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Abstract. In this work, we present an exposure model for the isogeny
computation in the quantum-resistant supersingular isogeny Di�e-Hell-
man (SIDH) key exchange protocol. Notably, we propose this exposure
model to characterize the severity of new attacks that force an SIDH
user to divulge certain intermediate values. In our model, we show how
an attacker can break SIDH by discovering an intermediate kernel point
and its corresponding curve. To strengthen an SIDH-user against the
exposure of intermediate values, we propose a random curve isomorphism
that is performed just before the large-degree isogeny. We show that this
countermeasure is computationally inexpensive compared to the whole
of SIDH and can still operate with the Kirkwood et al. validation model
that allows a static-key user to ensure the �rst round of the other party
was performed honestly. The goal of this paper is to present an additional
protection against future attacks for implementations of SIDH.
Key Words: Post-quantum cryptography, isogeny-based cryptography,
exposure model

1 Introduction

The threat of the emergence of a quantum computer has put the security and pri-
vacy of society's digital data in jeopardy. In a recent announcment at PQCrypto
2016, NIST announced a preliminary standardization plan to standardize post-
quantum cryptographic (PQC) algorithms that are resistant to an attacker
armed with both classical and quantum computers [4]. Lattice-based cryptosys-
tems, code-based cryptosystems, multivariate cryptosystems, and the McEliece
cryptosystem are known to be among the top contenders for PQC standardiza-
tion.

Recently, isogeny-based cryptography has emerged as a dark horse candidate
since the supersingular isogeny Di�e-Hellman (SIDH) key exchange protocol fea-
tures the smallest known PQC keys and also features forward secrecy. Proposed



by Jao and De Feo [14], this cryptosystem utilizes isogenies between supersin-
gular elliptic curves to move between supersingular elliptic curve isomorphism
classes in such a way that two parties arrive at curves with the same j-invariant.
This key exchange protocol is currently di�cult even for quantum computers
to crack, as the best known quantum attack to compute isogenies between su-
persingular elliptic curves has complexity O( 6

√
p) for a �eld of characteristic p

[14].
However, since isogeny-based cryptography has only been popularized in the

previous several years, various applications, implementations, and in-depth se-
curity analyses from the cryptographic research community are still underway.
Namely, several recent advances include key compression [2,5], digital signatures
[11,26], static-static key agreement [3], and e�cient software and hardware im-
plementations [7,1,6,20,18,19,13]. A few attacks on isogeny-based cryptography
have been proposed, notably protocol attacks [10], side-channel attacks [17], and
fault attacks [24,12].

Here, we provide a so-called �exposure� model for the isogeny computation
critical to SIDH. For this model we consider the impact on the security assump-
tions of SIDH when certain intermediate values have been exposed or leaked in
some way. Since isogeny-based cryptography and SIDH are still in their infancy
compared to other quantum-resistant schemes we provide this model as a way
to account for attacks that are discovered in the future.

Our contributions:

� We propose for the �rst time an exposure model in the large-degree isogeny
computations of SIDH.

� We introduce a random pre-isogeny isomorphism as an additional side-channel
countermeasure for the large-degree isogeny computation.

� We show that this isomorphism is inexpensive and can still operate seam-
lessly with the Kirkwood et al. [16] validation model.

2 Preliminaries

Here, we brie�y reiterate key components of isogeny-based cryptography that act
as a foundation for SIDH. For a complete background in elliptic curve theory,
we point the reader to [22].

2.1 Elliptic Curve Theory

Elliptic Curves: An elliptic curve de�ned over a �nite �eld, Fq, can be written
in its short Weierstrass form as:

E/Fq : y2 = x3 + ax+ b

where a,b ∈ Fq. An elliptic curve is composed of all points (x, y) that satisfy the
above equation as well as the point at in�nity. This forms an abelian group over



point addition, the underlying basis of the scalar point multiplication in elliptic
curve cryptography.

In addition to short Weierstrass form, other curve forms have been researched,
such as Edwards [8] and Montgomery [21] curves. Depending on the application,
these curves can provide various e�ciency and security bene�ts. They still �t
for elliptic curve cryptography applications because there has been shown to be
an equivalence between these curve forms and the short Weierstrass form [8,21].
More speci�cally, every Montgomery and Edwards curve has an equivalent short
Weierstrass curve, but a short Weierstrass curve may not have an equivalent
Montgomery or Edwards curve.

Isogenies: We de�ne an isogeny over a �nite �eld, Fq, φ : E → E′ as a
non-constant rational map over Fq, where φ is a group homomorphism from
E(Fq) to E′(Fq). Isogenies are essentially a way to jump from one elliptic curve
isomorphism class to another. Speci�cally, we are looking at supersingular elliptic
curves, which have an endomorphism ring with Z-rank equal to 4. Supersingular
curves can be de�ned over Fp2 , for a given prime p. For every prime ` 6= p, there
exist ` + 1 unique isogenies up to isomorphism of degree ` originating from a
given supersingular curve. We can compute these unique isogenies over a kernel,
κ, such that φ : E → E/〈κ〉 by using Vélu's formulas [25].

