
Low-Resource and Fast Binary Edwards Curves Cryptography

Brian Koziel1, Reza Azarderakhsh1, and Mehran Moza�ari-Kermani2

1 Computer Engineering Department
2 Electrical and Microelectronic Engineering Department

Rochester Institute of Technology
Rochester, NY 14623, USA

{bck6520, rxaeec, mmkeme}@rit.edu.

Abstract. Elliptic curve cryptography (ECC) is an ideal choice for low-resource applications
because it provides the same level of security with smaller key sizes than other existing public
key encryption schemes. For low-resource applications, designing e�cient functional units for
elliptic curve computations over binary �elds results in an e�ective platform for an embedded
co-processor. This paper proposes such a co-processor designed for area-constrained devices by
utilizing state of the art binary Edwards curve equations over mixed point addition and doubling.
The binary Edwards curve o�ers the security advantage that it is complete and is, therefore, im-
mune to the exceptional points attack. In conjunction with Montgomery Ladder, such a curve
is naturally immune to most types of simple power and timing attacks. The recently presented
formulas for mixed point addition in [1] were found to be invalid, but were corrected such that
the speed and register usage were maintained. We utilize corrected mixed point addition and
doubling formulas to achieve a secure, but still fast implementation of a point multiplication on
binary Edwards curves. Our synthesis results over NIST recommended �elds for ECC indicate
that the proposed co-processor requires about 50% fewer clock cycles for point multiplication
and occupies a similar silicon area when compared to the most recent in literature.

Key Words: Crypto-processor, Binary Edwards curves, Gaussian Normal Basis, Point Multi-
plication, Low-resource Devices.

1 Introduction

Deeply-embedded computing systems, nowadays, are essential parts of emerging, sensitive ap-
plications. With the transition to the Internet of Things (IoTs), where all tools and electronics
will be linked wirelessly, there is a need to secure these devices from malicious intent. However,
these devices are mainly designed in such a way that the functionality and connectivity mo-
nopolize the device's area and power. Little power and area are allocated for the establishment
of security. Therefore, a secure co-processor that can �ll this niche in the current technological
world is necessary for the evolution of achieving security for IoTs in the near future.

Elliptic Curve Cryptography (ECC) is the ideal implementation for this application because
it provides a secure application for far fewer bits than RSA and other public key encryption
schemes. ECC provides key exchange ECDH, authentication ECDSA, and encryption ECIES
protocols. An elliptic curve is composed of all points that satisfy an elliptic curve equation as
well as a point at in�nity. This forms an Abelian group, E, over addition, where the point at in-
�nity represents the zero element or identity of the group. The most basic operations over this
Abelian group are point addition and point doubling. Using a double-and-add method, a point
multiplication, Q = kP , where k ∈ Z and Q,P ∈ E, can be computed quickly and e�ciently.
Protocols implemented over ECC rely on the di�culty to solve the elliptic curve discrete loga-
rithm problem (ECDLP), that given Q and P in Q = kP , it is infeasible to solve for k [2]. For
the computations of ECC, several parameters should be considered including representation
of �eld elements and underlying curve, choosing point addition and doubling method, select-
ing coordinate systems such as a�ne, projective, Jacobian, and mixed, and �nally arithmetic

(addition, inversion, multiplication, squaring) on �nite �eld. Field multiplication determines
the e�ciency of point multiplication on elliptic curves as its computation is complex and point
multiplication requires many �eld multiplications. IEEE and NIST recommended the usage of
both binary and prime �elds for the computation of ECC [3,4]. However, in hardware imple-
mentations and more speci�cally for area-constrained applications, binary �elds outperform
prime �elds, as shown in [5]. Therefore, a lot of research in the literature has been focused
on investigating the e�ciency of computing point multiplication on elliptic curves over binary
�elds. For instance, one can refer to [6], [7], [8] and [9] to name a few, covering a wide variety
of cases including di�erent curve forms, e.g., generic and Edwards, and di�erent coordinate
systems, e.g., a�ne, projective, and mixed. The formulas for point addition and point addition
can be determined by using geometric properties. In [10], binary Edwards curves are presented
for the �rst time for ECC and their low-resource implementations appeared in [9]. It has been
shown that a binary Edwards curves (BEC) is isomorphic to a general elliptic curve if the
singularities are resolved [10]. Based on the implementations provided in [9], it has been ob-
served that their implementations are not as e�cient as other standardized curves. Recently, in
[1], the authors revisited the original equations for point addition and doubling and provided
competitive formulas. We observed that the revisited formulas for mixed point addition in [1]
are invalid. After modifying their formulas, we employed them for the computation of point
multiplication using a mixed coordinate system and proposed an e�cient crypto-processor for
low-resource devices. The main contributions of this paper can be summarized as follows:

� We propose an e�cient hardware architecture for point multiplication on binary Edwards
curves. We employed Gaussian normal basis (GNB) for representing �eld elements and
curves as the computation of squaring, inversion, and trace function can be done very
e�ciently over GNB in hardware.

� We modi�ed and corrected the w-coordinates di�erential point addition formulas presented
in [1]. We provide explicit formulas over binary Edwards curves that maintain the speed
and register usage provided in [1] and employed the formulas in steps on the Montgomery
Ladder [11]. This is the �rst time this double-and-add algorithm has appeared in literature.
This implementation was competitive with many of the area-e�cient elliptic curve crypto-
processors found in literature, but adds the additional security bene�t of completeness.

� We implemented and synthesized our proposed algorithms and architectures for the com-
putation of point multiplication on binary Edwards curves and compared our results to
the leading ones available in the literature.

This paper is organized as follows. In Section 2, the binary Edwards curve is introduced and
proper mixed coordinate addition formulas are presented. Section 3 details the area-e�cient
architecture used for this ECC co-processor. Section 4 compares this work to other ECC
crypto-processors in terms of area, latency, computation time, and innate security. Section 5
concludes the paper with takeaways and the future of area e�cient implementations of point
multiplication.

2 Point Multiplication on Binary Edwards Curves

ECC cryptosystems can be implemented over a variety of curves. Some curves have more
inherent properties than others. Table 1 contains a comparison of point addition and doubling
formulas presented in literature. Completeness means that there are no exceptional cases to
addition or doubling (e.g., adding the neutral point). From this table, the choice was to apply
the new mixed coordinate addition and doubling formulas over new binary Edwards curves
presented in [1].

2

Table 1. Cost of point operations on binary generic curves (BGCs) [12], binary Edwards curves
(BECs) [10], binary Edwards curves revisited [1], and generalized Hessian curves (GHC) [13]
over GF (2m).

