
1

Lightweight Hardware Architectures for Fault
Diagnosis Schemes of Efficiently-Maskable

Cryptographic Substitution Boxes
Mehran Mozaffari Kermani, Senior Member, IEEE, and Reza Azarderakhsh, Member, IEEE

Abstract—As we are close to the advent of quantum com-
puting capability, the potential use of resistant algorithms, i.e.,
code-based, lattice-based, hash-based, multivariate-quadratic-
equations, and symmetric-key cryptographic algorithms, depends
on many sensitive factors including resistance against natural
and malicious faults. Active side-channel analysis attacks (SCAs)
such as fault analysis attacks and passive ones, e.g., power anal-
ysis attacks, have been effective to compromise algorithmically-
secure crypto-solutions including the emerging lightweight block
ciphers. Nevertheless, one can provide fault diagnosis approaches
to ameliorate the former and use efficient masking mechanisms
for the latter. There has been recent work to account for power
analysis attacks resistivity before developing new lightweight
block ciphers; nonetheless, in this paper, we present error detec-
tion approaches for such ciphers and present insights towards
future directions for potential, combined power and fault analysis
attacks resistivity as a major deciding factor in developing SCA-
resistant lightweight block ciphers. Through error simulations,
the theoretical back-bone of the presented error detection scheme
for a lightweight block cipher case study is benchmarked. The
proposed design factor can be tailored based on the required
security, fault resistivity, and overhead tolerance of both classical
and post-quantum cryptography.

I. INTRODUCTION

Cryptographic protocols such as elliptic curve digital sig-

nature algorithm (ECDSA) and elliptic curve Diffie–Hellman

(ECDH), or the ones based on Rivest-Shamir-Adleman (RSA)

will be no longer algorithmically-secure1 in post-quantum

era. Various lightweight hash functions and block/stream ci-

phers have been developed to account for tight constraints

of different usage models including implantable and wearable

medical devices, smart infrastructures, and the like. Not only

are such symmetric-key cryptographic algorithms used as

stand-alone security providers, but they are also utilized in

other post-quantum resistant approaches, e.g., hash functions

and stream ciphers used in stateless hash-based post-quantum

scheme SPHINCS [1]. Nevertheless, it is well-known that

through active or passive side-channel attacks (SCAs), such

cryptographic architectures may leak sensitive key-related in-

formation.

M. Mozaffari Kermani is with the Department of Electrical and Microelec-
tronic Engineering, Rochester Institute of Technology, Rochester, NY 14623,
USA (e-mail: m.mozaffari@rit.edu).

R. Azarderakhsh is with the Department of Computer and Electrical En-
gineering and Computer Science and is an I-SENSE Fellow, Florida Atlantic
University, Boca Raton, FL, USA (e-mail: razarderakhsh@fau.edu).

1We use algorithm security and implementation security to accurately
differentiate different types of security.

Protecting lightweight block ciphers against SCAs incurs

performance and complexity overheads which are undesirable.

Thus, embedding SCA resistivity as a deciding factor for

design (it is referred to as design-for-SCA-resistivity hereafter)

beforehand and not as an aftermath is a natural alternate.

There has been previous work on designing (or tweaking

the previously-devised designs) to account for power analysis

attacks utilizing “masking” as an efficient embedded counter-

measure [2]. We would like to emphasize that such designs

have lead to better performance and implementation metrics

compared to the ones based on adding the same masking

countermeasures to the already-designed block ciphers.

In this paper, we present error detection schemes for

efficiently-maskable substitution boxes. We take into account

the nonlinear substitution boxes of (lightweight) block ci-

phers, protected against power analysis through masking,

and propose reliability approaches for thwarting natural and

malicious faults. This work takes into account two lightweight

block ciphers (one efficiently-maskable and the other not)

for proposing efficient error detection schemes. We note that

natural (hardware failures, for instance, single event upsets,

electromagnetic waves, or external radiations) and malicious

(fault analysis attacks) error detection has been considered in

the previous work, see, for instance, [3], [4], [5], [6], [7]. We

also note that there has been previous work on investigating the

resistivity of fault attack countermeasures to power analysis

attacks and on applying power analysis attacks to fault analysis

attack-resistant architectures [8], [9], [10], [11], [12].

II. PRELIMINARIES

In what follows, we present preliminaries on masking,

substitution boxes, and the block ciphers ICEBERG and Zorro.

Masking.Masking [13] is a widely-used method for thwart-

ing power analysis attacks through randomizing the internal

state of the implementations so that information leakage about

the intermediate values is obstructed. As such, knowing d
internal values and computations is ineffective when we deal

with d-th order SCA implementation security.