The j-invariant of an elliptic curve de�nes various complex properties of the
elliptic curve and also acts as an identi�er for its corresponding elliptic curve
isomorphism class. Over the short Weierstrass form, we can compute the j-
invariant as follows:

j(E) = 1728
4a3

4a3 + 27b2

Elliptic curves that share the same j-invariant are isomorphic. Thus, elliptic
curves in the same isomorphism class share various complex properties. There
are a total of q isomorphism classes over Fq, or an isomorphism class for each
element in Fq.

An elliptic curve isogeny performs a mapping from an elliptic curve E to
another elliptic curve E′. Isogenies of degree one are isomorphisms, where E and
E′ will stay in the same isomorphism class and thus share the same j-invariant.
Isogenies with a degree higher than one will move across isomorphism classes,
where E and E′ will no longer share the same j-invariant. In addition, an isogeny
can also be applied to either an elliptic curve or speci�ed points on an elliptic
curve. Computing an isogeny is where we �nd the mapping from one elliptic curve
to another and correspondingly update the elliptic curve coe�cients. Evaluating
an isogeny is where we push a point from one elliptic curve to another based on
the mapping from an isogeny computation.

2.2 Large-Degree Isogeny Computation

We can break large-degree isogenies of the form `e by performing multiple isoge-
nies of degree `. These are performed iteratively. Consider computing an isogeny



of degree `e on the supersingular elliptic curve E with a point R, of order `e, as
the kernel point. We e�ciently compute φ:E → E/〈R〉 by decomposing φ into a
chain of degree ` isogenies, φ = φe−1 ◦· · ·◦φ0. We initialize E0 = E and R0 = R,
and perform each isogeny as follows:

Ei+1 = Ei/〈`e−i−1Ri〉, φi : Ei → Ei+1, Ri+1 = φi(Ri)

As is shown in Figure 1, the large-degree isogeny computation can be visu-
alized as traversing an acyclic graph in the shape of a triangle with each node
representing various important multiples and isogenies of the kernel point. Each
node represents an intermediate kernel point. The large-degree isogeny compu-
tation starts at the top of the graph with the secret kernel point R0. Performing
a point multiplication by ` moves to left and evaluating an isogeny of degree `
with the point moves to the right. The large-degree isogeny can be e�ciently
computed by computing an isogeny of degree ` at each of the green nodes at the
bottom level, or rather, at each of the torsion points [`e−i−1]Ri for i < e. Thus,
an optimal strategy to compute the large-degree isogeny will perform the most
e�cient traversal to the bottom of the graph.

Point mult 
by 

Evaluate 
Isogeny

Get    -isogeny with  

Velu s formulas

Fig. 1. Acylic graph depicting a large-degree isogeny computation with an optimal
strategy.

Introduced in [7], the traversal of this acyclic graph to its leaves can be
broken down into a combinatorial problem. A strategy represents a series of
computations to traverse the directed acyclic graph to its leaves. By identifying
the costs to move left and right on the triangle, one can measure the total cost
of various strategies to �nd the optimal strategy. Interestingly, [7] shows that an
optimal strategy is composed of two optimal sub-strategies. Thus, one can form
an optimal strategy with the least cost of traversal by combining optimal sub-
strategies in a divide and conquer fashion. This method does require the storage



of intermediate points to act as pivots, but the reduction of time complexity
from O(e2) to O(eloge) is a great boon to performance. Both [7] and [6] feature
source code that solve this dynamic programming problem.

2.3 Supersingular Isogeny Di�e-Hellman

Public Parameters: The SIDH protocol is a public-key cryptosystem where
Alice and Bob want to agree on a shared key over a public channel that can be
monitored by third-parties. To initiate the protocol, several public parameters
must be determined. Alice and Bob �rst agree on a prime p of the form `eAA `eBB f±
1, where `A and `B are small primes, eA and eB are positive integers, and f is
a small cofactor to make the number prime. Over the �nite �eld generated by
this prime, a supersingular elliptic curve E0(Fp2) is selected and two torsion
bases {PA, QA} and {PB , QB} are found that generate E0[`

eA
A ] and E0[`

eB
B ],

respectively. Lastly, Alice chooses two private keys mA, nA ∈ Z/`eAA Z such that
both are not divisible by `A and Bob likewise chooses two private keys mB , nB ∈
Z/`eBB Z such that both are not divisible by `B .

Protocol: The SIDH protocol is composed of two rounds consisting of a
double-point multiplication to generate a secret kernel R = mP + nQ and a
large-degree isogeny computation over that kernel φ : E → E/〈R〉. In the �rst
round of SIDH, Alice and Bob each compute their secret kernel, RA = 〈[mA]PA
+[nA]QA〉 and RB = 〈[mB ]PB + [nB ]QB〉, respectively. Alice and Bob per-
form a large-degree isogeny to move to a new supersingular elliptic curve class,
φA :E0 → EA = E0/〈RA〉 and φB :E0 → EB = E0/〈RB〉, respectively.
As they perform this isogeny, they also compute the image of the opposite
party's basis points under the new curve, {φA(PB), φA(QB)} ⊂ EA of the ba-
sis {PB , QB} for E0[`

eB
B ] on Alice's side and {φB(PA), φB(QA)} ⊂ EB of the

basis {PA, QA} for E0[`
eA
A ] on Bob's side. At the end of the �rst round, the

values EA, EB , φA(PB), φA(QB), φB(PA), and φB(QA) are exchanged over a
public channel. The second round proceeds similarly, but over the new torsion
basis points received from the opposite party. Alice and Bob compute a second
double-point multiplication, RAB = 〈[mA]φB(PA) + [nA]φB(QA)〉 and RBA =
〈[mB ]φA(PB) + [nB ]φA(QB)〉, respectively. Alice and Bob then compute a sec-
ond isogeny, φ′A : EB → EAB = EB/〈RAB〉 and φ′B : EA → EBA = EA/〈RBA〉,
respectively. Since curves EAB and EBA are isomorphic, Alice and Bob can use
the j-invariant as the shared secret [14].

