gate delays of the two blocks ρ1 and ρ2.

3.1 A Complexity Reduction Algorithm

In this section, an approach for reducing the area complexity of the modi�ed
digit-level GNB multiplier is proposed. It is noted that unlike the complexity

6

reduction schemes available in the literature, see for example [22], the proposed
algorithm does not increase the gate delay of the modi�ed structure as compared
to the original one. The complexity reduction algorithm to reduce the number
of XOR gates in the block ρ of Figure 2 is summarized as follows.

Input: The multiplication matrix M and digit size d for type T GNB over
GF (2m).

Output: A pairset which contains all the pairs that should be implemented
in the block ρ1. This set will be used to obtain the formulations for the imple-
mentation of the modi�ed multiplier.

1. Corresponding to the output signals of the P block in Figure 1, an m−1
2 ×T

matrix denoted by µ = [µk]
m−1

2
k=1 is constructed, where µk is the row k, 1 ≤

k ≤ m−1
2 of the matrix µ. The entries of µk are at most T integers in

the range of [0,m − 1] and can be found from (4) which can be written as
s
′

0(k, Y) =
∑
j∈µk

yj , 1 ≤ k ≤ m−1
2 .

2. Based on the matrix µ and the given digit-size d, a matrix denoted by ρ is
obtained by appending the d− 1 matrices of µ− [i] mod m to µ as follows:

ρ =


µ
µ − [1] mod m
µ − [2] mod m
...
...

...
µ − [d− 1] mod m


(d×m−1

2)×T,

(6)

where [i], 1 ≤ i ≤ d, denotes an m−1
2 × T matrix whose all entries are i.

3. Let ρi be a set which contains the entries in row i of the matrix ρ. Then, all
signals

sj =
∑
j∈ρi

yj , 1 ≤ j ≤ d (m− 1)
2

(7)

should be implemented by the block ρ shown in Figure 2.

4. We want to �nd the common addition pairs to realize (7) with the least num-
ber of XOR gates without changing the delay of the modi�ed multiplier as
compared with the original one. Therefore, a pairset is generated to form all
pairs that should be implemented in the block ρ1. This set initially contains
all pairs with only two entries in the rows of the matrix ρ. We update the ρ
matrix by removing such pairs from the matrix. Then, go to Step 3.

5. The scheme will be terminated if no common terms will be obtained.

6. Finally, based on common pairs stored in the pairset, the ρ1 inside the ρ is
generated. By reusing the output of the block ρ1, we can generate all signals
from the block ρ2 in Figure 2.

In the following section, we present an illustrative example for the proposed
complexity reduction algorithm.

7

3.2 An Example over GF (27)

To better understand the complexity reduction algorithm, we illustrate an ex-
ample for the proposed algorithm for type 4 digit-level multiplier over GF (27)
when the digit-size is d = m = 7. The matrix M for type 4 GNB over GF (27) is

M =



0 1 0 0 0 0 0
1 0 1 0 0 1 1
0 1 0 1 1 1 0
0 0 1 0 0 1 0
0 0 1 0 0 0 1
0 1 1 1 0 0 1
0 1 0 0 1 1 1


7×7

.

The matrix µ can be generated according to the output of the P blocks in
Figure 1 as s

′

0(1, Y) = y1−1 + y3−1 + y4−1 + y5−1 = y0 + y2 + y3 + y4, s
′

0(2, Y) =
y2−2+y6−2 = y0+y4, and s

′

0(3, Y) = y1−3+y4−3+y5−3+y6−3 = y5+y1+y2+y3.
Then µ can be written as

µ =

0 2 3 4
0 4 − −
5 1 2 3


3×4

.