Curve
Coordinate Di�erential

Completeness
System PA and PD

BGC
Projective 6M + 1D + 5S ×
Mixed 5M + 1D + 4S ×

BEC (d1 = d2)
Projective 7M + 2D + 4S X
Mixed 5M + 2D + 4S X

BEC-R (d1 = d2)
Projective 7M + 2D + 4S X
Mixed 5M + 1D + 4S X

GHC
Projective 7M + 2D + 4S X
Mixed 5M + 2D + 4S X

2.1 Binary Edwards Curve

De�nition 1. Consider a �nite �eld of characteristic two, K. Let d1, d2 ∈ K such that d1 6=0
and d2 6= d21 + d1.Then the binary Edwards curve with coe�cients d1and d2 is the a�ne curve
[10]:

EF2m ,d1,d2 : d1(x+ y) + d2(x
2 + y2) = xy + xy(x+ y) + x2y2 (1)

This curve is symmetric in that if (x, y) is on the curve, then (y, x) is also on the curve.
In fact, these points are additive inverses over the Edwards addition law. The point (0, 0)
is isomorphic to the point at in�nity in a binary generic curve. This represents the neutral
point in the binary Edwards curve. The point (1,1) is also on every binary Edwards curve,
and has order 2. The curve is complete if there is no element t ∈ K that satis�es the relation
t2 + t + d2 = 0 [10]. Alternatively, this means that if Tr(d2) = 1, then the curve is complete
[14].

Point addition and point doubling do not have the same representation or equations as
standard generic curves. The Edwards Addition Law is presented below. The sum of any two
points (x1, y1), (x2, y2) on the curve de�ned by EF2m ,d1,d2 to (x3,y3) is de�ned as [10]

x3 =
d1(x1+x2)+d2(x1+y1)(x2+y2)+(x1+x2

1)(x2(y1+y2+1)+y1y2)

d1+(x1+x2
1)(x2+y2)

(2)

y3 =
d1(y1+y2)+d2(x1+y1)(x2+y2)+(y1+y21)(y2(x1+x2+1)+x1x2)

d1+(y1+y21)(x2+y2)

We note that [10] uses this addition law to prove that ordinary elliptic curves over binary
�elds are birationally equivalent to binary Edwards curves.

2.2 Revised Di�erential Addition and Doubling Formulas

Point multiplication utilizes point doubling and point addition to quickly generate large mul-
tiples of a point. As a deterrent to timing and other side channel attacks, the Montgomery
Ladder [11] is used as a method to generate multiplications e�ciently and securely. Mont-
gomery Ladder is shown in Algorithm 1. At each step of the ladder, there is an addition and
doubling. The current bit of a key determines which point is doubled and where the point
addition and doubling reside. For standard point additions and point doublings, the �nite

3

Algorithm 1 Montgomery algorithm [11] for point multiplication using w-coordinates.

Inputs: A point P = (x0, y0) ∈ E(F2m) on a
binary curve and an integer k = (kl−1, · · · , k1, k0)2.
Output: w(Q) = w(kP) ∈ E(F2m).
1: set : w0 ← x0 + y0 and initialize
a: W1 ← w0 and Z1 ← 1 and c = 1

w0
(inversion)

b: (W2, Z2) = DiffDBL(W1, Z1)
2: for i from l − 2 down to 0 do

a: if ki = 1 then
i): (W1, Z1) = MDiffADD(W1, Z1,W2, Z2, c)
ii): (W2, Z2) = DiffDBL(W2, Z2)

b: else
i): (W1, Z1) = DiffDBL(W1, Z1)
ii): (W2, Z2) = MDiffADD(W1, Z1,W2, Z2, c)

end if
end for

3: return w(kP)← (W1, Z1) and w((k + 1)P)← (W2, Z2)

�eld inversion dominates the computation. To reduce this impact, the typical convention is
to use projective coordinates, (x, y) → (X,Y, Z), where x = X

Z and y = Y
Z . X,Y, and Z are

updated at each step of the ladder and a single inversion is performed at the end. An addi-
tional improvement to this convention is to use w-coordinates, (x, y)→ (w), where w = x+ y.
Mixed coordinates is the combination of w-coordinates and the projective coordinates. Hence,
(x, y)�w�(W,Z), where w = x+y = W

Z . For computing point multiplication, let P be a point
on a binary Edwards curve EF2m ,d1,d2 and let us assume w(nP) and w((n+1)P), 0 < n < k are
known. Therefore, one can use the w-coordinate di�erential addition and doubling formulas
to compute their sum as w((2n+ 1)P) and double of w(nP) as w(2nP) [10].

2.3 Fixed w-Coordinate Di�erential Addition

In [1], the authors present faster equations for w-coordinates and mixed coordinates addition
than those presented in [10]. This equation makes the assumption that d1 = d2. An analysis of
the formula, however, shows that they do not properly produce the correct w-coordinates. The
authors correctly identify the relation, w3w0

d1(w2
1+w2

2)
= w3+w0+1

d1
, but incorrectly solve for w3. We

observe that the �nal equation for di�erential point addition that is presented in subsection
(3.19) of [1] is faulty. Therefore, we wrote a sage script to verify this claim1. This algebra was
performed correctly and here we present the revised formulas. The incorrect formula presented
in [1] is in (3) and the corrected formula is shown in (4). This formula de�nes the addition of
w1 + w2 = w3, given that wi = xi + yi and w0 = w2 − w1.

Proposition 1. The w-coordinate di�erential addition formula over binary Edwards curves
with d1 = d2 proposed in [1] does not provide correct formulation based on the following
equation:

w3 = 1 +
1
w0

(w2
1 + w2

2)
1
w0

(w2
1 + w2

2) + 1
(3)

1 http://github.com/briankoziel/BEC_Small

4

Proof. In the following equations, the correct w-coordinate di�erential addition formula over
binary Edwards curves with d1 = d2 is discovered from the starting relation in [1].

w3w0

d1(w2
1 + w2

2)
=
w3 + w0 + 1

d1

w3w0

(w2
1 + w2

2)
= w3 + w0 + 1

w3w0

(w2
1 + w2

2)
+ w3 = w0 + 1

w3(
w0

(w2
1 + w2

2)
+ 1) = w0 + 1

w3(w0 + w2
1 + w2

2) = (w0 + 1)(w2
1 + w2

2)

w3 =
(w0 + 1)(w2

1 + w2
2)

w0 + w2
1 + w2

2

w3 =
(1 + 1

w0
)(w2

1 + w2
2)

1
w0

(w2
1 + w2

2) + 1

Corrected w-Coordinate Di�erential Addition

w3 =
w2
1 + w2

2 +
1
w0

(w2
1 + w2

2)
1
w0

(w2
1 + w2

2) + 1
. (4)

The explicit a�ne w-coordinate di�erential addition is

A = (w1 + w2)
2, B = A · 1

w0
, N = A+B, (5)

D = B + 1, E = 1
D , w3 = N · E.

The total cost of this corrected formula is still 1I+1M +1D+1S, but now the di�erential
addition functions as intended. Assuming that inversion requires at least two registers, a total
of three registers are required. 1

w0
is the inverse of the di�erence between the points and

will not be updated in each step of the point multiplication algorithm. For the application
in Montgomery Ladder [11], the di�erence between the two points is always P (speci�cally
w(P)). Therefore, this value can be determined at the start of the ladder and used throughout
to cut down on each step.