Security: The security of the SIDH protocol relies on the di�culty to com-
pute isogenies between supersingular elliptic curves. Let us consider a graph of
all supersingular curves under Fp2 , where each vertex represents an isomorphism
class and the edges represent an isogeny of degree `. To the casual observer, the
SIDH protocol performs a large walk composed of many perceptibly random
steps in the graphs of degree `A and `B to arrive at a speci�c isomorphism class.
Thus, the SIDH protocol is protected by the infeasibility to discover a path be-
tween two speci�ed vertices. For instance, if an attacker can discover the path
φA : E0 → EA, then he can surely use the same path to perform the computation
φ′A : EB → EAB to �nd Alice and Bob's shared key. As noted in [7], the best



classical and quantum attack is based on the claw �nding problem. Galbraith
and Stolbunov [9] describes the most e�cient attack for classical computers. To
break an isogeny of degree `eAA between E0 and EA with a classical computer,
an attacker can construct two trees consisting of all curves isogenous to E0 and

EA, respectively, from isogenies of degree `
eA/2
A . The attacker then looks for a

curve lying in both trees, as a meet-in-the-middle approach . This attack has

time complexity O(`
eA/2
A ) or O( 4

√
p) for the SIDH protocol [7]. Tani [23] notes

an even faster attack for quantum computers, relying on quantum walks, with

time complexity O(`
eA/3
A ) or O( 6

√
p) for the SIDH protocol.

3 Proposed Isogeny Computations Exposure Model

In this section, we propose an exposure model of the large-degree isogeny com-
putation. We de�ne this exposure model as a method by which we analyze the
security of a cryptosystem if any intermediate computations are exposed to an
outside party. Speci�cally, we examine how much of the SIDH cryptosystem is
broken if certain pieces of information from the isogeny computation are di-
vulged. Since the large-degree isogeny computation is relatively new and critical
to the SIDH protocol, the model is left in a general manner to account for any
new attacks.

Model construction. The latest implementations of the SIDH protocol
have primarily utilized the Jao, De Feo, and Plût model [7] to compute the large-
degree isogeny computation `e with O(elog e) point multiplications by ` and
isogeny evaluations of degree `. Throughout the computations, isogeny mappings
and point multiples of the hidden kernel point, R, are utilized to compute the
torsion points [`e−i−1]Ri = φi−1 ◦ φi−2 ◦ · · · ◦ φ0([`e−i−1]R). To generalize this
representation for intermediate points in the isogeny computation, we denote the
variable j to be the number of point multiplications by ` and variable k to be
the number of isogenies that the point or curve has been pushed through. Thus,
a general intermediate kernel point is represented as φk−1 ◦φk−2 ◦ · · · ◦φ0([`j ]R).
To make this compact, we represent the isogeny evaluation notation as φk−1:0.
In addition to the hidden kernel point, we also represent the intermediate curve,
Ek, as φk−1:0 : E0 → Ek. In this case, Ee represents the resulting curve from
the large-degree isogeny computation. In the �rst round, Alice and Bob will
also push the other party's torsion basis through each isogeny, or φk−1:0(P ) and
φk−1:0(Q) in the general case. In the following sections, we primarily focus on the
exposed values in the �rst round. It can be assumed that if the isogeny decisions
used in the second round are divulged that they will be identical in the �rst
round. Further, any exposed values from the �rst round can be used to retrieve
the shared key from the second round.

3.1 Exposure Classes

Intermediate curve. First, we consider the exposure of some intermediate
curve Ek, which directly impacts the security assumption. Consider that Al-
ice's implementation has unknowingly exposed Ek. An attacker no longer has



Algorithm 1 Proposed method to retrieve SIDH private keys with some exposed
values
Input: SIDH protocol over base curve E0

Party's torsion basis: PA,QA over isogenies of degree `A
Exposure of intemediate kernel point S = φk−1:0([`

j
Am]PA + [`jAn]QA) on curve Ek

1. Compute isogeny φk−1:0 : E → Ek for which S lies on
2. Apply isogeny to torsion basis φk−1:0(PA),φk−1:0(QA)

3. Determine order of S, which is `eA−j
A

4. Perform generalized elliptic curve discrete log:

φk−1:0([`
j
Am]PA + [`jAn]QA) = φk−1:0([m

′]PA) + φk−1:0([n
′]QA)

5. Use isogeny brute-force information and exhaustive search of size `j

to retrieve m and n from m′ and n′

6. return secret keys m, n

to compute the large isogeny φA : E0 → EA. Instead, he can break it into two,
smaller isogeny computations φk−1:0 : E0 → Ek and φeA−1:k : Ek → EA. Thus,
the di�culty of this assumption becomes the di�culty of the larger isogeny to
compute, or 3

√
MAX(`k, `eA−k) in the quantum case. The absolute worst case is

if EeA/2 is discovered, upon which the security assumption is cut in half.