Substitution boxes. Nonlinear substitution boxes, e.g., S-

boxes of block ciphers, are known to be the most difficult

to mask, e.g., the time complexity of their masking grows at

least quadratically with the order d. Devising block ciphers

which are designed to be effectively masked has been the ob-

jective of previous works, see, for instance, [14]. Non-bijective

substitution boxes usually lead to simple non-profiled attacks;

yet, non-profiled attacks do not exist against bijective (having

one-to-one correspondence) substitution boxes. Efficiently-

maskable bijective substitution boxes can be constructed using

smaller substitution boxes, e.g., KHAZAD [15] and ICE-

BERG [16], or through exhaustive search of permutations over

GF (2n) which is computationally infeasible for large n. It

is noted that typically, 4-bit and 8-bit S-boxes are utilized

in block ciphers. The former is used in lightweight ciphers

through look-up tables or logic gates and the latter, like the

one in the Advanced Encryption Standard, can be implemented

through composite fields, e.g., GF ((22)2)2 or GF (22)4, or

through memory macros implemented on application-specific

integrated circuit (ASIC) or field-programmable gate array

(FPGA).

Block ciphers ICEBERG and Zorro. ICEBERG operates

on 64-bit blocks and uses a 128-bit key. It is an involutional

iterative block cipher based on the repetition of identical round

functions which are key-dependent. This block cipher consists

of two nonlinear substitution layers, a permutation layer,

and key-addition/linear/matrix multiplication layers. For more

details, which are not presented for the sake of brevity, one can

refer to [16]. Through the aforementioned approaches, Zorro

(an efficiently-maskable block cipher) has been developed.

Block size and key size of Zorro are 128 bits, with iterative

24 rounds and 6 steps (combination of 4 rounds). In the

substitution transformation within Zorro, only 4 substitution

boxes are applied to the 4 bytes of the first row in the state

matrix (comparing 24 rounds × 4 substitution boxes in Zorro

with 10 rounds × 16 substitution boxes in the Advanced

Encryption Standard shows roughly half substitution boxes for

Zorro).

III. PROPOSED ERROR DETECTION APPROACH

In this section, we first present the error detection ap-

proaches for the block cipher ICEBERG which has a

relatively-similar architecture (not in terms of being maskable

though) to Zorro. We consider different linear and nonlinear

layers of this block cipher and for the sake of brevity, we do

not present all of our derived computations. Then, we compare

the results with Zorro which has been constructed to be

efficiently-maskable, i.e., power analysis attack resistant. We

note that there is no limitation in generalizing this comparison

for other block ciphers.

A. Linear and Nonlinear Layers of ICEBERG

As we are interested in error detection complexity, we ex-

amine different layers in function γ independently to conclude

the cost2. Fault diagnosis for the substitution boxes s0, s1
of function γ can be performed through concurrent error

detection and signatures. We propose using signatures, e.g.,

parities for detecting odd faults and single stuck-at faults and

interleaved parities to be able to detect burst faults as well,

and storing them with the original values in (a) distributed

2Throughout this paper, small and capital letters are used with different
intentions for different substitutions, permutations, and other functions.

Table I
INTERLEAVED PARITY PREDICTION FOR s0 .

Row, Col. Binary interleaved parity pairs
1, 1-8 00 01 01 00 10 11 11 10
2, 1-8 01 10 00 01 11 11 00 01

1, 9-16 10 11 11 10 01 01 01 00
2, 9-16 00 10 11 01 11 00 10 10

Table II
PREDICTED PARITY FOR s0 FOR SINGLE/ODD FAULTS.

Row, Col. Binary interleaved parity pairs
1, 1-8 0 1 1 0 1 0 0 1
2, 1-8 1 1 0 1 0 0 0 1

1, 9-16 1 0 0 1 1 1 1 0
2, 9-16 0 1 0 1 0 0 1 1

memories using look-up tables or block memories on FPGAs,

or (b) synthesized memories or memory macros on ASICs.

The results of our derivations are presented in Tables I-IV for

s0, s1, respectively. We note that parallel application of s0, s1
(and thus parallel error detection of which) creates substitution

layers S0, S1 such that for 0 ≤ j ≤ 1, Sj : Z16
24→ Z

16
24 :x →

y = Sj(x)⇔ yi = sj(xi), where 0 ≤ i ≤ 15. Thus, detection

of the error in any of s0, s1 would cause the error indication

flag of the entire S0, S1 to be asserted.