[1] uses the faulty formula (3) for determining explicit formulas in mixed w-coordinates,
but also gives a faster and correct formula for a�ne w-coordinate di�erential addition which
requires 1I +1M +2S, so long as the values 1

w0+w2
0
and w0 are known. This formula is shown

below.

w3 = w0 + 1 +
1

1
w0+w2

0
(w2

1 + w2
2 + w0)

(6)

The explicit a�ne w-coordinate di�erential addition is

5

A = (w1 + w2)
2, B = A+ w0, D = B · 1

w0 + w2
0

, (7)

E =
1

D
, w3 = E + 1 + w0

Assuming that w0 and 1
w0+w2

0
are known, the actual cost for w-coordinate di�erential

addition can be reduced down to 1I+1D+1S. This method requires two registers for w1 and
w2, and the storage of w0 and

1
w0+w2

0
.

Mixed w-Coordinate Di�erential Addition and Doubling Equation (4) can be applied
to mixed w-coordinate di�erential addition and doubling. The general formula and explicit
formula are shown below. This formula de�nes the addition of W1

Z1
+ W2

Z2
= W3

Z3
, given that

w0 = w2 − w1.

W3

Z3
=

(W1Z2 +W2Z1)
2 + 1

w0
(W1Z2 +W2Z1)

2

Z2
1Z

2
2 + 1

w0
(W1Z2 +W2Z1)2

(8)

C = (W1Z2 +W2Z1)
2, D = (Z1Z2)

2, E =
1

w0
· C, (9)

W3 = E + C, Z3 = E +D

Thus, mixed w-coordinate di�erential addition requires 3M + 1D + 2S. From a simple
analysis of the formula, four registers are needed.

For mixed w-coordinate di�erential addition and doubling, the doubling formula from
[10] can be used in conjunction with this corrected di�erential addition formula, with the
assumption that d1 = d2. This formula de�nes the addition of W1

Z1
+ W2

Z2
= W3

Z3
and doubling of

2× W1
Z1

= W4
Z4

given that w0 = w2 − w1.

W4

Z4
=

(W1(W1 + Z1))
2

d1 � Z4
1 + (W1(W1 + Z1))2

(10)

C = (W1Z2 +W2Z1)
2, D = (Z1Z2)

2, E =
1

w0
· C, (11)

W3 = E + C, Z3 = E +D W4 = (W1(W1 + Z1))
2,

Z4 =W4 + d1 · Z4
1

Thus, mixed w-coordinate di�erential addition and doubling requires 5M+1D+5S. From
an analysis of the formula, �ve registers are needed.

Mixed w-Coordinate Di�erential Addition and Doubling with the Co-Z Trick We
note that in [15] the common-Z trick is proposed. This method to reduces the number of regis-
ters required per step of the Montgomery Ladder [11] and simpli�es the number of operations
per step. Each step of the Montgomery Ladder is a point doubling and addition. By using a
common-Z coordinate system, one less register is required for a step on the ladder, and the
method becomes more e�cient, requiring one less squaring operation. The doubling formula

6

was obtained from [10] and it is assumed that d1 = d2. The general formula and explicit for-
mulas are shown below. This formula de�nes the addition of W1

Z + W2
Z = W3

Z′ and doubling of

2× W1
Z = W4

Z′ given that w0 = w2 − w1.

W3

Z ′
=

(W1 +W2)
2 + 1

w0
(W1 +W2)

2

Z2 + 1
w0

(W1 +W2)2
(12)

W4

Z ′
=

(W1(W1 + Z))2

d1 � Z4 + (W1(W1 + Z))2
(13)

C = (W1 +W2)
2, D = Z2, E =

1

w0
· C, (14)

U = E + C, V = E +D, S = (W1(W1 + Z))2,

T = S + d1 ·D2, W3 = U · T, W4 = V · S,
Z ′ = V · T

Thus, the mixed w-coordinate di�erential addition and doubling formula requires 5M +
1D + 4S. An analysis of this formula shows that it requires only four registers. As will be
discussed later, this implementation incorporates shifting for the multiplication within the
register �le, forcing the need for an additional register. This formula requires one less squaring
than that provided in [10], and also uses registers much more e�ciently. Table 2 shows a
comparison of di�erential point addition schemes for BEC with d1 = d2.

Table 2. Comparison of Di�erential Point Addition Schemes for BEC with d1 = d2.
Operation Formula Complexity #Registers

A�ne w-coordinate Di�erential Addition (5) 1I + 1M + 1D + 2S 3

A�ne w-coordinate Di�erential Addition (7) 1I + 1D + 1S 2

Mixed Di�erential Addition (9) 3M + 1D + 1S 4

Mixed Di�erential Addition and Doubling (11) 5M + 1D + 5S 5

Mixed Di�erential Addition and Doubling w/ Co-Z (14) 5M + 1D + 4S 4

Retrieving x and y from w-Coordinates The formula to retrieve the x-coordinate from w-
coordinates is presented in [10]. This formula requires P, w(kP), and w(kP+1). Again, relating
back to the application of Montgomery Ladder [11], each consecutive step produces w(mP)
and w(mP +1), where m represents the scalar multiplication over each steps. The formula to
solve for the x-coordinate ofmP is shown below [10]. In this formula, P = (x1, y1),w0 = x1+y1,
w2 = w(kP), and w3 = w(kP + 1).

x22 + x2 =
w3(d1 + w0w2(1 + w0 + w2) +

d2
d1
w2
0w

2
2) + d1(w0 + w2) + (y21 + y1)(w

2
0 + w2)

w2
0 + w0

(15)

This formula requires 1I+4M +4S if d2 = d1. After solving for x
2
2+x2 = A, if Tr(A) = 0,

then the value of x2 or x2 + 1 can be recovered by using the half-trace.
After the value of x2 has been found, y2 can be retrieved by solving the curve equation for

y22 + y2 (16) and also using the half-trace to solve for y2 or y2 + 1.

7

Algorithm 2 Retrieving x and y from w-coordinates

Inputs: A point P = (x0, y0) ∈ E(F2m) on a
binary curve and an integer k = (kl−1, · · · , k1, k0)2.
Output: Q = kP ∈ E(F2m).
1: set: w0 ← x0 + y0 and initialize
2: compute: w2 ← w(kP), w3 ← w(kP + 1)
3: solve (15) for x2 + x2

2

4: if Tr(x2 + x2
2) = 0 then

a: x2 =half-trace(x2 + x2
2)

end if
3: solve (16) for y2 + y2

2

4: if Tr(y2 + y2
2) = 0 then

a: y2 =half-trace(y2 + y2
2)

end if
5: return Q = (x2, y2) = kP ∈ E(F2m)

y22 + y2 =
d(x2 + x22)

d+ x2 + x22
(16)

Therefore, recovering y2 requires 1I+2M +S, and the total cost of recovering points from
w-coordinates is 2I + 6M + 5S. Even though the point (x2 + 1, y2 + 1) is not the same as
(x2, y2), both points will produce the same value in standard ECC applications. Algorithm 2
summarizes how to retrieve the x and y-coordinates.