Interestingly, this exposure class has already been attacked through the use
of the loop-abort attack proposed by Gélin and Wesolowski [12]. In this par-
ticular case, the large-degree isogeny computation is generally done iteratively.
Thus, by forcing a fault on the loop counter, an implementation may divulge the
intermediate curve Ek. As Gélin and Wesolowski propose, this loop-abort attack
can be performed iteratively to reveal each isogeny decision and thus the full
isogeny. In our description of this exposure class, we generalize the exposure of
these intermediate curves to how much easier the security assumption becomes.

Intermediate kernel point. Second, we consider the exposure of the ker-
nel point at some intermediate stage, φk−1:0([`

j ]R). This can completely break
the SIDH security assumption, as the kernel point is intended to stay secret and
can be used to directly compute the isogeny. However, the intermediate kernel
point must be associated with its curve Ek. An attacker can retrieve that hid-
den curve by brute-forcing all possible isogenous curves (based on the system's
choice of Vélu's formulas [25]) out to some de�ned bound i. If the attacker �nds
some isogenous curve with the intermediate kernel point on it, then the attacker
has already computed several of the isogenies and can use the speci�c node on
the isogeny computation graph (Figure 2a) to compute the remaining isogenies.
Thus, an attacker can identify the unknown path from E0 to EA with the com-
bination of an intermediate kernel point and its corresponding curve. The attack
from this point of view is a brute-force attack to discover φk−1:0 with complexity
O(`k).

However, we remark that this can lead to an even worse attack:



Remark 1. The exposure of an intermediate kernel point and its supersingular
elliptic curve can be used to recover the party's private keys.

Recall that the generalized discrete logarithm is simple for SIDH, even with-
out the use of quantum computers, as it is already utilized in key compression
[2,5]. One can calculate the order of the kernel point that is exposed, this in-
dicates how many point multiplications and isogeny evaluations by ` have been
performed. To setup a generalized discrete logarithm for the secret keys, an at-
tacker computes the isogeny φk−1:0 : E0 → Ek and pushes the party's basis
points through the isogeny to retrieve φk−1:0(P ) and φk−1:0(Q). With a known
torsion basis the generalized discrete logarithm will return scalars that are di-
rectly associated with the initial private keys, notably m′ = m`jA and n′ = n`jA.
Assuming that the generalized discrete log returns values modulo the order of
the group, the attacker now has a large portion of the key, or rather the key
modulo `e−k−j . For a key of k isogeny decisions, these scalars represent deci-
sions k− j downto 0. The full key is mA added to some multiple of the order of
the group, which can be found through exhaustive search to �nd the missing key
bits for `j along with the brute-forced isogeny decisions for the last `k bits. We
demonstrate this attack step-by-step in Algorithm 1. The most di�cult step is
either computing the supersingular isogeny φk−1:0, with di�culty O(`k), or per-
forming exhaustive search on the point multiples j, with di�culty O(`j). Even
if j is very high, solving the �rst isogenies will already weaken the security of
the cryptosystem as essential isogeny decisions have been found.

One optimization to this brute-force attack could be forming an equation
with the leaked point for the coe�cients a and b of the short Weierstrass curve.
One point would not solve the equation for the coe�cients, but such an equation
creates a constraint between a and b that can then be used in the j-invariant
formula to �cross-out� some j-invariants that do not �t. However, if two interme-
diate kernel points on the same curve are exposed (i.e., pivot points to e�ciently
perform the isogeny computation illustrated in Figure 1), then an attacker can
easily solve the elliptic curve equation for a and b and �nd the corresponding
curve that way. This is slightly di�erent than the attack proposed in Algorithm
1 as the path from the initial node to the intermediate node has not been deter-
mined. However, with an intermediate kernel point and corresponding curve, an
attacker can once again perform the remaining isogenies to get the latter portion
of the isogeny walk.

Intermediate basis point. Lastly, we consider the impact of exposing in-
termediate basis points of the opposite party, φk−1:0(P ). Unlike exposing an
intermediate kernel point, the starting basis points are known. Thus, the expo-
sure of φk−1:0(P ) can be used in conjunction with P and E0 to determine which
supersingular isogenies were performed as a result of the hidden kernel point.
However, this also turns into a brute-force solution, as an attacker tests possible
curves Ek and determines if the point φk−1:0(P ) exists on it. As an example,
if k = 1, then there are ` + 1 possible isogenies from the starting curve and an
attacker can easily brute-force them. This reduces the security of the protocol
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Fig. 2. Visualization of a exposure scenario when S = φ1:0([2]RA) has been exposed in
the computation of an isogeny of degree 25. (a) Large-degree isogeny computation after
an intermediate kernel point has been exposed (b) Sub-graph representing the space
of all isogenies of degree 2 under a given �eld, Fp2 . The vertices (circles) represent an
isomorphism class, of which all curves within the class share the same j-invariant.

by a factor of `. Thus, for a generic k, the security of the protocol is reduced by
a factor `k if the brute-force can be e�ciently performed.