ρ =



0 2 3 4
0 4 − −
5 1 2 3
6 1 2 3
6 3 − −
4 0 1 2
5 0 1 2
5 2 − −
3 6 0 1
4 6 0 1
4 1 − −
2 5 6 0
3 5 6 0
3 0 − −
1 4 5 6
2 4 5 6
2 6 − −
0 3 4 5
1 3 4 5
1 5 − −
6 2 3 4


21×4

Pairset1=



y04
y63
y52
y41
y30
y26
y15

ρ
(1)

=



0 2 3 4
5 1 2 3
6 1 2 3
4 0 1 2
5 0 1 2
3 6 0 1
4 6 0 1
2 5 6 0
3 5 6 0
1 4 5 6
2 4 5 6
0 3 4 5
1 3 4 5
6 2 3 4



ρ
(2)

=



2 3
1 3
1 2

1 2
0 1

0 1
6 0

6 0
5 0

5 6
4 6

4 5
3 5
2 4



Pairset2 =



y23
y13
y12
y01
y60
y50
y56
y46
y45
y35
y24

Based on the digit-size d = 7 and the matrix µ(3×4), the matrix ρ(21×4)

can be generated corresponding the complexity reduction algorithm. One can
obtain from the matrix ρ(21×4) in which 7 rows of the matrix have just two
entries. Therefore, the pairs corresponding to these rows should be implemented
as collected in the pairset1. The matrix ρ is updated to ρ(1) by deleting all
the two entries mentioned in the pairset1. Then the elements of the pairset1
should be searched in ρ(1) and all common pairs are removed and ρ(1) is updated
to ρ(2). This iteration is repeated until there is no rows with more than two
entries. As a result, all the remaining pairs as mentioned in the pairset2 should

8

be implemented and repeated pairs (which are underlined in the updated ρ(2)

matrix) are removed. The union of pairset1 and pairset2 includes the total of 18
pairs that should be implemented for the block ρ1 as follows:

pairset={y04, y63, y52, y41, y30, y26, y15, y23, y13, y12, y01, y60,
y50, y56, y46, y45, y35, y24},

where yij = yi + yj . In addition to the implementation of the ρ block which
requires 18 XOR gates, one need dm−1

2 −d = 14 (as, d = m) extra XOR gates for
the block ρ2 to construct its outputs. Therefore, the total number of XOR gates
required to implement the ρ block will be 18+14 = 32, whereas the unoptimized
P blocks need 49 XOR gates and the scheme proposed in [15] requires 35 XOR
gates.

It is noted that the other complexity reduction algorithms available in the
literature may result in fewer number of gates at the expense of more delay as the
one proposed in this paper. To compare our complexity reduction algorithm with
the one proposed in [22], we have applied the complexity reduction algorithm
proposed in [22] for the block ρ of this example. It decreases the number of XORs
to 23 with the increase of critical path delay to 8TX (eight level of XOR gates).
Note that our scheme for this block results in the complexity of 32 XOR gates
with the same critical path delay as the original one, i.e., 2TX .

3.3 Simulation Results for the Digit-Level GNB Multipliers over

GF (2163) and GF (2283)

To evaluate the e�ciency of our complexity reduction algorithm, a MATLAB
code is written to generate common pairs and signals used in the blocks ρ1 and ρ2

of Figure 2. It is noted that for type 2 GNB which is a type 2 optimal normal basis
over GF (2m), there is no common terms to be reused in the block ρ. Therefore,
the algorithm presented in this paper cannot reduce the number of XOR gates
for T = 2. The simulation results of the algorithm for the modi�ed digit-level
GNB multipliers (MDLGMp) over GF (2163) and GF (2283) are obtained and
plotted in Figures 3a and 3b. In these �gures, we plot the number of required
XOR gates versus the digit size for the �elds GF (2163) (T = 4) and GF (2283)
(T = 6) recommended by NIST for ECDSA [2] as compared to ones of the
original digit-level multiplier with parallel-output (DLGMp). For a given number
of clock cycle, q, 1 ≤ q ≤ m, the least value of digit sizes in the form of d =⌈
m
q

⌉
, 1 ≤ d ≤ m, is implemented so that the area complexity is optimized for

both multipliers.
From Figures 3a and 3b, one can see that as the digit size increases, more

common pairs will be found. As an example, in Figure 3a for the digit size
d = m = 163, the total number of XOR gates required in the original DL-
GMp is 66178 gates whereas, the modi�ed one, requires 50400 XOR gates for
GF (2163). It means that the complexity of the proposed MDLGMp is about

9

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7
x 10

4

d: Digit−size

N
um

be
r

of
 X

O
R

s

DLGMp
MDLGMp

m=163

(a)

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3
x 10

5

d: Digit−size

N
um

be
r

of
 X

O
R

s

DLGMp
MDLGMpm=283

(b)

Fig. 3: Comparison between the number of XOR gates required in the DLGMp
and the MDLGMp, for (a): m = 163 (T = 4), (b): m = 283 (T = 6).