The implementation of the algorithms noted in this section require a binary Edwards
curve with d1 = d2. The standardized NIST curves over binary generic curves [3] could be
converted to binary Edwards curves. However, there is no guarantee that these isomorphic
binary Edwards curves would satisfy d1 = d2. Therefore, values for x and d were randomly
picked and used in conjunction with (16) to solve for y. If the point (x,y) was on the curve,
then the point and corresponding binary Edwards curve were valid and could be used with
the above algorithms. It can also be noted that there are no restrictions on d, so it could be
chosen to be small for faster arithmetic.

2.4 Resistance Against Side-Channel Attacks

The binary Edwards curve features the unique properties that its addition formula is uni�ed
and complete. Uni�ed implies that the addition and doubling formulas are the same. This
gives the advantage that no checking is required for the points to di�erentiate if an addition
or doubling needs to take place. Complete implies that the addition formula works for any two
input points, including the neutral point. Therefore, as long as two points are on the curve, no
checking is needed for the addition formula, as it will always produce a point for a complete
binary Edwards Curve [10].

One common attack to reveal bits of an ECC system's key is to use the exceptional points
attack [16]. This attacks the common projective coordinate system. For the point at in�nity
in a non-binary Edwards curve system, the point is often represented as (Xk, Yk, 0). Hence,
a conversion back to the (xk, yk) coordinate system would attempt to divide by zero, causing
an error or revealing a point that is not on the curve [16]. In either case, an adversary could
detect that the point at in�nity was attempted to be retrieved. The attack relies on picking

8

di�erent base points, which after multiplied by the hidden key, reveal that the point of in�nity
was retrieved.

The binary Edwards curve's completeness property and coordinate system make the curve
immune to this form of attack. For a complete binary Edwards curve, the projective coordinate
system representation for the neutral point, which is isomorphic to the point at in�nity of other
curves, is (Xk, Yk, 1). Furthermore, the completeness also ensures that no other sets of points
can be used to break the system and reveal critical information about the key. The mixed w-
coordinates that are used for their speed in the binary Edwards curve are also invulnerable to
this attack as long as w0 6= 0,1, since the denominator will never be 0 [1]. With the Montgomery
Ladder [11], a proper curve and starting point will never violate this condition.

Montgomery Ladder [11] is a secure way to perform repeated point addition and point dou-
blings to thwart side channel attacks. The ladder provides a point addition and point doubling
for each step, with each step taking the same amount of time. Therefore, this application pro-
vides an extremely powerful defense against power analysis attacks and timing attacks. Power
analysis attacks identify characteristics of the power consumption of a device to reveal bits of
the key and timing attacks identify characteristics of the timing as the point multiplication is
performed. By application of the binary Edwards curve with Montgomery Ladder, the binary
Edwards curve features an innate defense against many of the most common attacks on ECC
systems today.

It should be noted that this work does not investigate resistance against di�erential power
analysis (DPA) [17] or electromagnetic (EM) radiation leaks. These will be investigated in
detail in a future work.

3 Architecture

The architecture of the ECC co-processor that was implemented resembles that of [6]. However,
there are several major di�erences. An analysis of the explicit formula presented for mixed
w-coordinate addition and doubling revealed that �ve registers (T0, T1, R0, R1, R2) and four
constants (1

w0
, d1, x1, y1) were required. Additionally, it was deemed that the neutral element

in GNB multiplication (all '1's) was not required for any part of the multiplication, which
reduced the size of the 4:2 output multiplexer to a 3:2 multiplexer. These following sections
will explain the design in more detail. Architectures for each of the components can be found
in Fig. 1.

3.1 Field Arithmetic Unit

The �eld arithmetic unit is designed to incorporate the critical �nite �eld operations in as
small of a place as possible. In particular, this requires multiplication, squaring, and addition.
The XOR gate to add two elements was reused in the multiplication and addition to reduce
the total size of the FAU. Since the neutral element was not necessary for this point multiplier,
the neutral element select from the output multiplexer in [6] was removed to save area. Swap
functionality was added to incorporate quick register �le swap operations. The �eld arithmetic
unit incorporates the GNB multiplier from [18]. The operations are as follows:

� Addition C = A+B : Addition is a simple XOR of two inputs. The �rst input is loaded
to Z by selecting the �rst input in the register �le, and setting s1 = ”01” and s2 = ”00”.
The next cycle, the second operand is selected from the register �le, and s2 = ”01” so that
the output register has the addition of the two input elements. The output is written on
the third cycle. This operation requires three clock cycles.

9

P
XOR

Array

J
AND
Arraym/2

m

m

m

m

>>

Z

m

R_in

T0>>1

T1>>1

R_out

 0

0

1

2
m

 0

0 1 2

m

m

m

3:2 MUX

3:2 MUX

S1

S2

2

2

 m

(a) The FAU.

T0

T1

R0

R1

R2

1/w0

d

x0

y0

>>

>>

2:1 MUX

2:1 MUX

1

1

0

0

R_in

9:4 MUX

T0>>1

T1>>1

R_out
m

ST0

ST1

0

1

2

3

4

5

6

7

8

Output_select

m

4

Register File ALU
T0>>1

T1>>1

R_out

R_inR_in

Controller

ST0 ST1 write_sel read_sel S0 S1

m

m

m

m

2211 4 4

y_out

m

x_out

m

done

1

start

1

ki
1

ROM
PC

instr
11

10

(b) The register �le and top-level control unit.

Fig. 1. Architecture of the Proposed Co-processor for Point Multiplication on Binary Edwards
Curve. This includes (a) Field Arithmetic Unit, (b) Register File, and Top-Level Control Unit.

10

� Squaring C = A� 1 : Squaring is a right circular shift of the input. The input is loaded
to Z by selecting the input in the register �le, and setting s1 = ”01” and s2 = ”00”. The
next cycle, s1 = ”10” and s2 = ”10” so that the output register has been shifted. The
output is written on the third cycle. This operation requires three clock cycles.

� Multiplication C = T0 × T1 : Multiplication is a series of shifted additions. For the �rst
cycle, s1 = ”00”,s2 = ”00”, and sT0 = sT1 = ”1”. The next cycle, s2 = ”01”. Afterm cycles
of shifts and addition, sT0 = sT1 = ”0”,and the output is ready. The output is written on
the mth cycle. This operation requires m clock cycles.

� Swapping A,B = B,A : Swapping is a switch of two registers within the register �le. The
�rst register is loaded to Z by selecting the input in the register �le, and setting s1 = ”01”
and s2 = ”00”. The next cycle, the �rst register is written to the second register's location
as it is being loaded to Z. The second register's value is written to the �rst register's place
on the third cycle. This operation requires three clock cycles.