Similar to the discussion of using the kernel point in the elliptic curve equa-
tion, the exposure of an intermediate basis point can also be used to remove
some j-invariant combinations and divulging both basis points can be used to
recover the corresponding curve. In fact, any two divulged points could be used
to recover the intermediate curve, but divulging the kernel point is even more of
a disaster as further isogenies could be computed.

Incomplete pieces of information. There are more cases, such as the
exposure of the x-coordinate of an intermediate kernel point. From a security
standpoint, it is di�cult to quantify the loss, if any, of security in the under-
lying assumption. However, an attacker can compile a list of various pieces of
information to expose portions of the computation.

3.2 Exposure Model Scenario

Let us consider a simple scenario to illustrate the attack given in Algorithm 1.
For her side of the protocol, Alice performs an isogeny of degree 25 using a hidden
kernel point that she previously computed from the double-point multiplication
RA = 〈[mA]PA + [nA]QA〉, where {PA, QA} is her torsion basis and {mA, nA}
are secret keys that she generated through her random number generator. Oscar,
a malicious third-party, discovers an attack on Alice's implementation and dis-
covers the intermediate kernel point S = φ1:0([2]RA) . The left-side of Figure 2
visualizes this attack scenario in terms of the large-degree isogeny computation
and the right-side visualizes a graph where the vertices represent isomorphism
classes and the edges represent isogenies.



At this point, Oscar is unsure of which node on the large-degree isogeny
computation he has compromised. However, he knows that Alice and Bob are
using a standard library for the SIDH implementation and thus also knows which
set of Vélu's formulas are used. Oscar's goal is to �nd the curve Ek for which
S lies on. We refer to Algorithm 1 to perform the attack. For Step 1, Oscar
proceeds in a breadth-�rst search from the base curve, E0, to check if the nearby
isogenous curves contain S. Since Vélu's formulas are deterministic, Oscar can
determine exactly which curve within the isomorphism class that Alice would
have moved to with an isogeny. If this step is feasible (i.e., k is relatively small),
then Oscar now has both an intermediate kernel point and its corresponding
elliptic curve. Step 2, Oscar pushes Alice's basis points through the isogenous
mapping to retrieve φk−1:0(PA),φk−1:0(QA). Step 3, Oscar �nds the order of S,
which is `ea−jA . Here, j represents the number of point multiplications by ` = 2
that Alice applied to the original kernel point. In this case, j = 1. Step 4, Oscar
solves the generalized discrete logarithm, S = φk−1:0([mA]PA)+φk−1:0([nA]QA).
Lastly, in Step 5, Oscar retrieves Alice's private keys m,n by combining the
brute-forced isogeny decisions and performing an exhaustive search to �nd the
most signi�cant `j bits of Alice's private keys m,n.

3.3 Exposure Model For Montgomery Coordinates

In the above, we assumed a generic model for large-degree isogenies. In the cur-
rent implementations of SIDH [7,6,18,20], Montgomery coordinates with arith-
metic on the Kummer line [21] have been popular because they provide fast point
multiplication and isogeny calculations. In this arithmetic, a point is represented
only by its x-coordinate on the Kummer line, which provides for an e�cient point
multiplication ladder [21], isogeny arithmetic over base degrees 2 and 3 [7], and
also �projectivized� isogeny arithmetic over base degrees 3 and 4 [6]. A Mont-
gomery curve de�ned over Fq is written in the form E/Fq : by2 = x3 + ax2 + x.
The �projectivized� version of the Montgomery curve incorporates a C coe�cient
that acts as a denominator to avoid inversions: E/Fq : By2 = Cx3 +Ax2 +Cx,
where a = A/C and b = B/C. In the projectivized curve arithmetic, the B
coe�cient is not needed and discarded.

When applying the exposure model to Montgomery curve arithmetic, the
Kummer representation and projectivized isogeny arithmetic make it more dif-
�cult to identify the divulged values. In the original exposure model, the leak-
age of a point indicated exposing both the x and y-coordinates that could be
used to identify an isogenous curve. With the Kummer representation, simply
discovering an x-coordinate does not reveal enough useful information as the
x-coordinate lies on the target curve and a large number of twists. Indeed, the
attack in Algorithm 1 now requires both the exposure of an intermediate ker-
nel point and its identifying a coe�cient so that an attacker can identify the
isomorphism class of the exposed point and compute the isogeny between the
extracted isomorphism class and the initial isomorphism class.

Although the use of projectivized Montgomery isogeny arithmetic helps mit-
igate the exposure problem, it does not prevent the isogeny exposure attack as



the isogeny arithmetic is deterministic and can be reversed to break the cryp-
tosystem's security assumption.

4 Exposure Model Countermeasure

Here, we discuss the applications of a random curve isomorphism as an additional
defense against this exposure scenario.