24% less than the original multiplier. More reduction can be found in Figure 3b
for the GF (2283) with d = m = 283. The number of XOR gates needed by the
original DLGMp is 279,604, whereas the proposed MDLGMp requires 185,375
XOR gates which is about 34% less than that of the original multiplier.

The formulations for the output signals of the blocks ρ1 and ρ2 are coded in
VHDL to obtain the actual FPGA implementation results. The implementation
results are presented in Section 4.

3.4 An Extension to Bit-Parallel GNB Multiplier

To obtain the bit-parallel multiplier, one can implement (2) in hardware for all
cl, 0 ≤ l ≤ m − 1. Thus, the hardware architecture of a bit-parallel multiplier
is obtained by implementing m copies of identical structures used for c0 with
cyclic shifts of their inputs [11]. In this section, we extend the modi�ed digit-
level multiplier for d = m to obtain a new bit-parallel GNB multiplier over
GF (2m). Then, its complexities are obtained and compared with the ones of its
counterparts.

Let n denote the total number of common pairs. Thus the block ρ1 contains
at most n XOR gates with the delay of an XOR gate. In the worst case, all

combinations of two coordinates of A, i.e.,
(
m
2

)
= m(m−1)

2 combinations, are

required in the block ρ1 for the bit-parallel multiplier and so, n ≤ m(m−1)
2 .

The block ρ2 consists of XOR gates for the GNB, with T > 2. This is because
there is no row in M with the number of 1s greater than 2 for type 2 GNB. Thus,

for T = 2, n = m(m−1)
2 and the block ρ2 connects its input bus to the next bus

without using any XOR gates.
The exact complexities of ρ1 and ρ2 depend on the GNB. However, one

can �nd the upper bound for the number of XOR gates and time delay of this
structure as follows.

10

Proposition 1. For Type T GNB over GF (2m), the proposed bit-parallel Gaus-

sian normal basis multiplier architecture requires m2AND gates and at most

(T + 4)(m(m−1)
4) XOR gates with the critical path delay of

TC = TA + (dlog2 T e+ dlog2me)TX , (8)

where TA and TX are the time delay of a two-input AND gate and an XOR gate,

respectively.

Proof. Let n be the the number of XOR gates which is the number of the pairs
required to construct the block ρ1. As mentioned earlier, one can see that the

upper bound of n can be found from n ≤
(
m
2

)
= m(m−1)

2 . Thus, the block

ρ1 contains at most m(m−1)
2 XOR gates. It is noted that each output of the

block ρ2 is modulo 2 addition of at most T coordinates of A which can be
obtained by adding at most T

2 signals from the output of ρ1. Therefore, the
number of XOR gates required to construct the block ρ2 of the bit-parallel

multiplier is (T2 − 1)(m−1
2) × m = m(m−1)(T−2)

4 . The rest of Figure 2 requires
m2 AND gates and m(m − 1) XOR gates to implement all J blocks and the
GF (2m) adder. By adding the number of XOR gates in the ρ1, ρ2 and other
blocks, one can obtain the upper bound for the total number of XOR gates as
m(m−1)

2 + m(m−1)(T−2)
4 +m(m− 1) = (T + 4)(m(m−1)

4).

The critical-path delay of the proposed architecture can be obtained by adding
the delays of the three blocks of ρ1, ρ2, J , and the GF (2m) adder which are TX ,⌈
log2

T
2

⌉
TX , TA, and dlog2meTX , respectively. This results in the total delay

of TX+
⌈
log2

T
2

⌉
TX + TA + dlog2meTX = TA + (dlog2 T e+ dlog2me)TX , which

completes the proof.

3.5 Comparison

The time and area complexities of the proposed bit-parallel GNB multiplier and
the previous schemes are compared in Table 1 for general and special values
of T . As shown in the table, the critical path delay of the proposed multiplier
matches the fastest results available in the literature. For type T = 2 GNB,
the number of XOR gates also matches the fastest result available in the open
literature, i.e., 1.5m(m− 1). However, it is much greater than the sub-quadratic
results proposed in [17] and [16] which require much higher delay as compared
to the one proposed here. It is interesting to note that for T > 2, the proposed
multiplier outperforms its counterparts with the same delay in terms of number
of XOR gates as shown in this table. It is noted the number of XOR gates
required for the new bit-parallel GNB multiplier is still greater than the one
required for the polynomial basis.