Permutations of function γ do not change the signatures.

Permutation layer P8 consists of the parallel application of

8 permutations p8 to the state, where p8 consists of bit

permutations on 8-bit blocks of data such that P8 : Z
8
28→

Z
8
28 :x → y = P8(x)⇔ y(8i + j) = x(8i + p8(j) for

0 ≤ i, j ≤ 7. In other words, we have (�x) = (�y), where

� denotes signatures such as interleaved parity and the like.

Finally, we achieve the error detection of the entire function γ
through the corresponding signatures as �γ : Z64

2 → Z
64
2 =⇒

(�S0)�(�P8)�(�S1)�(�P8)�(�S0), where � is used to

show that the operations are done consecutively.

Modulo-2 addition with the key is through XOR gates (σk).

Moreover, the matrix multiplication (denoted as M) in the

linear layer εk is a linear step through which, for the 4-bit

entries xi where 0 ≤ i ≤ 15, we perform a multiplication with

the 4 × 4 matrix V = [0, 1, 1, 1; 1, 0, 1, 1; 1, 1, 0, 1; 1, 1, 1, 0].
We derive parities and interleaved parities for this linear step

with low cost as follows.

Remark 1. The predicted parities for the matrix multiplication

are equal to actual parities and there is no cost for their

derivation.

Adjacent fault are very relevant for both natural and mali-

cious faults. Natural faults can happen as single event upset

(SEU) and multiple event upset (MEU), and malicious faults

are usually injected as transient faults which are preferred

to be single stuck-at faults; however, due to technological

constraints, adjacent faults may incur.

Remark 2. The interleaved parities are derived for this linear

sub-block simply through x0 + x1 and x2 + x3, where +
denotes modulo-2 addition.

The critical path delay of the predicted parities in Remark

1 is zero and the one for the interleaved parity in Remark 2

Table III
INTERLEAVED PARITY PREDICTION FOR s1 .

Row, Col. Binary interleaved parity pairs
1, 1-8 00 01 01 00 10 11 11 10
2, 1-8 10 11 00 00 00 01 11 10

1, 9-16 10 11 11 10 01 01 01 00
2, 9-16 01 11 01 10 00 11 10 01

Table IV
PREDICTED PARITY FOR s1 FOR SINGLE/ODD FAULTS.

Row, Col. Binary interleaved parity pairs
1, 1-8 0 1 1 0 1 0 0 1
2, 1-8 1 0 0 0 0 1 0 1

1, 9-16 1 0 0 1 1 1 1 0
2, 9-16 1 0 1 1 0 0 1 1

is TX (delay of an XOR gate).

Based on the aforementioned remarks and considering the

linear layer εk : Z64
2 → Z

64
2 : εk ≡ P64�P4�σk�M�P64,

where P64, P4 are permutations (and thus do not affect the

signatures) whose definitions are not presented for the sake

of brevity, error detection for key schedule is the combination

of those for the aforementioned transformations whose error

detection can be performed through union of the methods

presented.

The following remark presents the fault diagnosis scheme

for the key selection unit of ICEBERG.

Remark 3. The key selection function of ICEBERG includes

a compression function that selects 64 bytes of Ki having

odd indices. A 4 × 4 key selection box is applied in parallel.

We present the interleaved parities for the selection box as

follows: P̂1 = [(x0 + x1 + x2).sel ∨ (x0 + x1).sel] + [(x0 +
x2 +x3).sel∨ (x2 +x3).sel], P̂2 = [(x1 +x2).sel∨x1.sel] +
[(x0 + x3).sel ∨ x3.sel].

1) Intelligent Attacker Assumption: We note that the funda-

mental difference between security attacks and random faults

is the intelligent-attacker assumption. Injection of random

faults mimics errors happening due to natural causes. In

contrast, the intelligent adversary running fault-based crypt-

analysis will carefully determine the fault (s)he is going to

inject and perform injection right at the calculated position

and point of time. Consequently, we note that just trying

random faults will not be helpful in breaking most ciphers.

As such, in addition to the presented work here, we provide

error detection approaches based on recomputing with encoded

operands for both transient and permanent faults. The merit

of these approaches is that they can detect both transient and

permanent faults and unlike (interleaved) parities, they are not

confined to certain fault models, e.g., random faults, as derived

by our simulations.