4.1 Random Pre-Isogeny Curve Isomorphism

In an e�ort to obfuscate any points throughout the large-degree isogeny com-
putation, we propose utilizing a random curve isomorphism at the beginning
of a large-isogeny computation in the SIDH protocol. Unfortunately, we cannot
obfuscate an exposed curve as the j-invariant can be used to identify its ver-
tex in the graph of all isomorphism classs. SIDH utilizes Vélu's formulas [25]
to compute isogenies between elliptic curves. Given a speci�c elliptic curve, the
choice of Vélu's formula will produce the same isogenous elliptic curve in the new
isomorphism class since the formulas are deterministic. However, by scaling the
elliptic curve, such as by an isomorphism, the resulting isogenous elliptic curve
is di�erent, but still within the isomorphism class. As is noted in [22] (III.1.4(b)
and III.1.7(c)), the size of a single isomorphism class of a curve E/Fq is ap-
proximately q/6, so for supersingular curves de�ned over Fp2 , there are approx-
imately p2/6 unique isomorphisms. Thus, by performing a random isomorphism
at the beginning of a round, we are obfuscating the relationship between R and
φk−1:0([`

j ]R) as well as the relationship between P and φk−1:0(P ).
With this new randomization, an attacker cannot identify E0, P , or Q. Thus,

the brute-force attack that determines Ek from the knowledge of E0, P , and
φk−1:0(P ) becomes exponentially harder. An attacker must now brute-force both
the random curve isomorphism and the isogeny between E0 and Ek. One can
go further and compute an isomorphism after every isogeny evaluation, but this
o�ers little additional resistance, becomes increasingly expensive, and the curve
can no longer take advantage of some e�cient point arithmetic in the isogeny
computation.

4.2 Complexity Analysis of Isomorphism Countermeasure

The random pre-isogeny isomorphism primarily serves as a way to protect any
intermediate values that are exposed or divulged throughout the SIDH key ex-
change protocol. The cost of a random isomorphism is the cost to produce a
random mapping between elliptic curves in the same isomorphism class. This
countermeasure has already been applied to elliptic curve cryptography as a
defense against di�erential power analysis by Joye and Tymen in [15]. In this
work, Joye and Tymen show that curves in the short Weierstrass form can easily
be pushed through a random isomorphism by �nding a random element u in
the curve's underlying �eld and scaling both the curve coe�cients and point



Algorithm 2 Proposed �rst round of SIDH protocol with a random pre-isogeny
isomorphism to provide exposure resistance from Alice's point of view

Input: SIDH protocol over short Weierstrass curve E0/Fq : y2 = x3 + ax+ b
Alice's torsion basis: PA,QA, Bob's torsion basis: PB ,QB

Alice's private keys mA, nA

1. Compute secret kernel point R = [mA]PA + [nA]QA

2. Randomly choose an element u ∈ Fq

3. Form new points P ′B , Q
′
B , R

′ with the relation (x′, y′) = (u2x, u3y)
4. Find new curve E′0 with a′ = u4a, b′ = u6b
5. Perform isogeny over kernel φ′A : E′0 → E′0/〈R′〉 = E′A
6. Evaluate torsion points over isogeny φ′A(PB), φ

′
A(QB)

7. Return public keys {E′A, φ′A(PB), φ
′
A(QB)}

coordinates by some power of u. When applying this countermeasure to SIDH,
the primary di�erence is that any isomorphic curve and corresponding torsion
points will do as the j-invariant is the �nal shared secret. In Algorithm 2 we
show how the isomorphism will be applied in accordance with SIDH during the
�rst round. The second round is performed in a similar matter, but the other
party's torsion bases are not pushed through the isogeny. One minor di�erence
with the Joye and Tymen proposal is that we de�ne the powers of u with positive
powers rather than negative powers so that an inverse is not required.

As Algorithm 2 shows, the random pre-isogeny isomorphism requires the
generation of a random element in Fq = Fp2 as well as several �eld multipli-
cations. Speci�cally, since supersingular elliptic curves can be de�ned over Fp2 ,
approximately 2log2p random bits must be generated from a true random num-
ber generator. A deterministic number generator would not su�ce as an attacker
could then determine which bits are used for the random isomorphism. Within
the quadratic prime �eld Fp2 , let us denote the cost to generate a random el-
ement as r, the cost of a �eld comparison as δ, the cost of a �eld inversion as
I, the cost of a �eld multiplication as M , and the cost of a �eld squaring as S.
Thus, this isomorphism countermeasure for the �rst round of SIDH has a cost
of r + 9M + 3S and the second round has a cost of r + 5M + 3S. Compared
to the cost of a round of SIDH, this constant cost is insigni�cant, as a large-
degree isogeny at 128 quantum security level could take more than 15,000 �eld
multiplications [20].

We note that we de�ned this over the short Weierstrass curve as any other el-
liptic curve can be converted to the short Weierstrass form. We further note that
the isomorphism is computed pre-isogeny and post-double point multiplication.
One could opt to perform the isomorphism before the double point multiplica-
tion, but this would surrender certain e�ciency gains that target fast forms of
initial curves. For instance, [6] proposes the choice of a supersingular curve in
the base curve that allows base �eld computations and a simple Montgomery
ladder to greatly speed up the secret kernel point generation. Thus, by de�ning



the isomorphism as pre-isogeny, we do not a�ect the double point multiplica-
tion computation that generates the secret kernel. Nevertheless, the isomorphism
could be performed pre-double point multiplication as the initial curve isomor-
phism has been a strategy to provide some defense against di�erential power
analysis [15].