It should be noted that, to obtain the exact number of XOR gates for a
given GNB, the exact value of n should be obtained by simulations. Using the
complexity reduction algorithm proposed in Section 3.1, a comparison between
the number of XOR gates of bit-parallel GNB multipliers is illustrated in Table
2 for GF (2163) and GF (2283) �elds recommended by NIST for ECDSA.

11

Table 1: Area and time complexity comparison of bit-parallel GNB multipliers
over GF (2m). Note that for Type T GNB: CN ≤ Tm− T + 1.

Multiplier T ≥ 2

#AND #XOR Critical path

Massey & Omura [8] m2 m(CN − 1) TA + dlog2 CNeTX

Gao & Sobelman[12] m2 m(CN − 1) TA + (dlog2 Te+ dlog2me)TX

Reyhani-Masoleh & Hasan [13] m2 ≤ m
2 (CN +m− 2) TA + (dlog2(CN + 1)e)TX

DLGMp [15], [7] (d = m) m2 ≤ m
2 (CN +m) TA + (dlog2 Te+ dlog2(m)e)TX

DLGMs [15] (d = m) m2 ≤ m(m−1)
2 (T + 1) TA + (dlog2 Te+ dlog2(m)e)TX

This work m2 ≤ (
m(m−1)

4)(T + 4) TA + (dlog2 Te+ dlog2(m)e)TX

T=2

[8,12] m2 2m(m− 1) TA + dlog2(2m− 1)eTX

Koc & Sunar [14] m2 1.5m(m− 1) TA + (1 + dlog2me)TX

Fan & Hasan [16] 2m1.6 11m1.6 − 12m+ 1 TA + (2 log2m+ 1)TX

Gathen et. al [17] 2m1.6 7.6m1.6 +O(m logm) TA + (2 log2m+ 1)TX

[13,15,7], This work m2 1.5m(m− 1) TA + (1 + dlog2me)TX

T=4

[8], [12] m2 4m2 − 4m TA + (2 + dlog2(m)e)TX

Reyhani-Masoleh & Hasan [13] m2 2.5m2 − 4.5m TA + d1 + log2(2m− 1)eTX

DLGMp [15], [7] (d = m) m2 2.5m2 − 1.5m TA + (2 + dlog2(m)e)TX

DLGMs [15] (d = m) m2 2.5m2 − 2.5m TA + (2 + dlog2(m)e)TX

This work m2 ≤ 2m2 − 2m TA + (2 + dlog2(m)e)TX

T=6

[8], [12] m2 6m2 − 6m TA + (3 + dlog2(m)e)TX

Reyhani-Masoleh & Hasan [13] m2 3.5m2 − 3.5m TA + (dlog2(6m− 4)e)TX

DLGMp [15], [7] (d = m) m2 3.5m2 − 2.5m TA + (3 + dlog2(m)e)TX

DLGMs [15] (d = m) m2 3.5m2 − 3.5m TA + (3 + dlog2(m)e)TX

This work m2 ≤ 2.5m2 − 2.5m TA + (3 + dlog2(m)e)TX

Table 2: Comparison between bit-parallel GNB multipliers for GF (2163) and
GF (2283).

m T n Number of XORs in DLGM for
d = m [15]

Number of XOR gates used
in this work

163 4 10791 66178 50400

283 6 25763 279604 185375

4 FPGA Implementations

The architectures described in Sections 2.2 and 3 are written in VHDL. We
have implemented the original (DLGMp) and the modi�ed digit-level multi-
pliers (MDLGMp) on the Xilinx® Virtex5� FPGA family with target device

12

Table 3: FPGA implementation results for propagation delay (in terms of nano
second) and area (in terms of number of slices) for di�erent digit sizes with
m = 163 and T = 4. Target device is Xilinx xc5vlx330-2�1760.

