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Low-Latency Digit-Serial Systolic Double Basis
Multiplier over GF(2™) Using Subquadratic
Toeplitz Matrix-Vector Product Approach
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Abstract—Recently in cryptography and security, the multipliers with subquadratic space complexity for trinomials and some specific
pentanomials have been proposed. For such kind of multipliers, alternatively, we use double basis multiplication which combines the
polynomial basis and the modified polynomial basis to develop a new efficient digit-serial systolic multiplier. The proposed multiplier
depends on trinomials and almost equally space pentanomials (AESPs), and utilizes the subquadratic Toeplitz matrix-vector product
scheme to derive a low-latency digit-serial systolic architecture. If the selected digit-size is d bits, the proposed digit-serial multiplier for both
polynomials, i.e., trinomials and AESPs, requires the latency of 2], /% |, while traditional ones take at least O([%]) clock cycles. Analytical
and application-specific integrated circuit (ASIC) synthesis results indicate that both the area and the time x area complexities of our
proposed architecture are significantly lower than the existing digit-serial systolic multipliers.

Index Terms—Subquadratic Toeplitz matrix-vector product, digit-serial systolic multiplier, double basis, elliptic curve cryptography

1 INTRODUCTION

THE Elliptic curve cryptography (ECC) [1], [2] has been
attracted by the cryptography researchers in recent years.
With the emergence of the ECC in public-key crypto-systems,
several hardware implementations of the ECC applications
have been also presented [3], [4]. We note that the NIST and
the ANSI have also recommended finite fields for use in the
ECDSA [5], [6]. NIST recommends five binary finite fields, i.e.,
GF(219), GF(2), GF(2%3), GF(2'), and GF(2°™). In the
ECC-based cryptographic protocols, finite field multiplication
is essential to compute the point multiplication. The efficient
hardware realizations of crypto-systems are often constrained
in terms of area cost, power consumption, and performance.
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For high-speed very-large-scale integration (VLSI) imple-
mentations, systolic array architecture is a preferable ap-
proach. In the extended binary field GF'(2™), various efficient
systolic array multipliers have been presented and can be
classified into architectures such as bit-parallel and bit-serial
[7]-[12]. Efficient bit-parallel systolic multipliers usually
employ either the least-significant bit first (LSB-first) or
most-significant bit first (MSB-first) algorithms. The major
advantage of bit-parallel systolic multipliers is the high
throughout of the computations. However, these architectures
for polynomial basis of GF(2™) require O(m?) XOR gates,
O(m?) AND gates, O(m?) 1-bit latches, and O(m) latency
complexity. To reduce the time and space complexities, Lee
et al. [8], [9], [13] showed that finite field multiplication for
some specific polynomials, such as all-one polynomials,
pentanomials, and trinomials, can use Toeplitz matrix-vector
product (TMVP) to develop fully bit-parallel systolic multi-
pliers. Bit-serial systolic array multipliers require only O(m)
space complexity, but they impose longer computation delays.

For reaching the tradeoff between the time and the space
complexities between the bit-parallel and the bit-serial multi-
pliers, the digit-serial systolic multipliers [14]-[20] have been
proposed in the literature. The digit-serial shifted polynomial
basis multiplier with digit-in parallel-out structure is pro-
posed in [20]. In this multiplier, a field element of m-bit length
is subdivided into [%] d-bit sub-words. In every clock cycle,
the multiplication of a d-bit sub-word and an m-bit multipli-
cand produces one m-bit product. A scalable and systolic
multiplier using a fixed d x d bit-parallel Hankel matrix-
vector multiplier has been proposed in [15] and [16] whose
latency is (d + [2]([2]-1)) clock cycles. Digit-serial systolic
multipliers using digit-in digit-out architectures are presented
in [14], [17], and [18]. The latency of these multipliers is 2 [%]
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clock cycles. As mentioned above, low-complexity design of
systolic finite field multipliers depends on the selected irre-
ducible polynomials and the chosen basis representation. We
note that these digit-serial multipliers require high latencies to
perform the operations.

Themain contributions of thiswork areas follows. Referring
to the modified polynomial basis (MPB) of G F'(2™) introduced
in [20], we combine the polynomial basis and the MPB to form
the double basis multiplication. Some finite field multiplica-
tions can be obtained in bit-parallel architecture with sub-
quadratic TMVP [21], [22]. In GF'(2™), irreducible trinomials
and pentanomials are widely applied in cryptographic appli-
cations in which the field size may be large. In [23], it is shown
that the irreducible pentanomials of the form F((x) = 1 + z? +
P 4 " + 2™ withgx 2, p — ¢& ¥, and n — p& 7 abundantly
existin GF'(2™) for m > 9. This pentanomial is called the almost
equally space pentanomial (AESP). By using the properties of
reduction polynomial for two polynomials (trinomials and
AESPs), we propose a new digit-serial systolic double basis
multiplier with subquadratic TMVP formulae. In casea d x d
Toeplitz product is selected, the proposed architecture can

m

achieve very low latency of 2 [ E—‘ clock cycles, while tradi-

tional digit-serial multipliers require at least O([%]) clock
cycles, e.g., 2[] — 1 and 2[%] for [17] and [21], respectively.

The rest of this paper is organized as follows. Section 2
presents the preliminaries regarding the modified polynomial
basis, double basis multiplication, basis conversion, and sub-
quadratic TMVP. In Section 3, we present our proposed new
digit-serial systolic subquadratic multiplier for double bases
of GF(2™). In Section 4, time and space complexities are
analyzed. In Section 5, the results of our application-specific
integrated circuit (ASIC) synthesis on a 65-nm CMOS standard-
cell library are presented. Finally, we conclude the proposed
work in Section 6.

2 MATHEMATICAL BACKGROUND

In this section, we briefly review the double basis multiplica-
tion over GF'(2™) and the subquadratic TMVP algorithm.