4.3 Considerations for Kirkwood et al. Validation Model

The Kirkwood et al. [16] validation model essentially acts as a protection for
static key users to ensure that the opposite party is acting honestly. For SIDH
this is necessary for security as it is extremely di�cult to validate the pub-
lic key parameters exchanged over a public channel. As [6] proposes, one can
validate public key parameters by ensuring that the torsion basis points each
have the correct order and are independent with the Weil pairing. Further, one
must ensure that the supersingular elliptic curve is of the correct cardinality, is
supersingular, and is in the correct supersingular isogeny class. However, this
validation only ensures that the public parameters appear valid. Indeed, if the
parameters do not adhere to this validation, they should be rejected.

However, this does not protect against all attacks. As noted by Galbraith et
al. in [10], there is a simple oracle attack on an SIDH system using static keys. A
malicious third-party can send Alice public parameters {EB , φB(PA), φB(QA)}
that seem reasonable, but {R = φB(PA),S = φB(QA)} are sent in the form
{R − [x`n−i−1]S, [1 + `n−i−1]S}. If Alice generates a shared key that matches
the oracle's prediction, i.e., upon using the key, then the third-party knows that
mi of Alice's public key is `1'.

Countermeasures to the above oracle attack include using ephemeral keys and
utilizing the Kirkwood et al. [16] validation model. However, an SIDH user might
not always have access to a random number generator to generate new keys and
this is also costly as a new key must be used for every key agreement. Let us
assume that Alice is using a static key for SIDH. The Kirkwood et al. validation
model ensures Bob is honestly producing the ephemeral keys he sends to Alice.
In this model, Bob uses a pseudo-random function with seed rB to generate
his secret keys, generates the shared secret with Alice's public parameters, and
sends Alice his seed encrypted with a key derivation function based on the shared
secret. Alice �nishes the protocol on her side with Bob's public information and
uses the shared secret as an input to a key derivation function to decrypt Bob's
seed. Alice then uses the retrieved private keys to verify that Bob performed the
�rst round of SIDH honestly. If Alice's derived public parameters for Bob do not
match the public parameters Bob sent, then Alice rejects the shared secret.

However, with the introduction of the random pre-isogeny curve isomor-
phism, Bob's large-degree isogeny computation would produce a random �nal
curve within the correct isomorphism class. In this case, Alice will have to deter-
mine by some means whether Bob's resulting public keys are honestly generated.
Bob could release the random curve isomorphism he used, but this would defeat
the whole purpose of the isomorphism, as nothing is hidden in the exposure
model. Alice's two options are:



1. Find some means to validate the public keys

2. Force both parties to perform the inverse of the pre-isogeny isomorphism at
the end of the large-degree isogeny

Validating the public keys for Kirkwood et al. validation model. As
for the �rst option, validating the public keys by some other means is still an
interesting problem. The only upside is that in this case Alice has Bob's pri-
vate key. Let us assume that {EB , φB(PA), φB(QA)} is the golden set of public
keys that would be generated by Bob if no pre-isogeny isomorphism is applied.
Next, let us assume that Bob did use his own random pre-isogeny isomorphism
and arrived at {E′B , φ′B(PA), φ′B(QA)}, which he sent to Alice over a public
channel. With Bob's private key, Alice will perform the Bob's �rst round and
also utilize a pre-isogeny isomorphism to obtain {E′′B , φ′′B(PA), φ′′B(QA)}. At this
point, Alice has two sets of public keys, {E′B , φ′B(PA), φ′B(QA)} from Bob and
{E′′B , φ′′B(PA), φ′′B(QA)} that she generated from Bob's supposed private key. Al-
ice can easily verify that the curves E′B are E′′B are in the same isomorphism
class because they will share the same j-invariant, i.e., j(E′B) = j(E′′B). How-
ever, verifying the torsion basis points remains a problem. Similar to the key
validation proposed in [6], one can check that both sets of torsion points have
the correct order and are independent with the Weil pairing, but this does not
protect against the oracle attack proposed in [10].

In order to determine if the basis points were honestly generated, Alice could
perform an additional isomorphism from E′B to E′′B and check if the torsion
points match. Since Alice has been given a pair of curves E′B and E′′B and a pair
of points φ′B(PA) and φ

′′
B(PA) with the claim that E′B is isomorphic to E′′B and

φ′B(PA) maps to φ′′B(PA) under this isomorphism, we can verify this claim by
�nding the unique isomorphism between the two curves and verifying that the
points do indeed map to each other. More speci�cally, let ψ be the isomorphism
from E′B to E′′B . Alice can apply this isomorphism to the torsion basis points
φ′B(PA) and φ

′
B(QA) and check that:

ψ(φ′B(PA)) = φ′′B(PA),

ψ(φ′B(QA)) = φ′′B(QA) (1)

If these points match, then Alice indeed knows that Bob's public keys were
honestly generated. If the torsion points do not properly match under the isomor-
phism, then Alice knows that Bob was not performing his half of SIDH honestly,
and can reject Bob's session.

Both parties will perform an inverse isomorphism at the end of

the large-degree isogeny. As for the second option, the protocol can call for
both parties to provide the golden set of public keys. In this case, if Alice's
golden set does not match Bob's, then she knows that Bob is acting dishonestly.
Determining which set of Vélu's formulas are used to determine the golden set
is a conversation between Alice and Bob. If Alice or Bob intend to perform a



pre-isogeny isomorphism, then they must perform a �nal inverse isomorphism
to arrive back at the golden set.