Digit
size

of
cycles

Delay [ns] Area [# of Slice LUTs]

(d) (q) DLGMp MDLGMp DLGMp MDLGMp

1 163 2.8 2.8 1221 1221

2 82 3.1 3.1 1282 1280

3 55 3.1 3.1 1347 1346

4 41 3.4 3.4 1406 1406

5 33 3.5 3.6 1564 1565

6 28 4.1 4.2 1751 1750

7 24 3.8 3.8 1960 1960

8 21 3.7 3.8 2104 2104

9 19 4.3 4.4 2157 2157

10 17 4.2 4.2 2309 2309

11 15 4.2 4.2 2385 2385

12 14 4.5 4.5 2567 2567

13 13 4.6 4.6 2785 2780

14 12 4.5 4.6 2852 2850

15 11 4.8 4.7 2923 2923

17 10 4.9 4.9 3164 3164

19 9 4.9 4.9 4048 4045

21 8 5.4 5.5 4146 4140

24 7 5.6 5.7 4593 4385

28 6 5.7 5.7 4730 4652

33 5 5.8 5.8 5288 5023

41 4 6.1 6.1 6129 5633

55 3 6.4 6.5 8115 6091

82 2 7.3 7.5 11187 7321

163 1 11.5 11.9 22917 14238

xc5vlx330-2�1760 for GF (2163) and GF (2283) �elds. Correctness of the imple-
mentations is veri�ed by performing functional simulations using the Quartus®

II software. We have synthesized both multipliers for several di�erent digit sizes
d, 1 ≤ d ≤ m using Xilinx synthesis technology (XST), and the timing analysis
results via Xilinx ISE-9.1.03i after place and route (PAR) are illustrated in Ta-
bles 3 and 4 for GF (2163) and GF (2283), respectively. As seen in the tables, large
digit sizes require more area in terms of number of slice look up tables (LUTs).
Therefore, we chose the digit size, d, in such a way to decrease the critical path
delay while increasing the area. Note that other values for d only increases area
without decreasing latency. Our presented multiplier requires less area than the
original one for the di�erent digit size d. The total multiplication time can be
calculated as the product of the minimum clock period and the number of clock
cycles q presented in both tables. Obviously, as shown in the Tables 3 and 4, the
time complexities of these structures are almost the same. It means that, our

13

Table 4: FPGA implementation results for propagation delay (in terms of nano
second) and area (in terms of number of slice LUTs) for di�erent digit sizes with
m = 283 and T = 6. The target device is xc5vlx330-2�1760.

Digit
size

of
cycles

Delay [ns] Area [# of Slice LUTs]

(d) (q) DLGMp MDLGMp DLGMp MDLGMp

1 283 3.4 3.4 2118 1985

2 142 3.7 3.8 2252 2088

3 95 3.9 3.9 2388 2156

4 71 4.1 4.1 2603 2437

5 57 4.4 4.5 2829 2603

6 48 4.5 4.6 3216 2714

7 41 4.4 4.5 3358 2937

15 19 4.7 4.8 5803 3986

16 18 5.1 5.2 6086 4105

19 15 5.7 5.7 6309 4387

22 13 5.8 5.8 6429 4427

24 12 8.7 8.9 7039 4938

26 11 8.6 8.5 7325 5183

29 10 8.3 8.4 7723 5563

35 9 8.3 8.5 9398 6769

71 4 11.4 11.4 17224 10345

142 2 12.4 12.3 31395 22512

proposed multiplier reduces the required area having the same multiplication
time.

5 Conclusions

We have proposed a modi�ed architecture for digit-level Gaussian normal basis
multiplier over GF (2m). It is shown that this multiplier outperforms the original
one in terms of number of XOR gates. Using a complexity reduction algorithm,
the area complexity of the modi�ed digit-level multiplier, is optimized. We have
also presented a fast low complexity bit-parallel GNB multiplier over GF (2m).
Its complexities have been derived and it is shown that it has fewer XOR gates
for T > 2 and the same for T = 2 as compared to the fast GNB multipliers
available in the literature. For practical applications, we have implemented the
original and the modi�ed digit-level GNB multipliers on the Xilinx® Virtex5�
FPGA family for di�erent digit sizes. Our comparison results show that the
modi�ed digit-level GNB multiplier requires fewer area (slice LUTs) with almost
the same delay as compared to the original one.

14

Acknowledgment

The authors of the paper would like to thank the reviewers for their comments.
This work has been supported in part by an NSERC Discovery grant awarded
to A. Reyhani-Masoleh.