3.2 Register File

Similar to [6] and [9], the register �le was designed to contain registers, with two particular
registers that perform special shifting for the �nite �eld multiplication. An analysis of the
formulas used in this ECC unit revealed that four registers and four constants were required.
However, with two registers being designated as multiplication registers, an extra register is
needed for swapping in the value of d1 for a multiplication with D2. The other three regis-
ters would be holding (U, V, S). Thus, the formulas require �ve registers with the Co-Z trick
implementation.

For uni�ed access to constants and not impact the retrieval, the registers and constants are
co-located in the register �le. However, since this implementation targets a future standard-
ization of a binary Edwards curve, the idea was that a starting point and curve parameters
would be strictly de�ned. Therefore, there is no reason to add �exibility to the parameters of
the base point or d1. Hardwiring these coordinates to the register �le provides the advantage
that they can be used on-the-�y and that no extra control is necessary to bring these into
the register �le. For instance, [9] uses a small and external RAM chip to hold these constants.
Such a design requires extra interfacing and extra cycles to load the value into the register
�le. After NIST standards for ECC are revised, hardwiring the constants in a place close to
the register �le is the best solution to save power and area.

The register �le is random access to values including the constants. A register is written
to when write is enabled and the multiplexer for writing selects that register.

3.3 Control Unit

The control unit handles the multiplexers for reading, writing, and performing operations.
The four operations are ADD, SQ, MULT, and SWAP. The control unit uses a Finite State
Machine to switch between these operations. A program counter is sent to an external ROM
device that feeds in the current instruction. Instructions are ten bits long. The �rst two bits
indicate which instruction is being used. The next four bits indicate the input register. This
value does not matter for multiplication. The last four bits indicate the output register.

The key is never stored in the control unit, such as how it was in [6]. The controller signals
the master device to provide the next bit as the Montgomery Ladder [11] is being performed.
Special SWAP instructions that depend on the key were left inside the controller to handle
each step of the ladder, depending on the provided bit of the key. The subroutine for a step

11

on the Montgomery Ladder with the corresponding register usage is shown below in Table 3.
Table 3 shows the registers after each instruction. Six multiplications are required for each
step.

Table 3. Point Addition and Doubling Register Usage
Op T0 T1 R0 R1 R2

1 ADD T0 T1 W1 W1 +W2 Z

2 SQ T1 R1 W1 W1 +W2 Z C

3 SWAP T1 R0 W1 Z W1 +W2 C

4 SQ T1 R0 W1 Z D C

5 ADD T0 T1 W1 W1 + Z D C

6 MULT T1 T0 W1 · (W1 + Z) W1 + Z D C

7 SQ T0 R2 W1 · (W1 + Z) W1 + Z D C S

8 SWAP R1 T1 W1 · (W1 + Z) C D W1 + Z S

9 SWAP R3 T0 1
w0

C D W1 + Z S

10 MULT T0 R1 1
w0

C D E S

11 ADD R1 T1 1
w0

U D E S

12 ADD R0 R1 1
w0

U D E S

13 SQ R0 R0 1
w0

U D2 V S

14 SWAP R0 T1 1
w0

D2 U V S

15 SWAP R4 T0 d D2 U V S

16 MULT T1 T0 d ·D2 D2 U V S

17 ADD R2 T0 T D2 U V S

18 SWAP R0 T1 T U D2 V S

19 MULT T0 T1 T W3 D2 V S

20 SWAP T1 R1 T V D2 W3 S

21 MULT T0 T0 Z′ V D2 W3 S

22 SWAP T0 R2 S V D2 W3 Z′

23 MULT T0 T1 S W4 D2 W3 Z′

24 SWAP R0 R2 S W4 Z′ W3 D2

25 SWAP T0 R1 W3 W4 Z′ S D2

To save area, the half-trace functionality was left as a series of squarings and additions.
Adding additional area to handle the half-trace saves a relatively small fraction of instructions
but adds an additional multiplexer select in the FAU.

Inversion and the half-trace were implemented as subroutines within the ROM for in-
structions. The half traces uses a repetitive combination of double SQ then ADD. This was
used to recover the x and y-coordinates of the �nal point. Inversion was used to obtain
wi = Wi

Zi
, recover the x-coordinate, and recover the y-coordinate. Itoh-Tsujii inversion al-

gorithm [19] was used to reduce the number of multiplications. For F2283 , the addition chain
(1,2,4,8,16,17,34,35,70,140,141,282) was used. By implementing these repeated functionalities
as subroutines, the number of instructions in the ROM is dramatically reduced. The main
program is shown in Figure 2. The subroutines for inversion in F2283 and the half-trace are
shown in Figure 3. The total instruction count of the point multiplier for F2283 is shown in
Table 4. Approximately 132, 10-bit instructions were needed.

12

Initialization 5: T1, R2 ← R2, T1 11:T0 ← T0 +R0 29:T0 ← halfTr(T0)
1: T0 ← x1 6: R2 ← T0 × T1 12:T0 ← T0 +R0 Reg: x2, 0, 0, 0, 0
2: T0 ← T0 + y1 7: T1, R1 ← R1, T1 13:T1 ← d Recover y2
3: T1 ← T 2

0 8: T1 ← T0 × T1 14:T0 ← T0 × T1 1: R2 ← T 2
0

4: T1 ← T1 + T0 9: T0 ← x0 15:R2 ← R2 + T0 2: R2 ← R2 + T0

5: R0 ← T 2
1 10: T0 ← T0 + y0 16:T0 ← y2

1 3: R1, T0 ← T0, R1

6: T1 ← d Reg: w0, w2, 0, 0, w3 17:T0 ← T0 + y1 5: T0 ← T0 +R2

7: T1 ← T1 +R0 Recover x2 18:T1 ← R2
0 6: T0 ← T−1

0

8: T0 ← T0 × T1 1: R0 ← T0 × T1 19:T1 ← T1 +R0 7: T1, R2 ← R2, T1

9: T1, R0 ← R0, T1 2: T0 ← T0 +R0 20:T0 ← T0 × T1 8: T0 ← T0 × T1

Reg: W1,W2, Z, 0, 0 3: T0 ← T0 + T1 21:R2 ← R2 + T0 9: T1 ← d
Mont. Ladder 4: T1, R0 ← R0, T1 22:T0 ← x0 10:T0 ← T0 × T1

Reg: W3,W4, Z
′, 0, 0 5: T0 ← T0 × T1 23:T0 ← T0 + y0 11:T0 ← halfTr(T0)

Recover w2 and w3 6: T0 ← T0 + d 24:T1 ← T 2
0 12:T2 ← Z

1: R1, T0 ← T0, R1 7: T1, R2 ← R2, T1 25:T0 ← T0 + T1 13:T0, T1 ← T1, T0

2: T1, R2 ← R2, T1 8: R2 ← T0 × T1 26:T0 ← T−1
0 14:T0, R1 ← R1, T0

3: T0, R0 ← R0, T0 9: T0 ← x0 27:T1, R2 ← R2, T1 Reg: x2, y2, 0, 0, 0
4: T0 ← T−1