Let us assume that Alice will use the random pre-isogeny isomorphism. In
this case, Alice will still arrive at the correct isomorphism class. Since Alice's
curve E′′B and the golden curve EB are in the same isomorphism class, there
exists a unique isomorphism that will produce the expected set of public keys.
Notationwise, Alice performed the pre-isogeny isomorphism ψ : E0 → E′′0 fol-
lowed by the isogeny φB : E′′0 → E′′B and must now �nd some isomorphism
ψ−1 : E′′B → EB . With this isomorphism, Alice can easily check the torsion
points as:

ψ−1(φ′′B(ψ(PA))) = φB(PA),

ψ−1(φ′′B(ψ(QA))) = φB(QA) (2)

Unfortunately, determining this unique isomorphism is not very simple as
Alice does not know what the golden curve should be. One possibility is that
Alice could compute ψ−1 in the initial isomorphism class and track ψ−1 in each
new isomorphism class as the large-degree isogeny is performed. This is very
costly as now some extra calculations must be performed at each isogeny, so this
�x for the Kirkwood et al. validation model now scales with the complexity of
the isogeny.

4.4 Countermeasure Costs to Comply with Kirkwood et al.

Validation Model

Among Alice's two options above, directly performing the elliptic curve isomor-
phism between the two sets of public keys is by far the cheaper option. As was
noted, the strategy to determine ψ−1 at each isomorphism class scales with the
complexity of the isogeny rather than provide a constant cost. Thus, here we
examine Alice's cost to perform that isomorphism and verify that Bob's public
keys were produced honestly.

As was noted above, there exists a unique isomorphism between the public
keys that Bob sent, {E′B , φ′B(PA), φ′B(QA)}, and Alice's computed public keys
with Bob's seeded private keys, {E′′B , φ′′B(PA), φ′′B(QA)}. In the simplest of ways,
we again refer to the analysis by Joye and Tymen in [15] that was used to
generate a random isomorphism. Here, Alice can solve for an element u that
acts as the map between E′B and E′′B . Over short Weierstrass curves, let us
denote E′B with curve coe�cients a′ and b′ and E′′B with curve coe�cients a′′

and b′′. Then supposing that Bob was acting honestly and the two sets of public
keys are mapped to each other, the following sets of equations must hold for
some unknown element u:

a′ = u4a′′ (3)

b′ = u6b′′ (4)



xφ′′
B(PA) = u2xφ′

B(PA), xφ′′
B(QA) = u2xφ′

B(QA) (5)

yφ′′
B(PA) = u3yφ′

B(PA), yφ′′
B(QA) = u3yφ′

B(QA) (6)

Therefore, Alice can solve for u by utilizing any two equations and dividing
through. For instance, by dividing the �rst equations in formulas 5 and 6,

u3yφ′
B(PA)

u2xφ′
B(PA)

=
yφ′′

B(PA)

xφ′′
B(PA)

→ u =
xφ′

B(PA)yφ′′
B(PA)

yφ′
B(PA)xφ′′

B(PA)
(7)

Thus, the cost to compute the isomorphism to validate Bob's public keys is
I+3M . After which, Alice must check that Equations 3-6 are valid, which prove
that Alice's computed curve and points are indeed maps of Bob's. The �rst parts
of Equations 5 and 6 were used to �nd u so they are already validated. The cost
to generate u4 and u6 from u isM+2S, after which they are used to scale a′′ and
b′′ and check that Equations 3-6 hold. Overall, the additional cost to utilize this
isomorphism countermeasure in conjunction with the Kirkwood et al. validation
model is 4δ + I + 6M + 2S.

However, in the grand scheme of things, it has been typical to use projective
coordinates to greatly speed up elliptic curve cryptography arithmetic. For SIDH,
Costello et al. [6] utilize multiple levels of projectivization and perform a 4-
way inverse at the end, so that only a single inversion is required for an entire
round. Therefore, if we incorporate the inversion cost necessary to comply with
the Kirkwood et al. validation model in a simultaneous inversion trick, we are
absorbing the inversion cost in exchange for several multiplications. The exact
number of additional multiplications to perform the larger inversion is entirely
dependent on how many values are being inverted. For instance going from a
single inversion to a 2-way inversion has a cost change of I to I + 3M . Thus,
although the full cost is 4δ + I + 6M + 2S, the cost of inversion here is not
necessarily the cost of performing a large exponentiation as there will most likely
already be an inversion performed.

In summary, the total cost of the random pre-isogeny isomorphism with this
Kirkwood et al. validation model consideration is r+4δ+ I +15M +5S, which
is only experienced by a static-key user aiming to validate the opposite party's
public keys.

5 Conclusion

In this work, we presented an exposure model for the supersingular isogeny
Di�e-Hellman and proposed an additional protection against exposed values.
By performing a random isomorphism just before the isogeny computation in
isogeny-based cryptography, any intermediate elliptic curves or points that are
divulged by any means are e�ectively obfuscated. We have shown that this coun-
termeasure is relatively inexpensive and does not have any negative impacts on
the protocol or validation of public keys with the Kirkwood et al. validation



model. Since isogeny-based cryptography is still in its infancy, there are other
attacks that will most likely be discovered in the near-future, some of which
may be implementation speci�c. The goal of this paper was to show that in-
cluding this additional security precaution may be bene�cial to long-term SIDH
implementations.
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