2.1 Modified Polynomial Basis

Let the irreducible polynomial F(z)= fy+ fiz+---+
fmo12™ 1+ 2™ be used to construct the field GF(2™). The
set N = {1,z,2?%, -+, 2™ '}iscalled the polynomial basis (PB)
of GF(2™). Assume that an element A in GF'(2™) is repre-
sented by

A=ay+az+-+ap2™ L. (1)

Then, we present the following definition.

Definition 1. [24]. Let a field be constructed by the irreducible
trinomial formed by F(zx) =1+ 2" + a™. The corresponding
modified polynomial basis (MPB) representation is then defined
as follows:

N/:{ﬁ[hﬁh"ﬁﬁmfl}a (2)
where
x, for0<i<m-—n-—1,
ﬁi - {{L’i + ‘,L.ifm+n’ fori >m —n. (3)
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For example, F(z)=1+2>+2" is an irreducible
polynomial in GF(2°), then we have N’ = {0y, 1,5, 3,
B} = {1,z,2%, 23 + 1,2* + z}. According to the relation of
(3), the following remark is obtained.

Remark 1. If F(z) = 1 + 2" + 2™ is an irreducible trinomial,
then the corresponding modified binomial polynomial
(MBP) can be represented by F(x) = (5, + 0.

Assume that F(z) =1+ 2?7+ 2P + 2" + 2™ with 1 < ¢ <

p < n <m is an irreducible pentanomial of degree m. If the

corresponding MPB is presented by N' = {5y, 81, ..., Bm-1},

where 3; = 2’ for0 <i <m —n — 1land 3 = z' + 2/~ for

i > m —n, then the corresponding modified quadrinomial

(MQ) can be represented by F(z) = 3, + 5, + 54 + Bo-

2.2 Double Basis Multiplication over GF(2™) for MBP
In this subsection, two basis representations, PB and MPB, are
used to perform a double basis multiplication. For clarity, leta
field be constructed by an irreducible MBP. A double basis
multiplication is performed by C' = ABmod F'(x), where A is
presented by PB; C and B are represented by MPB. Applying
the double basis representation in Definition 1, product =3
can be obtained as follows:

for0<i<m-—n-—2,
fori=m—mn—1, (4)
fori > m — n.

ﬂi+la
B = ¢ Bo + Biv1,
ﬂi+17

With the property of Remark 1, we can obtain the following
formula

ﬁeri = Bz

Letan element B = by5y + 0151 + - - - + by—15m—1 be repre-
sented by double basis representation. Assume that two
operations are defined as

fori > 0. (5)

BY =2 B=1"5, + b?)ﬁl +o bgflﬁmfl’ (6)
BY = bf:?—lﬁ() + bff)ﬂl +F bij)—Qﬂm*l' (7)

According to (5)—(7), we obtain that the product B can be
obtained as

BY = 2B = byxfo + b1zl + - + by 170m 1
= bmflﬂﬂ + bOIgl + e+ bn%?ﬂmfl + bmfnflﬁo
= E(O) + bmfnflﬁ(% (8)

Let two elements A and B in GF(2™) be represented by
polynomial basis and double basis representations, respec-
tively. The product C with double basis representation can be
rewritten as

C=AB
=ayB+ ajzB+ -+ + a1 Bx™!
— aBY +a;BY 4.+ a,,_ Bm
= [3(0)73(1)7...73(77171)} A
=Mp- A 9)
From (9), the matrix Mp could be formed by a Toeplitz

matrix. For clarity, we use the following example to illustrate a
double basis multiplication.
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Example 1. Let a field GF(2°) be generated by F(z) =
1+ 2% + 2°. Assume that A = ag + a1z + as2? + asz®+ asz?
and B = byfy + b1 51 + baBs + b3f3 + by are two elements in
GF(2°). By using (9), the product C' can be computed as
follows.

Co

[&]

C2

C3

| C4

[by by +bi by +by
by by by + by bs + by
=| by by by by + by bs + by
bs by by bo by + by
| by b3 by by by

by +by+by bg+bi+ by

by + by + by

ap
ay
az

as

(€2

Referring to the above matrix M3, it is required to compute
the following terms:

by + b1, b3 + bo, by + by + by, bg + by + bo,
for constructing the matrix Mp.
2.3 Basis Conversion from MPB to PB
Assume that a field GF(2™) is constructed from F(z) =

142" +2™. Let an element in GF(2™) be represented by
double basis representation, e.g., B =byfy+ b+ -+

by-_1Bm_1, where Bi=z' for 0<i<m-n-—1 and
Bin—n+j = ™" 4+ 27 for j > 0. Thus, we obtain
B =bofy + b1+ -+ b1 Bt
— bU + bl.’li R bm,n,1$7’L_“_l + bm—n(l'm_n + 1)
+ byn,n,1($m'7n+1 + SL‘) 44 bmfl(xmfl + 1‘"’71)
= by + bzt b, 2" (10)
where
b/ _ bL + bmfnfiy for 0 <i<n-— 17
i b;, forn <i<m-—1.

Therefore, the basis conversion from MPB to PB requires
the following complexities:

* Space complexity: n XOR gates,

¢ Time complexity: one Txor delay.

It is noted that our proposed double basis multiplication
architecture does not need the basis conversion from PB to
MPB.

2.4 Subquadratic Toeplitz Matrix-Vector Product
In linear algebra, a Toeplitz matrix is a matrix in which each
descending diagonal from left to right is constant. Assume
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that 7" is an n x n Toeplitz matrix. If the (i, j) entry of T is
denoted by t;; then we have t;; =t;1 1. The TMVP is
widely applied to compute finite field multiplication, such
as dual basis (DB), shifted polynomial basis, and normal basis
multiplications. A Toeplitz matrix has the following
properties:

Proposition 1. An n x n Toeplitz matrix is determined by the
2n — 1 entries appearing in the first row and the first column.
We can use the vector t = (to, t1, - - -, ton—2) to define a Toeplitz
matrix T.