0 10: T0 ← T0 + y0 28:T0 ← T0 × T1

Fig. 2. Main Program Listing for Point Multiplication using Binary Edwards Curves [10]

Inversion 12: T0 ← T0 × T1 24:T0 ← T 2
1 36:T0 ← T 2

0

1: T1 ← T 2
0 13: T1, R0 ← R0, T1 25:T0 ← T 234

0 Half-Trace
2: T1 ← T0 × T1 14: T0 ← T 2

0 26:T0 ← T0 × T1 1: T1 ← T 2
0

3: T0, R0 ← R0, T0 15: T0 ← T0 × T1 27:T0 ← T 2
1 2: T1 ← T 2

1

4: T0 ← T 2
1 16: T1, R0 ← R0, T1 28:T0 ← T 269

0 3: T0 ← T0 + T1

5: T0 ← T 2
0 17: T0 ← T 2

1 29:T0 ← T0 × T1 4: T1 ← T 2
1

6: T0 ← T0 × T1 18: T0 ← T 216

0 30:T1, R0 ← R0, T1 5: T1 ← T 2
1

7: T0 ← T 2
1 19: T0 ← T0 × T1 31:T0 ← T 2

0 6: T0 ← T0 + T1

8: T0 ← T 23

0 20: T1, R0 ← R0, T1 32:T0 ← T0 × T1 *Repeat steps 4-6 m−2
2

times
9: T0 ← T0 × T1 21: T0 ← T 2

0 33:T0 ← T 2
1

10:T0 ← T 2
1 22: T0 ← T0 × T1 34:T0 ← T 2140

0

11:T0 ← T 27

0 23: T1, R0 ← R0, T1 35:T0 ← T0 × T1

Fig. 3. Itoh-Tsujii [19] Inversion (F2283) and Half-Trace Subroutines

Table 4. Necessary Subroutines.
Subroutine Iterations #ADD #SQ #MULT #SWAP Latency (cycles)

Init 1 3 2 1 4 310

Step 281 5 4 6 10+21 494,841

x Recovery, no HT and Inv 1 16 5 9 13 2,649

y Recovery, no HT and Inv 1 3 2 3 6 882

Half Trace 2×141 1 2 0 0 2×1,269
Inversion 3×1 0 282 11 6 3×3,977
Total 1,705 2,540 1,730 3,410 512,555

1. Special SWAP's that the controller handles.

13

4 Comparison and Discussion

This design was synthesized using Synopsys Design Compiler in F2283 ,F2233 , and F2163 , each a
di�erent standardized binary �eld size by NIST [3]. The TSMC 65-nm CMOS standard tech-
nology and CORE65LPSVT standard cell library were used for results. This implementation
was optimized for area.

The area was converted to Gate Equivalent (GE), where the size of a single NAND gate is
considered 1 GE. For our particular technology library, the size of a synthesized NAND gate
was 1.4 µm2, so this was used as the conversion factor. Latency reports the total number of
cycles to compute the �nal coordinates of a point multiplication. Parameters such as the type
of curve used and if Montgomery Ladder were used to indicate some innate security properties
of the curve. Power and energy results were not included as a comparison because they are
dependent on the underlying technology, frequency of the processor, and testing methodology.
The comparison results are shown in Table 5.

Table 5. Comparison of Di�erent Point Bit-Level Multiplications Targeted for ASIC
Work Curve Ladder? Field Size Tech (nm) Mult. # of clock Cycles Coord. Area (GE)

[15], 2007 BGC X F2163 180 Bit-serial 313,901 Projective 13,182

[8], 2008 BGC X F2163 130 Bit-serial 275,816 Mixed 12,506

[9], 2010 BEC X F2163 130 Bit-serial 219,148 Mixed 11,720

[20], 2011 BGC X F2163 130 Comb-serial 286,000 Projective 8,958

[6], 2014 BKC × F2163 65 Bit-serial 106,700 A�ne 10,299

[21], 2014 BGC × Fp160 130 Comb-serial 139,930 Projective 12,4481

[7], 2015 BKC × F2283 130 Comb-serial 1,566,000 Projective 10,2042 (4,323)3

This work BEC
X F2163

65 Bit-serial
177,707

Mixed
10,9454

X F2233 351,856 14,9034

X F2283 512,555 19,0584

1. Includes a Keccak module to perform ECDSA

2. RAM results were not synthesized, but extrapolated from a di�erent implementation.

3. Area excluding RAM

4. Area excluding ROM. Approximately 274 GE more with ROM.

This ECC implementation over BEC does make a few assumptions that not necessarily
each of these other implementations make. This architecture's area does not include the ROM
to hold the instructions. The ROM was not synthesized, but approximately 165 bytes of ROM
were required. By the estimate that 1,426 bytes is equivalent to 2,635 GE in [22], 165 bytes of
ROM is roughly equivalent to 274 GE. This architecture assumes that each bit of the key will
be fed into the co-processor. These assumptions are explained in previous sections. The areas
of the implementation for F2163 , F2233 , and F2283 excluding the register �le and program ROM
are 3,248 GE, 3,788 GE, and 5,566 GE, respectively.

Looking at timing for these implementation, the number of clock cycles appears to rise
quadratically when comparing F2163 to F2283 . This is to be expected, as the Montgomery
Ladder performs 6 multiplications each step. A multiplication takes m clock cycles and there
are m− 2 steps.

The area appears to have a linear relationship. This is also to be expected, as the register
�le's size increases linearly. The area of the FAU depends on the underlying �nite �eld and the
area of the controller is fairly constant. The area of the FAU and controller for F2233 is only
a slight increase over the area of the FAU and controller for F2163 because the F2233 is type II

14

GNB, in contrast to F2163 and F2283 are type IV GNB. Therefore the p′ block in F2233 requires
much fewer XOR gates.

The underlying architecture of this implementation was similar to [6]. This implementation
uses more area because an additional register and two additional constants were used in the
register �le. However, one less multiplexer was required in the FAU since the neutral element
in GNB was not required in any formulas. Other than that, the implementation in [6] does
not use the Montgomery Ladder and performs over Koblitz curves, which speeds up the point
multiplication at the cost of some security.

The only other light-weight implementation of BEC point multiplication is found in [9].
Many of the internals of our point multiplier are di�erent. For instance, this implementation
uses a circular register structure, and also a di�erent bit-serial multiplier in Polynomial Basis. A
Polynomial Basis parallel squaring unit was used in this implementation, which is costly when
compared to the GNB. This implementation uses Common-Z di�erential coordinate system
for the Montgomery Ladder, but each step requires 8 multiplications. Our implementation
requires only 6 multiplications, representing a reduction of latency in the Montgomery Ladder
by approximately 25%. Lastly, this implementation requires a register �le to hold 6 registers,
whereas our register �le only requires 5 registers. Hence, our implementation features a smaller
and faster point multiplication scheme than that in [9].