2) Data Reliability vs. Availability: One can use pipeline-

registers to sub-pipeline the structures to break the timing path

to approximately equal halves. This trend (which can be scaled

to n stages) is consecutively executed for normal (N) and

encoded (E) operands for the n stages. Through such approach,

low degradation in the throughput at the expense of more area

overhead. We utilize Fig. 1 to show a possibility for such a

N2

N1 N2

En
En-1 En

St
ag

es

Cycles

En

2n

N1

Nn/3 Nn/3-1

N3

Figure 1. Data reliability vs. availability.

scheme. Depending on the requirements in terms of reliability

vs. availability, one can tailor these approaches to fulfill

such constraints, e.g., in Fig. 1, an illustrative compromise is

seen where three sub-segments are considered (three encoded

[rotated or shifted] sub-operands preceded by three normal

sub-operands).

B. Comparison with Zorro

Zorro and ICEBERG are two instances of block ciphers in

which larger substitution boxes are constructed from smaller

ones. In ICEBERG, three applications of 4-bit substitution box

layers, interleaved with a bit permutation, are used. However,

although it is algorithmically-secure, the cost of six 4-bit

substitution boxes to compute an 8-bit substitution box is not

suitable for low-complexity masking. This has been resolved

in Zorro with a Feistel network of substitution boxes along

with an invertible 8 × 8 binary matrix which is shown in

Fig. 2. Moreover, Zorro can be constructed through GF (27)
substitution boxes as shown in Fig. 2. Using signatures for

these two block ciphers with respect to their 8-bit substitution

boxes would result in the same complexity. This is also the

case for recomputing with encoded operands. For signature-

based approaches, based on the hardware platform, one needs

to store the resulting signatures in look-up tables or memory

blocks and the cost is relative to the size of substitution boxes.

However, if one considers 4-bit substitution boxes which are

combined to create an 8-bit box, Zorro has clear advantage

simply because it has less complexity.

C. Error Simulations

Using signatures (interleaved parity prediction as our case

study without losing of generality), we have derived the error

detection capability of block cipher ICEBERG. Throughout

this paper, both single and multiple stuck-at faults have been

considered. Interleaved parity bits are stored in the look-up

tables of the substitution boxes of ICEBERG and for the linear

multiplication, we have used one-bit signatures with no cost as

derived in the previous section. Both stuck-at zero and stuck-at

one faults are injected in multiple locations. Finally, any error

detected in these structures (iterated based on the number of

rounds) leads to error indication flag assertion for the entire

ICEBERG block cipher.

For single-bit and multiple-bit fault injection, we generated

10,000 faults for both types of stuck-at zero and stuck-at

Invertible 8X8 Matrix

Invertible 8X8 Matrix

Invertible 8X8 Matrix

Invertible 8X8 Matrix

8-bit Linear Transform

8-bit Linear Transform

Figure 2. Creating substitution boxes in Zorro through smaller ones and
through GF (27) constructions.

one faults. The proposed approaches detect both transient and

permanent faults and the results of our simulations show that

the detection capability is 99.99% (with very low percent of

false alarms, i.e., the errors that are detected in the intermediate

rounds and are not transferred to the output of the entire

ICEBERG and thus falsely alarm the errors without having

erroneous final output for the block cipher).

IV. CONCLUSIONS

The main constraint in low-cost maskability is to have com-

bined algorithmic/implementation security and low-overhead

power analysis attack resiliency. This is, in-large, in-line

with design-for-error-detection as similarly we need to have

algorithmically-secure designs (for instance, substitution boxes

of Zorro) and of course high error detection resiliency. Suitable

error detection approaches for general VLSI systems can be

vulnerable to fault analysis attacks. Furthermore, the choice

of error detection scheme, e.g., storing the signatures in the

substitution box implemented as memory blocks on FPGAs or

deriving them by logic gates in composite fields on ASICs, af-

fects the approach for design-for-SCA-resistivity. On the other

hand, this choice is dependent on the eventual objectives of

the designs, e.g., if the bottleneck is performance, recomputing

with encoded operands is not justifiable. Thus, a useful insight

is to choose secure schemes (both algorithmically-secure and

secure against fault analysis attacks) which comply with the

eventual design objectives.

In this paper, we have explored error detection approaches

for efficiently-maskable substitution boxes for the hardware

implementations of symmetric-key cryptography and, in par-

ticular, block ciphers. We have taken into account the non-

linear substitution boxes of block ciphers (with emphasis on

lightweight ones), protected against power analysis through

masking, and presented insight to achieve reliability ap-

proaches. The case studies of Zorro and ICEBERG block ci-

phers have been selected and insights for future, potential com-

bined maskabality and error detection have been presented.