Proposition 2. If T and T5 are two n x n Toeplitz matrices, then

Ty + T requires 2n — 1 XOR gates.

To reduce the time and the space complexities, a subqua-
dratic TMVP approach is recently proposed for implementing
binary field multiplications [22]. In the following paragraphs,
we briefly introduce the subquadratic TMVP multiplier
approach.

LetV = (v, v1) beagivenvectorand C' = TV, where T'is a
2 x 2 Toeplitz matrix defined by the vector ¢ = (¢, t1,t2).
A Toeplitz product is described as

~[e]= [ e)[)

By using divide-and-conquer method, (11) can be ex-
pressed by

(11)

12
c1 t1(vo + v1) + vo(to + 1) (12)

|:C(]:| _ |:t1(’U() + 7}1) + Ul(tz + tl):|

According to the structure of Toeplitz product multiplica-
tion in (12), it involves three products, which has better
performance than the original product multiplication in
(11) that uses four products. According to (12), we can use
a three-step procedure, e.g., evaluation, point-wise multipli-
cation, and final reconstruction (FR), to implement a subqua-
dratic TMVP multiplier.

* Evaluation point step: From three-term products
U1 (tg + tl), t1 (’U() + ”Ul), and ’U()(t() + tl) in (12), we can
define two evaluation points, i.e., component matrix
point (CMP) and component vector point (CVP). Two
evaluation points are described by

C M P(T) = (to +ty,t1,tg + t1),
CVP(V) = (’Ul,Uo +1}17U0).

* Point-wise multiplication step: Given the result of an
evaluation point operation, the corresponding point-wise
multiplication (PWM) is defined by

C=PW M (CMP(T),CV P(V))
= (vi(ta +t1),t1(vo + v1),v0(to + t1))

= (¢, 1, C2).

(15)

* Final reconstruction step: Based on (12), FR can be ob-
tained as
C:(Cg,cl):FR(a):(604’61,614*62). (16)

As mentioned above, we can use recursive three-step
operations to implement a TMVP multiplier. Assume that
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T Vv
CMP CVP
A 4 Y
PWM
A 4
; FR ;
C

Fig. 1. Functional block of the subquadratic TMVP multiplier architecture.

we use an n x n Toeplitz matrix with n= 2. After log, n
iterations by using evaluation point step, all matrix and vector
components collapse into the corresponding single coeffi-
cients. Both matrix and vector components can be trans-
formed into 3’ point coefficients, e.g., C M P (T) = (to,
t1,- - 7t3r,1) and CVP(V) = (’U[]7 Vi, ,1)37‘,1). Next, the
point-wise multiplication step is based on (15) to perform the
operation C = PW M(C M P(T),CV P(V)) = (voto, vit1,- - -,
vgi_1t3i_1). Finally, the FR step uses (16) to recover the original
product result. According to the three-step implementations,
Fig. 1 shows a subquadratic TMVP multiplier. By using the
recursive three-step operations, Fan and Hasan [21], [22] have
shown that for the structure of Fig. 1 with n= 2/, the time and
the space complexities of each component are derived as listed
in Table 1.

3 NEW DIGIT-SERIAL SYSTOLIC SUBQUADRATIC
MULTIPLIER FOR DOUBLE BASES OF GF'(2™)

In this section, we develop a novel digit-serial multiplier using
the subquadratic TMVP approach.

3.1 Notation of x?B Computation

In what follows, we discuss the 2¢B computations for trino-
mials and pentanomials. First, let the field be constructed from
the trinomial F(z) = 1+ 2" + 2™ with n < 2. From (6), the
computation of B = z?B is as follows:

a— _ d—
BW — ,pU l)modF(m‘) = Bl 4 bs?’l,f:l)—l/@()
= by B0+ 0B+ + b B, (17)
where
Z bgle)7 fOI‘i Z 1.

TABLE 1 ‘
Complexities of Each Component of TMVP Multiplier for n = 2
(Based on [21] and [22])

Component [ #AND #XOR Time Delay
CMP - 2.5n1°823 —3n + 0.5 | (logan)Tx
CVP - nlog23 _n (logan)T'x
PWM nio82 3 - Ta

FR - 2110823 _ 2n (logan)Tx
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TABLE 2
List of the Irreducible AESPs of Degree m for 160 <m < 201
m | AESP(n,p,q) | m | AESP(n,p,q)
160 (117,79,41) 181 (136,90,45)
161 (122,82,40) 182 (135,92,45)
162 (123,79,40) 183 (141,93,46)
163 (120,81,40) 184 (144,93 ,43)
164 120,78,39) 185 (140,96,47)
165 (127,82,40) 186 (138,95,48)
166 (128,84,41) 187 (143,97,48)
167 (125,82,42) 188 (143,97,46)
168 (127,85,42) 189 (146,97 ,47)
169 (129,89,44) 190 (139,93,48)
170 (129,87,42) 191 (142,93,47)
171 (126,83,42) 192 (149,97 ,46)
172 (128,87,43) 193 (143,93,47)
173 (128,85,43) 194 (143,96,49)
174 (135,91,45) 195 (152,106,53)
175 (130,90,43) 196 (145,95,48)
176 (126,83,43) 197 (148,98,49)
177 (134,90,45) 198 (146,97,50)
178 (136,89,44) 199 (150,98,49)
179 (132,85,44) 200 (143,100,45)
180 (138,90,43) 201 (147,99,52)

From (17), we can obtain the following time and space
complexities.

Proposition 3. Assume that a field is constructed from irreducible
trinomials of degree m. If an element B is represented by MPB,
then the computation B requires d XOR gates and one Txor
delay.

Next, let a field be constructed from pentanomials F(z) =
T+at42P +2" + 2™ with ¢4, p—qx’, and n—pa 4.
Such type of pentanomial exists in GF(2™) for m >9 [23].
As mentioned before, this polynomial is denoted by AESP.
Table 2 lists the AESPs with some specific values of m.