The introduction of extremely area-e�cient crypto-processors with comb-serial multiplica-
tion schemes [23] like the one proposed in [7] indicates that there is a need for new trade-o�
for future implementations of these ECC targeted at RFID chips. Bit-parallel multiplication
architectures are among the fastest approaches to perform �nite �eld multiplications, but this
requires a tremendous amount of area. Digit-serial schemes require a factor more of cycles, but
use less area. The most popular scheme for RFID chip point multiplication is bit-serial, which
requires a fraction of the area of digit-serial and requires m cycles to perform a multiplication.
Comb-serial multiplication takes this a step further by performing small multiplications over
many small combs. Depending on the multiplication scheme, this could require more than
m cycles but holds new records for area-e�ciency. The work presented in [7] is among the
smallest ECC co-processors, even in F2283 . It was designed as a drop-in concept, such that
the co-processor can share RAM blocks with a microcontroller. This implementation utilizes a
comb-serial multiplicationscheme in polynomial basis over Koblitz curves. As such, the latency
of each operation is larger than that of this work. Field addition, squaring, and multiplication
require 60, 200, and 829 cycles, respectively. This implementation needs space to hold 14 inter-
mediate elements throughout the point multiplication operation. Including the constants, our
implementation requires 9 intermediate values. The area of the co-processor without the RAM
for the register �le is 4,323 GE. Moreover, in [7], the RAM results that were included were
extrapolated from a di�erent implementation of ECC appeared in [22]. With these extrap-
olated results, the total area of the co-processor would be 10,204 GE. Our crypto-processor
with the register �le uses 87% more area, but performs the point multiplication approximately
three times faster, reducing the need to run at higher speeds to meet timing requirements in
a device. Further, [7] utilizes zero-free tau-adic expansion to enforce a constant pattern of op-
erations, similar to the Montgomery ladder [11], to protect against timing and power analysis
attacks. However, this new technique has not been thoroughly explored like the Montgomery
ladder. Furthermore, the co-processor does not have any protection against exceptional points
attacks such as the ones presented in [16]. In summary, for higher levels of security as was
implemented in [7], the time complexity was several factors higher, but the area was compa-
rable to an implementation of a smaller �nite �eld. As there is a push for larger �eld sizes for

15

higher security levels, the time complexity of the comb-serial method of multiplication and
other operations becomes ine�cient.

5 Conclusion

In this paper, it is shown that new mixed w-coordinate di�erential addition and doubling
formulas for binary Edwards curve produce a fast, small, and secure implementation of point
multiplication. Corrected formulas for addition in this coordinate system have been provided
and proven. Binary Edwards curves feature a complete and uni�ed addition formula. The
future of point multipliers targeted at RFID technology depends on the trade-o�s among area,
latency, and security. The binary Edwards curves implementation presented in this paper
has demonstrated that BEC is highly-competitive with the dominant elliptic curve systems
standardized by NIST and IEEE. As such, new standardizations that include binary Edwards
curves are necessary for the future of elliptic curve cryptography. The detailed analysis in this
paper also suggests that binary Edwards curves are among the fastest and most secure curves
for point multiplication targeting resource-constrained devices.

6 Acknowledgment

The authors would like to thank the reviewers for their constructive comments. This material
is based upon work supported by the National Science Foundation under Award No. CNS-
1464118 to Reza Azarderakhsh.

References

1. K. Kim, C. Lee, and C. Negre: Binary edwards curves revisited. In Meier, W., Mukhopadhyay, D., eds.:
Progress in Cryptology � INDOCRYPT 2014. Springer International Publishing (2014) 393�408

2. Hankerson, D.R., Vanstone, S.A., Menezes, A.J.: Guide to Elliptic Curve Cryptography. Springer-Verlag
New York Inc (2004)

3. U.S. Department of Commerce/NIST: National Institute of Standards and Technology. Digital Signature
Standard, FIPS Publications 186-2, (January 2000)

4. IEEE Std 1363-2000: IEEE Standard Speci�cations for Public-Key Cryptography, (Jan. 2000)
5. E. Wenger and M. Hutter: Exploring the design space of prime �eld vs. binary �eld ecc-hardware imple-

mentations. In Laud, P., ed.: Information Security Technology for Applications. Volume 7161 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2012) 256�271

6. R. Azarderakhsh, K. U. Jarvinen, and M. Moza�ari Kermani: E�cient algorithm and architecture for
elliptic curve cryptography for extremely constrained secure applications. IEEE Trans. on Circuits and
Systems 61-I(4), 1144�1155 (2014)

7. S. S. Roy, K. Jarvinen, and I. Verbauwhede: Lightweight coprocessor for Koblitz curves: 283-bit ECC
including scalar conversion with only 4300 gates. Cryptology ePrint Archive, Report 2015/556 (2015)
http://eprint.iacr.org/.

8. Y. K. Lee, K. Sakiyama, L. Batina, and I. Verbauwhede: Elliptic-Curve-Based Security Processor for
RFID. IEEE Transactions on Computers 57(11), 1514�1527 (2008)

9. Kocabas, U., Fan, J., Verbauwhede, I.: Implementation of Binary Edwards Curves for Very-Constrained
Devices. In: Proceedings of 21st International Conference on Application-speci�c Systems Architectures
and Processors (ASAP 2010). 185�191 (2010)

10. Bernstein, D.J., Lange, T., Farashahi, R.R.: Binary Edwards Curves. In: Proceedings of Workshop on
Cryptographic Hardware and Embedded Systems (CHES 2008). Volume 5154. 244�265 (2008)

11. Montgomery, P.L.: Speeding the Pollard and Elliptic Curve Methods of Factorization. Mathematics of
computation, 243�264 (1987)

12. Lopez, J., Dahab, R.: Fast Multiplication on Elliptic Curves Over GF (2m) Without Precomputation.
In: Proceedings of Workshop on Cryptographic Hardware and Embedded Systems (CHES 1999). 316�327
(1999)

16

13. Farashahi, R., Joye, M.: E�cient Arithmetic on Hessian Curves. In: Proceedings of The 13th International
Conference on Practice and Theory of Public Key Cryptography (PKC 2010). 243�260 (2010)

14. R. Azarderakhsh A. Reyhani-Masoleh: E�cient FPGA implementations of point multiplication on binary
Edwards and generalized Hessian curves using Gaussian normal basis. IEEE Trans. Very Large Scale
Integr. Syst. 20(8), 1453�1466 (August 2012)

15. Y. Lee and I. Verbauwhede: A compact architecture for montgomery elliptic curve scalar multiplication
processor. In Kim, S., Yung, M., Lee, H.W., eds.: Information Security Applications. Volume 4867 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg (2007) 115�127