References

1. IEEE Std 1363-2000: �IEEE Standard Speci�cations for Public-Key Cryptogra-
phy�, (January 2000)

2. U.S. Department of Commerce/NIST: Digital Signature Standards (DSS). Federal
Information Processing Standards Publications, (2000)

3. Miller, V.S.: �Use of Elliptic Curves in Cryptography�. In: LNCS 218 as Proceed-
ings of Crypto '85, Springer Verlag 417�426 (1986)

4. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203�
209 (1987)

5. Dimitrov, V.S., Järvinen, K.U., Jr., M.J.J., Chan, W.F., Huang, Z.: Provably Sub-
linear Point Multiplication on Koblitz Curves and its Hardware Implementation.
IEEE Transaction on Computers 57(11), 1469�1481 (2008)

6. Järvinen, K., Skyttä, J.: On Parallelization of High-Speed Processors for Elliptic
Curve Cryptography. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 16(9), 1162�1175 (2008)

7. Kim, C.H., Kwon, S., Hong, C.P.: FPGA Implementation of High Performance
Elliptic Curve Cryptographic Processor over GF (2163). Journal of System Ar-
chitcture 54(10), 893�900 (2008)

8. Massey, J., Omura, J.: Computational Method and Apparatus for Finite Arith-
metic. US Patent (4587627), (1986)

9. Agnew, G.B., Mullin, R.C., Onyszchuk, I.M., Vanstone, S.A.: An Implementation
for a Fast Public-Key Cryptosystem. Journal of Cryptology 3(2), 63�79 (1991)

10. Kwon, S., Gaj, K., Kim, C.H., Hong, C.P.: �E�cient Linear Array for Multiplication
in GF (2m) using a Normal Basis for Elliptic Curve Cryptography�. In: Proceedings
of CHES 2004, LNCS 3156, Springer-Verlag 76�91 (August 2004)

11. Wang, C.C., Truong, T.K., Shao, H.M., Deutsch, L.J., Omura, J.K., Reed, I.S.:
VLSI Architectures for Computing Multiplications and Inverses in GF (2m). IEEE
Transaction on Computers 34(8), 709�717 (1985)

12. Gao, L., Sobelman, G.E.: �Improved VLSI Designs for Multiplication and Inversion
in GF (2M) over normal bases�. In: Proceedings of 13th Annual IEEE International
ASIC/SOC Conference. 97�101 (2000)

13. Reyhani-Masoleh, A., Hasan, M.A.: A New Construction of Massey-Omura Parallel
Multiplier over GF (2m). IEEE Transactions on Computers 51(5), 511�520 (2002)

14. Ç. K. Koç, Sunar, B.: An E�cient Optimal Normal Basis Type II Multiplier over
GF (2m). IEEE Transaction on Computers 50(1), 83�87 (2001)

15. Reyhani-Masoleh, A.: E�cient Algorithms and Architectures for Field Multipli-
cation Using Gaussian Normal Bases. IEEE Transaction On Computers, 34�47
(2006)

16. Fan, H., Hasan, M.: Subquadratic computational complexity schemes for extended
binary �eld multiplication using optimal normal bases. IEEE Transactions on
Computers 56(10), 1435 (2007)

15

17. Gathen, J., Shokrollahi, A., Shokrollahi, J.: E�cient multiplication using type
2 optimal normal bases. In Carlet, C., Sunar, B., eds.: WAIFI. Volume 4547 of
Lecture Notes in Computer Science., Springer 55�68 (2007)

18. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications.
Cambridge University Press (1994)

19. Mullin, R.C., Onyszchuk, I.M., Vanstone, S.A., Wilson, R.M.: Optimal Normal
Bases in GF (pn). Discrete Appl. Math. 22(2), 149�161 (1989)

20. Gao, S., Lenstra, H.W.: Optimal Normal Bases. Designs, Codes and Cryptography
2, 315�323 (1992)

21. Ash, D.W., Blake, I.F., Vanstone, S.A.: Low Complexity Normal Bases. Discrete
Applied Mathematics 25(3), 191�210 (1989)

22. Gustafsson, O., Olofsson, M.: Complexity reduction of constant matrix computa-
tions over the binary �eld. In: WAIFI. Volume 4547 of Lecture Notes in Computer
Science., Springer 103�115 (2007)

16