Therefore, for computing B = 2?B, we have:

B = ¢ B mod F(x)

B4 bfjf;l,llﬁn + bg;i:})ﬁq + bg:?ﬂp
= bgd)ﬂ() + b§d>ﬂ + 4 bfj),lﬂmfh (18)
where
bfylsz,)fl + bi:j), fori =0,

o )T iy

= —1 -1 .

7 b;—l oy, fori=p,

bg‘il) , other.

Proposition 4. Assume that a field is constructed from an AESP
of degree m. If an element B is represented by MPB, then
computing B requires 3d XOR gates and one Txor delay.

3.2 Partial Product A;B to Form TMVP

Assume that a field is constructed from an irreducible trino-
mial of the form F(z) =14 2" + 2™ = 3, + fy with n <Z.
Let an element B = byfBy + b1 581 + -+ + by_108m—1 over GF(2)
be represented by double basis representation, and let an
element A be represented by polynomial basis representation,
such that A = Ay + Ajz’ + -+ + 4,124, where n = [%]
and A; = aig + i1z + - + digra—12% . Given the double
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basis operation presented in the previous section, the partial
product A; B can be rewritten as

A;B = (ajq + aja1z + - + tigra12’ "B

= aaB + aig12B + -+ + ajara-12" ' B. (19)

Let the selected digit-size d be satisfied by d < m — n. Then,
we obtain

B = bm—n—lﬁO + bOﬁl + ot bmflﬁma
I2B = bmfn72ﬁ0 + bmfnfl ﬂ] + bOﬂZ + 4+ bmflﬂerl .

We note that, generally, z'B for 1 <i<d—1 can be
represented as

sz = bmfnfiﬂ() + bmfnfiflﬂl + -
+ bmfnflﬁifl + boﬂz + -+ bmflﬂm+i71~ (20)
Observing the result of (20), z'B with (m + i)-bit length
means that d-bit digit by—p—ifo + by—n—i151 + -+
by—n—1Pi—1 is inserted into the least significant bit of B.
Therefore, for computing a partial product 4;B, an element
B should be translated into the element B with (m + d)-bits:

B=by+bx+-+bypa x4, (21)

where

B _ bmfnfdfia for0 S 1 S d— 17
L bi_q, ford<i<m+d-—1.
From F(z)=1+2"+ 2™ = B, + [y, let the modified
polynomial be represented by

F=zx"+1. (22)

Algorithm 1 Computing the partial product A;B

Inputs: 4; and B.
Output: C = A4;B.

Step 1. An element B is converted to d x d Toeplitz matrix
component 75 = (1, T3, - - - ,Tﬁp) based on (25) and (26).

Step 2. Compute component matrix and vector points using
(13) and (14).

2.1. Py, = CV F(4;).
22. Pp=CMF(T3) = (PTEO’PTE] e ’PTE,,)'

Step 3. Compute point-wise multiplication (PWM).
3.1. C = (PW M(Pxy,, Pry ), PW M(Py,, Pr, ),

e >PWM(pAnPTBF))-

Step 4. Final reconstruction.
4.1.C = FR(PW M(C))

= F R(PW M(Py,, PTEU ) + F R(PW M(Py,, PT§] )z
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+---+ FR(PW M(Py,, PTE[,))de’.

Step 5. Modular reduction.

51.C = A;B=CmodF.

Thus, the partial product A; B is performed by the follow-
ing steps:

Step 1. T = A;B.

Step 2. U = T'mod z.

Step 3. C = (U+T)/z".

Step4. C = A,B= CmodF.

As stated above, Step 1 is a grade-school multiplication,
Step 2 is performed by a simple modular operation, Step 3
performs shift-by- d-bit operation, and Step 4 calculates the
modular reduction through polynomial F' = 2™ + 1. To dem-
onstrate the above four-step operations, we use the field
GF(2°%) to illustrate the partial multiplication through the
following example.

Example 2. Let a field GF(2%) be constructed from F(z) =
2%+ 23+ 1. The corresponding modified polynomial is
represented by F' = 2% +1 and 4 = Ay + A;2? is presented
by polynomial basis, where A; =as + azii12+ a3i427°
for + =0 and 1. Another element B = by3y + b1 + bs 32 +
bs B3 + bsfs + bs 05 is presented by double bases, where 3; = x!
for 0 <i<2and G =2’ + 2™ for 3 <i < 5. Assume that
the selected digit-size is d = 3, then, based on (20), the element
Bistransferred to B = by + by + bex? + bsz® + byz* + bsa® +
bezS + brxT+ bsx®, where b; = b, for0 < i < 2and b; = b,_ for
3 < i <8. In the following, we utilize the proposed four-
step operation to illustrate the partial product A B. In Step 1,
we obtain the polynomial multiplication T'= AyB =t; +
tix+ -+ tml‘lo, where t, = Egao, t, = Blag + anl, t; =
Biag +Bi_1a1 +Ei_2a2 for 2<i<8, tg= Bgal +E7a2, and
tio = bsay. In Step 2, U = Tmod 24 =ty + iz + toa?. Step 3
obtains C = t5 + tyz + - - - + t1oz” and finally, we obtain

C = A;B=Cmod (z° +1)
= (t3 + tg) + (t4 + tm)l‘ + t5$2 + t6$3 + t7$4 + tg:l?s.

Assume that B = By + Biz® + -+ + Biz™, where B, =
Bid + Eid+1.’t + 4 Eid+d,1$d718 for0<i< D, and p= "m;d“'
Moreover, we define two sub-words multiplication:

A7B] = Sj + Djl’d, (23)

where both degrees of S; and D; are less than d. Applying the
four-step operation, we have

T - AB
= So+ (Do + S1)z" + (D1 + Sy)a* + - -
+ (Dy_y + 8,)x® + D,zd¥+h),
U=Tmodz? =S,
C=(Dy+S1)++ (Dypy + S,)z'® D 4 Dz
=Co+Cra? + -+ Cpyz®®V 4+ Cpa®,
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where

6‘_ D7;+S7j+1, ifogigp—l,
L D, ifi =p.