16. T. Izu and T. Takagi: Exceptional procedure attack on elliptic curve cryptosystems. In Desmedt, Y., ed.:
Public Key Cryptography, PKC 2003. Volume 2567 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2002) 224�239

17. Kocher, P., Ja�e, J., Jun, B.: Di�erential power analysis. In Wiener, M., ed.: Advances in Cryptology
- CRYPTO' 99. Volume 1666 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (1999)
388�397

18. R. Azarderakhsh, D. Jao, and H. Lee: Common subexpression algorithms for space-complexity reduction of
Gaussian normal basis multiplication. IEEE Transactions on Information Theory 61(5), 2357�2369 (2015)

19. Itoh, T., Tsujii, S.: A Fast Algorithm for Computing Multiplicative Inverses in GF (2m) Using Normal
Bases. Information Computing 78(3), 171�177 (1988)

20. Wenger, E., Hutter, M.: A hardware processor supporting elliptic curve cryptography for less than 9 kges.
In Prou�, E., ed.: Smart Card Research and Advanced Applications. Volume 7079 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg (2011) 182�198

21. Pessl, P., Hutter, M.: Curved tags - a low-resource ecdsa implementation tailored for r�d. In Saxena, N.,
Sadeghi, A.R., eds.: Radio Frequency Identi�cation: Security and Privacy Issues. Volume 8651 of Lecture
Notes in Computer Science. Springer International Publishing (2014) 156�172

22. E. Wenger: Hardware architectures for MSP430-based wireless sensor nodes performing elliptic curve
cryptography. In Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R., eds.: Applied Cryptography
and Network Security. Volume 7954 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2013) 290�306

23. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptography. 1st edn. CRC
Press, Inc., Boca Raton, FL, USA (1996)

7 Appendix

7.1 Subroutines

This contains a code listing of the program in assembly.

Algorithm 3 shows the Itoh-Tsujii [19] inversion subroutine for F2283 . This follows the
addition chain (1,2,4,8,16,17,34,35,70,140,141,282). Eleven multiplications are required for this
binary �eld. A similar approach was done for F2163 and F2233 .

17

Algorithm 3 Itoh-Tsujii [19] Inversion Subroutine for GF (2283)
SQ T0 T1
MULT T1 T1 �2^2-1
SWAP T0 R0
SQ T1 T0
SQ T0 T0
MULT T1 T0 �2^4-1
SQ T0 T1
SQ T1 T1 3 Times
MULT T1 T0 �2^8-1
SQ T0 T1
SQ T1 T1 7 Times
MULT T1 T0 �2^16-1
SWAP T1 R0
SQ T0 T0
MULT T1 T0 �2^17-1
SWAP T1 R0
SQ T0 T1
SQ T1 T1 16 Times
MULT T1 T0 �2^34-1
SWAP T1 R0
SQ T0 T0
MULT T1 T0 �2^35-1
SWAP T1 R0
SQ T0 T1
SQ T1 T1 34 Times
MULT T1 T0 �2^70-1
SQ T0 T1
SQ T1 T1 69 Times
MULT T1 T0 �2^140-1
SWAP T1 R0
SQ T0 T0
MULT T1 T0 �2^141-1
SQ T0 T1
SQ T1 T1 140 Times
MULT T1 T0 �2^282-1
SQ T0 T0

Algorithm 4 shows the half-trace subroutine. This is a simple double square and add routine
that produces the result after m−1

2 iterations.

Algorithm 4 Half-Trace Subroutine
SQ T0 T1
SQ T1 T1
ADD T1 T0
{SQ T1 T1
SQ T1 T1
ADD T1 T0} loop for m−2

2
times

Algorithm 5 shows the beginning of the main program that was used. This includes the
initialization of the point and the repeated step of the Montgomery ladder [11].

18

Algorithm 5 General Program Flow
INIT
SWAP R5 T0
ADD R6 T0
SQ T0 T1
ADD T0 T1
SQ T1 R0 �W4
SWAP R4 T1
ADD R0 T1 �Z4
MULT T1 T0 �W1 revised
SWAP T1 R0 �W1 W4 Z4
STEP
SWAP T0 T0 �OUTPUT register selected by k bit
ADD T0 T1
SQ T1 R1
SWAP T1 R0
SQ T1 R0
ADD T0 T1
MULT T1 T0
SQ T0 R2 �S
SWAP R1 T1
SWAP R3 T0 �1/w0
MULT T0 R1 �E
ADD R1 T1 �U
ADD R0 R1 �V
SQ R0 R0
SWAP R0 T1
SWAP R4 T0 �d1
MULT T1 T0
ADD R2 T0 �T
SWAP R0 T1
MULT T0 T1 �W3
SWAP T1 R1
MULT T0 T0 �Z'
SWAP T0 R2
MULT T0 T1 �W4
SWAP R0 R2
SWAP T0 R1
SWAP T0 T0 �Output register selected by k bit. Repeat for every step

Algorithm 6 shows the end of the main program that was used. This includes the recovery
of w2, w3, x2, y2.

19

Algorithm 6 General Program Flow (cont.)
RECOVER X
SWAP T0 R1
SWAP T1 R2
SWAP R0 T0
Invert T0 �1/Z
SWAP R2 T1
MULT T1 R2 �w3
SWAP R1 T1
MULT T1 T1 �w2
SWAP R5 T0
ADD R6 T0
MULT T1 R0
ADD R0 T0
ADD T1 T0
SWAP R0 T1 �(w1w2+w1+w2) w1w2 w2 0 w3
MULT T1 T0
ADD T1 T0
ADD R4 T0 �d1+w1w2+w1w2*(w1+w2+w1w2) w1w2 w2 0 w3
SWAP T1 R2
MULT T1 R2 �1st part of the numerator � 0 0 w2 0 1st
SWAP R5 T0
ADD R6 T0
ADD R0 T0 �w1+w2
SWAP R4 T1
MULT T1 T0
ADD T0 R2 �0 0 w2 0 1st+2nd
SQ R6 T0
ADD R6 T0
SQ R0 T1
ADD R0 T1
MULT T1 T0
ADD T0 R2 �Numerator complete, compute inversion now
SWAP R5 T0
ADD R6 T0 �w1 0 0 0 Numerator
SQ T0 T1
ADD T1 T0 �w1^2+w1 0 0 0 Numerator, now inversion
Invert T0 �1/(w0^2+w0)
SWAP R2 T1
MULT T1 T0
T0 = HalfTrace(T0) �x2 or x2+1
RECOVER Y
SQ T0 R2
ADD T0 R2
SWAP T0 R1
SWAP R4 T0
ADD R2 T0
Invert T0 �1/(d+x+x^2)
SWAP T1 R2
MULT T1 T0
SWAP R4 T1
MULT T1 T0
T0 = HalfTrace(T0) �y2 or y2+1
SWAP T0 T1
SWAP R1 T0 �Solution is x, y in T0 T1

20