With future, emerging directions towards post-quantum cryp-

tography era, these considerations open new research areas

on side-channel analysis resiliency. Finally, we would like to

emphasize that many of the currently-under-investigation au-

thenticated encryption schemes (CAESAR competition [17])

contain substitution boxes which can be designed for thwarting

power analysis attacks (not as aftermath) and thus can be

benefited from the presented insights.

ACKNOWLEDGMENTS

This work was performed under the U.S. federal agency

award 60NANB16D245 granted from U.S. Department of

Commerce, National Institute of Standards and Technology

(NIST).

REFERENCES

[1] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L.
Papachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn,
“SPHINCS: Practical stateless hash-based signatures,” in Proc. EURO-
CRYPT, 2015, pp. 368-397.

[2] B. Gérard, V. Grosso, M. Naya-Plasencia, and F.-X. Standaert, “Block
ciphers that are easier to mask: How far can we go?,” in Proc. CHES,
2013, pp. 383-399.

[3] M. Mozaffari Kermani, R. Azarderakhsh, C.-Y. Lee, and S. Bayat-
Sarmadi, “Reliable concurrent error detection architectures for extended
Euclidean-based division over GF (2m),” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 22, no. 5, pp. 995-1003, 2014.

[4] X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri, “Security analysis
of concurrent error detection against differential fault analysis,” J.
Cryptographic Engineering, vol. 5, no. 3, pp. 153-169, 2015.

[5] M. Mozaffari Kermani, R. Azarderakhsh, and A. Aghaie, “Fault de-
tection architectures for post-quantum cryptographic stateless hash-
based secure signatures benchmarked on ASIC,” ACM Trans. Embedded
Computing Syst. (special issue on Embedded Device Forensics and
Security: State of the Art Advances), to appear in 2016.

[6] M. Mozaffari Kermani, R. Azarderakhsh, C.-Y. Lee, and S. Bayat-
Sarmadi, “Reliable concurrent error detection architectures for extended
Euclidean-based division over GF (2m),” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 22, no. 5, pp. 995-1003, 2014.

[7] M. Mozaffari Kermani and A. Reyhani-Masoleh, “A lightweight high-
performance fault detection scheme for the Advanced Encryption Stan-
dard using composite fields," IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 19, no. 1, pp. 85-91, Jan. 2011.

[8] F. Regazzoni, T. Eisenbarth, L. Breveglieri, P. Ienne, and I. Koren,
“Can knowledge regarding the presence of countermeasures against fault
attacks simplify power attacks on cryptographic devices?” in Proc. IEEE
Int. Symp. Defect and Fault Tolerance in VLSI Systems (DFT), 2008, pp.
202-210.

[9] F. Regazzoni, T. Eisenbarth, J. Großschädl, L. Breveglieri, P. Ienne, I.
Koren, and C. Paar, “Power attacks resistance of cryptographic S-Boxes
with added error detection circuits” in Proc. IEEE Int. Symp. Defect and
Fault Tolerance in VLSI Systems (DFT), 2007, pp. 508-516.

[10] T. Schneider, A. Moradi, and Tim Güneysu, “ParTI - Towards com-
bined hardware countermeasures against side-channel and fault-injection
attacks,” to appear in CRYPTO 2016.

[11] H. Pahlevanzadeh, J. Dofe, and Q. Yu, “Assessing CPA resistance of
AES with different fault tolerance mechanisms,” in Proc. Asia and South
Pacific Design Automation Conference (ASP-DAC), 2016, pp. 661-666.

[12] K. J. Kulikowski, M. G. Karpovsky, and A. Taubin, “DPA on faulty
cryptographic hardware and countermeasures,” in Proc. FDTC, 2006,
pp. 211-222.

[13] L. Goubin and J. Patarin, “DES and differential power analysis,” in Proc.
CHES, 1999, pp. 158-172.

[14] G. Piret, T. Roche, and C. Carlet, “PICARO - a block cipher allowing
efficient higher-order side-channel resistance,” in Proc. ACNS, 2012, pp.
311-328.

[15] P. Barreto and V. Rijmen, “The KHAZAD legacy-level block cipher,”
Primitive submitted to NESSIE, p. 4, 2000.

[16] F.-X. Standaert, G. Piret, G. Rouvroy, J.-J. Quisquater, and J.-D. Legat,
“ICE-BERG: An involutional cipher efficient for block encryption in
reconfigurable hardware,” in Proc. FSE, 2004, pp. 279-299.

[17] CAESAR competition, http://competitions.cr.yp.to/caesar.html, accessed
June 2016.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