Finally, the partial product A; B can be obtained

C = A;B = Cmod F(x)
=Co+Cia? + -+ Cp 12V 4 Cpzmod F(z).  (24)

With  the
Cijay1T + - + Cjgra1T
matrix-vector product.

representation, C; =Cjy +
can be translated into the following

matrix-vector
d—1

Caj

Cdj+1

Cdjt+d—1

bajag; + baj-1adi1 + -+ + bagi—1)11Qdi+d1

bajr1aa; + bajagic1 + -+ + byji—1)120divd1

| bdjrd—1adi + bajrd—2adi+1 + - + bajagira-1

Edj bd.ifl Ed(j—1)+1 ag; ]
Ede Edj 5d(j—1)+2 Qdi+1
| bajra—1  bagjra—s - baj Agdivd—1 |
= T5, 4 (25)

From the above matrix-vector product, matrix T is
formed by a Toeplitz matrix, which is defined in the terms
of the vector (bgjid-1," -, bajs baj1, -, baj—1)+1)- Hence, the
partial product in (24) can be denoted as

AiB = (T A)) + (T, Ai)a’ + - + (T Aj)a” mod F. (26)

Therefore, a partial product can be divided into (p+ 1)
Toeplitz matrix-vector multiplications and one modular re-
duction polynomial F. Consequently, we can use the sub-
quadratic TMVP approach to realize a partial product A;B.
According to the structure of subquadratic TMVP in (26), one
can obtain Algorithm 1.

3.3 Proposed Digit-Serial Systolic Multiplier

Let A, B, and C be three elements in GF(2™) generated by the
irreducible trinomial F(r) =14 2" 4+ 2™ with n <%. The
element A is presented by polynomial basis representation,
and two elements B and C are presented by double basis
representation, where C = ABmod F(z). Assume that
k= [,/%] satisfies kd <m — n, where d is the selected digit-
size. If m is not a multiple of dk?, then a field element must pad
(k*d — m)-bit zeros to replace the most significant bit, like

A= (ag,a1, -+, am-1,0,...,0). Accordingly, an element A
k2d—m bits
k=1 )
can be represented by A= Y Az, where

i=0

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 5, MAY 2014

A; = ajqg + aigp1x + - - + aigra—12% . The double basis multi-
plication can be rewritten as

C = ABmod F(z) = B(Ay + Az + -
+ A zF D% mod F(z)
= B(Ag+ Ajz? + -+ Ap_y2F09)
+ Bz™(Ap + Appra® + - -
4 gDy 4 Bxdk(k—l)(Ak(k_l)
+ Ak(k,l)ﬂmd + o+ A 2%V mod F(x)

= C() + Cl + 4 Ck*l mod F‘(.CL)7 (27)

where
C; = Br™ (A + Apniz® + - + A2 mod F(x)

_ B(dkz)Alﬂ + B<dki+d>Ak7Z+l 4+ .-
+ pUkitd=1) 4, mod F(x)

=Cio+ C’i.,l + -4+ C’i,k—l mod F(:ﬂ), (28)
B — Bg®imod F(z) = ™ B =Y) mod F(z), (29)
C’i,j = B(dki+dj)Aki+l]' mod F(x) (30)

Algorithm 2 Digit-serial double basis multiplication

Inputs: A and B are represented by PB and MPB, respectively.
Output: C' = ABmod F'(z), where C is represented by MPB.
1. Initial step
C=0.
A= kil A;x' where A; = ajq + aig1® + -+ + Gigpaazt L
2. Muﬁi[inlication step
21.fori=0tok—1
22.D=DB
2.3. B = z"Bmod F(x)
24. forj=0tok—1
2.5.T5= (T, T5, .
2.6. Py,,,=CVF(Ay,;)/" performs Step 2.1 of Algorithm 1
2.7. P = CMF(T5)/" performs Step 2.2 of Algorithm 1

28. C=C+ PW M(Py,,,,T5)/" performs Step 3.1 of
Algorithm 1

2.9. D = z?Dmod F(x)
2.10. endfor
2.11. endfor

.Tp,)/" performs Step 1 of Algorithm 1

3. Final reconstruction step:
3.1 C = F R(C)/" performs Step 4 of Algorithm 1
4. Reduction modified polynomial step

4.1. C = Cmod F/* performs Step 5 of Algorithm 1




1175

\ 4

PAN ET AL.: LOW-LATENCY DIGIT-SERIAL SYSTOLIC DOUBLE BASIS MULTIPLIER

>R1'_>”. oo v e
CMP CMP
C

A
ﬁ 31 PWM —>F }1 PWM —>FR
A A A A
\cve/ \cve/

0
e/
Ay Apsra

Bk

Aik Aik+1
(@)
{}Recombination
(dki) 'l, ‘,' "
B ») " o
L Rl L RI ! l' >
1
CMP ! f
I'I "
]
1 )
, c,.
! ]

PWM }—L
A
I
\cve/ /
)
1
1
!
!
!

Aik +j
(b)

PWM E‘ﬁ

Fig. 2. (a) The original circuit for computing C;, (b) The recombined circuit for computing C;
D; ; = (PW M(Pwa, Pa, +J), PW M (Pﬁwm,z(,),
0 1

We utilize the proposed partial product scheme for com-
PAMH)’ cee PW M(PE(,IA,z+,1j), PAL,iJrj)).
»

puting a partial product C; in (28) and B is pre-computed
by using the recursive computation B = gk plaki-1)
mod F(z). Applying the structure of (8), B is straight-
forwardly performed by BUW+d) = 3 Bldkimod F(x). After
BUk+d)) for 0 < j<p are computed, we can use (21) to The partial product C; can be represented by
CL' = FR(EL()) + FR(EZl) + -+ FR(ﬁitk_l)IIlOdF. (33)

(40 into a polynomial formation, and each term
Since each term reconstruction in (33) is the same as the FR

translate B
W utilizes (25) and (26) to construct (p + 1)-term Toe-
sy TE:M'H»M]))-
circuit, the partial product C; can be recombined by

yeiaas
plitZ matrices, e.g., TE(/IMJr/I_y) = (TE((;/A,z+,lj),Tgidkva},
Therefore, the partial product C; in (28) can be rewritten as

C{, = FR(E“) =+ BL] + -4 ELk‘fl) mOdF (34)

For clarification, Fig. 2(a) is the original structure of the
computation of C; in (33), and Fig. 2(b) is the modified
structure of the computation of C; in (34). We use the cut-
Cij = Tgaivan Apisj set retiming procedure so that Fig. 2(b) can be partitioned into

= T iy Apis +T§<dm+d«,> A/ﬂ'ﬂwd e k proc.essing elem(?nts (PE) and one final reconstruction-
o 1 reduction-polynomial (FRRP) F' module. Therefore, accord-
+T§(dlw+dj)Aki+jfL'pd mod F. (32) ing to (27) and Algorithm 1, the proposed double basis
! multiplication is shown as Algorithm 2.
According to Algorithm 2, Fig. 3 shows the entire double
basis multiplication architecture, which includes k? PEs (each
of which is shown in Fig. 4), k£ R3 modules, and k& FRRP
modules. Each FRRP circuit is composed of one FR module

C; = Tg(dh) A + TE(dkM) Agiyr +--+ TE(dkHd(k—l)) Aka,l mod F'
=Cio+Cip+---+Cip—1mod F, (31)

where

Applying the developed partial product scheme in Algo-
rithm 1, assume that D; ; is the point-wise multiplication of

P_(dAmij) and PA/»H/ N
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Fig. 3. The systolic array double basis multiplication architecture.

and one R2 module. R2 performs the Cmod (™ + 1) compu-
tation and R3 realizes Bz*¥ mod F'(x). Each PE is composed of
one R1 module, one CMP module, one CVP module, one
PWM module, [%]d"°¢:* XOR gates, and (m + [%4]d"%%)-bit
latches. Moreover, the R1 module performs Bz mod F(x).
We note that in Fig. 3, the i row of the systolic array double
basis multiplication architecture computes C;.

According to (28), we select the cells in the first row of Fig. 3
to construct a new digit-serial systolic multiplier, as shown in
Fig. 5. In the initial step, the register 5 is set with the element B,
and the register C is set with zero. For clarity, we use the field
GF(2%%) to present the proposed digit-serial multiplication.

R,

A,

m

Fig. 4. The detailed circuit for the processing element (PE).

C

Assume that the selected digit-size is d = 4, then, an element
Acanberepresentedas A = Ag+ A1z + - - - + Asz®. Based on
the structure of Fig. 5, Table 3 shows each PE operation in each
clock cycle. For this case, the proposed digit-serial systolic
multiplier requires 6 clock cycles.

4 TIME AND SPACE COMPLEXITIES

The proposed digit-serial systolic multiplier presented in
Fig. 5 is composed of k PEs, two registers, one R3 module,
and one FRRP module. Each PE is based on the d x d TMVP
structure to construct the CMP and the CVP modules. Each
CMP module is performed according to Step 2.7 of Algo-
rithm 2 to translate [%}|-term matrix components, and the CVP
module constructs one vector component. Applying CMP
and CVP in the PE architecture, the PWM module requires
[2]d'**3-bit point-wise multiplications. In the FRRP module,
FR is based on the structure of PE to build [%]-term recon-
struction components. Therefore, based on the space com-
plexity presented in Table 1, each CMP module requires
[ (2.5d"%% — 3d + 0.5) XOR gates, each CVP module needs
d"9:3 — 4 XOR gates, each FR module requires [%] (2d'*23 — 2d)
XOR gates, and the PWM module requires [%]d"** AND
gates. Table 4 shows the space complexity of our proposed
architecture for trinomials and AESPs. As depicted in Table 4,
it is shown that the hardware complexity of the AESP-based
digit-serial multiplier is slightly increased (by d(4[/%] + 2)
XOR gates) as compared to the trinomial-based digit-serial
multiplier.
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Fig. 5. The proposed digit-serial systolic multiplier.
TABLE 3
Contents of the Components in the Proposed Digit-Serial Systolic Multiplier for G F(2%) in Each Clock Cycle
| Cycle | Register B | PEqg | PE, | PEy | Register C
Tnitial Bo = B
D10 = :L‘4B0
B P4, = CVP(Ap)
1 | Bi=2'"Bo _ Pp=CMP(By)
Cio = PWM(PA0 y PB)
Do = 2By D31 =2*Dig
_ Py, = CVP(A3z) Ps, = CVP(A1)
2 | Ba=32""B _ Pp=CMP(By) Py =CMP(Dy)
C20 = PWM(P 4, P5) Co1 = PWM(P4,, Pp)
D3o = B> D31 = x*Dao D3z = " Doy
3 P g =CVP(As) Pa, = CVP(A4) Pa, = CVP(As)
Py =CMP(By) _ Pp=CMP(Dy) _ Ppy=CMP(D2)
C30 = PWM(P4,, P5) Cs1 = PWM(Pa,, Pg) Csz = PWM(P4,, P5)
Dy41 = 2% D3g Dyy = 2% D3
Pa, = CVP(A7) P4, = CVP(As) R
R P = CMP(Dy) Py = CMP(Dy) Ua = BF(Gsa)
Ca1 = PWM(P4,, P5) Cap = PWM(P4,, Pp)
— 4
D5z ==z D(41 )
Pa, = CVP(Ag _
2 P5 = CMP(Da1) Cg = Ge + RE(Cuz)
Cs2 = PWM(P g, P5)
6 Cs = Cs5 + RF(Cs2)
TABLE 4
Space Complexity of the Components of the Proposed Multiplier
C ¢ Trinomials AESPs
OMPpONents  FgAND | #XOR T #Latch FAND | #XOR I #Latch
R3 - kd - - 3kd -
k PEs kS3 k(d+ S1+ S3) k(m + S3) kS3 k(3d 4+ S1 + S3) k(m + S3)
FRRP - m+d+ Se - - m + 3d + Sz -
Register B - = m - = m
Register C - - m - - m
Zg;i;fng‘; kSs | m+k@d+S1+8s)+d+S2 | (k+2m+kSs || kSs | m+k(Bd+S1+S5)+3d+S2 | (k+2)m+kSs

Note: S = [%](2.5d"%* — 3d + 0.5) + d'»* — d, S, = [%](2d*"* — 2d), S5 = [%]d"*%, and k = [ /%], where d is the selected digit-size.

Recently, various digit-serial multipliers have been pro-
posed in [16], [18], and [25]. In [16], Chen et al. have presented
a scalable systolic DB multiplier with the Hankel matrix-
vector approach. Talapatra et al. multiplier [18] has used the
TMVP scheme to develop an efficient digit-serial systolic
Montgomery multiplier for trinomials and all-one polyno-
mials. Ibrahim et al. [25] have proposed a digit-serial systolic
DB multiplier. Our proposed multiplier is based on

subquadratic TMVP to obtain a new digit-serial multiplier
for trinomials and AESPs. Table 5 lists the comparison results
of our proposed multiplier and the existing digit-serial sys-
tolic multipliers proposed in [16], [18], and [25]. We note that
as tabulated in this table, the proposed trinomial-based digit-
serial multiplier architecture in this paper has the latency of
2[\/%] clock cycles, which is the same as that of the AESP-
based digit-serial multiplier. Furthermore, the critical path
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TABLE 5
Comparisons of Various Digit-Serial Systolic Multipliers over GF(2™)
Multipliers Ibrahim et al. [25] Chen et al. [16] Talapatra et al. [18] Fig. 5
Architecture Digit-serial Scalable Digit-serial Digit-serial
Basis DB DB Montgomery DB
Polynomial type General General Trinomials Trinomials
#AND 2pd? d? pd? kSs3
#XOR 2pd? d* +2d pd? + 2d m+ k(2d + S1 + S3) +d+ S
#MUX d pd +d 2pd -
#Switch - d - -
#Latch 6pd 2pd + 2d? + 2d 4pd + 3d + 1 (k+2)m+ kS3
Latency (cycles) 2p p? +2d —2 2p 2k
Critical path delay (Tcpp) Ta+2dTx +Tyvux Ta+Tx Ta + (loggd)TX +Tyvux (2 + lngd)TX

Note: Sy = [%4](2.5d%% — 3d + 0.5) 4 d'*9% — d, 5y = [4](2d*3 — 2d), S5 = [4]d*"%, p = [4], and k = [,/Z], where d is the selected digit-size.

TABLE 6
Comparison of Latencies for Digit-Serial Multipliers over GF(24%)
Digit-size (d) 2 K 3 16 32 64
Ibrahim et al. [25] 410 206 104 52 26 14
Chen ef al. [16] Latency 12,027 | 10,615 | 2,716 | 706 | 231 | 175
Talapatra ef al. TI8] (cycles) 410 206 104 52 26 14
Fig. 5 (trinomials) 30 22 16 12 8 6

delay of (2 + logad)Tx is derived for both of these two archi-
tectures, as shown in Table 5 for the trinomial-based digit-
serial multiplier architecture.

Table 6 presents a comparison for the latencies of the digit-
serial multipliers over GF(2!?%). Form Table 6, it is shown that
the latencies of our proposed architecture over GF(2'%) for
the digit-sized = 2,4, 8,16,32,and 64 are 30,22,16,12,8,and 6
clock cycles, respectively. Therefore, as seen in this table, the
latency of our proposed architecture is lower than other
multipliers under the same digit-size. Scalable multiplier
[16] has the highest latency, comparably, as seen in Table 6.
Under the same latency, e.g., 30 clock cycles, our proposed
architecture utilizes small digit-sizes (d = 2) as compared to
the other digit-serial multipliers in Table 6, e.g., Talapatra et al.
[18] uses d = 28, 29.

In the next section, we present and compare the results of
our ASIC synthesis to benchmark the time and hardware
complexities of the architectures on this hardware platform.

5 ASIC SYNTHESIS AND COMPARISONS

In this section, we present the results of our ASIC synthesis for
both the proposed multiplication scheme and the previously-
presented multipliers. The synthesis through ASIC platform
is a step-forward towards more accurate derivation of perfor-
mance and area metrics.

5.1 ASIC Synthesis

In the previous section, we have compared our proposed
architecture with various existing digit-serial multipliers.
Based on Table 6, our multipliers can obtain low-latency
implementations compared to the three multipliers presented
in [16], [18], and [25]. For reaching results closer to real
implementations and to compare the performance and com-
plexity metrics with two multipliers presented in Ibrahim
etal. [25] and Talapatra et al. [18], this section utilizes a TSMC
65-nm standard-cell library and the Synopsys Design

Compiler for obtaining the ASIC synthesis results. We note
that the multiplier in [18] is based on an irreducible trinomial
to implement an efficient digit-serial systolic multiplier. In the
NIST standard, it is recommended that the irreducible trino-
mial of the form F(z) = 1 + 2% + 2% is used to construct the
field GF(2'%). Therefore, we have considered the field GF
(2'%9) for trinomials to synthesize the multipliers in [18] and
[25] and our multiplier architecture of Fig. 5. Then, the results
of synthesis for the aforementioned multipliers have been
derived and tabulated in Tables 7 and 8.

Our multiplier is based on the subquadratic TMVP struc-
ture and we have considered five different latencies, i.e., 4,
6,8, 10, and 12, for synthesizing and both multipliers [18], [25]
are also synthesized for the same latencies. Moreover, the
corresponding digit-sizes of the two multipliers presented in
[18] and [25], i.e., 205,137,103,82, and 69, respectively, are
presented in Table 7. For our proposed multiplier, these
latencies correspond to the digit-sizes 103, 46, 26, 17, and 12,
respectively, which are listed in Table 8. We note that al-
though a range of digit-sizes yields for the multipliers with the
depicted latencies in tables, we choose the lowest digit-size for
all the cases to have a consistent comparison among the cases
benchmarked. The derived results of synthesis include the
area in terms of ;um?, the critical path delay (CPD) x latency
(denoted hereafter as total-time) in terms of ns x cycles, and
the total-time x area in terms of ns x cycles x um?, as seen in
Tables 7 and 8. Given the two tables, it is shown that the digit-
sizes for our presented multiplier for each latency are smaller
than those for [18] and [25]. For example, under the latency of
10 clock cycles, our proposed multiplier has the digit-size of
17, while both other multipliers require the digit-size of 82.

As seen in Table 7, the performance metrics of the multi-
pliersin[18]and [25] are depicted. Forboth of these multipliers,
thearea and the total-time golowerand higher, respectively, as
the latency increases. As seen in this table, the performance
metrics of the multiplier in [18] (both area and total-time) are
better than those of the multiplierin [25]. Wenote that the worst
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TABLE 7
ASIC Synthesis Results for the Previously-Presented Multiplier Architectures over GF(2%) for Different Digit-Sizes d

Ibrahim et al. [25] Talapatra et al. [18]

Latency Digit Area Total-time Total-time x area Dagit Area Total-time Total-time x area
(cycles) size [um?] [nsxcycles] | [nsxcyclesx um?] size [um?] [nsxcycles] | [nsxcyclesx um?]

4 205 810, 129 149.95 121,478,843 205 536, 690 12.50 6,708, 625

6 137 517,389 169.30 87,593,957 137 346, 715 14.13 4,899, 082

8 103 401, 542 174.31 69,992, 786 103 278,126 18.48 5,139,761

10 82 344,711 183.44 63,233,785 82 229, 480 21.63 4,963,652

12 69 314,729 192.32 60, 528, 681 69 206, 198 23.16 4,775,545

Note: Total-time = CPD x latency.
TABLE 8 TABLE 9

ASIC Synthesis Results for the Proposed Multiplier Architecture
(Trinomials) over GF(2%°) for Different Digit-Sizes d

Proposed (Fig. 5 for trinomials)

Latency Digit Area Total-time Total-time xarea
(cycles) size [um?] [nsxcycles] | [nsxcyclesx um?]
4 103 261,124 8.25 2,154,273
6 46 195, 396 11.85 2,315,442
8 26 167,945 16.83 2,826,514
10 17 153,817 18.19 2,797,931
12 12 133,528 20.11 2,685,248

total-time x area of the multiplier in [18] is achieved for the
digit-size and latency of 103 and 8, respectively, i.e., 5,139,761
ns x cycles x um?. However, for [25], this metric increases up
to the lowest latency, as seen in Table 7.

As seen in Table 8, the area of the proposed multiplier
gets lower as the latency gets higher, i.e., from 261,124 pm?
for the latency of 4 and digit-size of 103 to 133, 528 pm? for the
latency of 12 and digit-size of 12. Furthermore, the total
time gets higher from 8.25 ns x cycles to 20.11 ns x cycles,
as seen in this table. Finally, the total-time x area starts from
2,154,273 nsxcycles x um? for the latency of 4 and digit-size
of 103 and reaches its maximum of 2,826,514 ns x
cycles x um? for the latency of 8 and digit-size of 26 and gets
lower as the latency and the digit-size reach 12 to the total-
time x area of 2,685,248 ns x cycles x pm?.

5.2 Comparisons

In Tables 7 and 8, we have presented the synthesis results for
our and two previously-presented digit-serial multipliers. In
what follows and through Table 9, we compare the total-time
x area of these multipliers. This performance metric is used
commonly to benchmark the efficiency of a multiplication
schemes as it, inherently, assesses the suitability of the scheme
for combined low-area and high-speed applications. Before
proceeding to Table 9, we note that compared to [18], the
minimum area saving of our multiplier can be derived as 33%
from Tables 7 and 8. Moreover, we can save at least 55% area
compared to the work presented in [25].

To compare the total-time x area complexities, Table 9
shows that our proposed multiplier can save at least 43.6% as
compared to two multipliers [18], [25], although this saving is
much more for the case of the work presented in [25]. Finally,
we note that the total-time x area savings grow as the
latencies get lower, with the maximum saving achieved for
the lowest latency, as seen in Table 9.

As mentioned above, it is shown that our proposed digit-
serial systolic multiplier using subquadratic TMVP scheme

Comparison of the Total-Time x Area between the Proposed
Multiplier and the Two Multipliers [25], [18]

Latency || Total-timexarea saving |[ Total-timexarea saving
(cycles) (compared to [25]) (compared to [18])

4 98.3% 67.8%

6 97.3% 52.7%

8 95.9% 45.0%

10 95.5% 43.6%

12 95.6% 43.8%

has better performance compared to those of the two
digit-serial multipliers. We note that the multiplier pre-
sented in [18] is based on the TMVP structure to develop
an efficient digit-serial systolic architecture; however, its
architecture is only suitable for special classes of polyno-
mials over GF(2™).

6 CONCLUSION

In this work, we have developed a novel digit-serial systolic
architecture for double basis multiplication over GF(2™).
Through utilizing the subquadratic TMVP scheme, we have
proposed the presented digit-serial systolic multiplier over
GF(2™) for irreducible trinomials and AESPs. In this regard,
our analytical results in this paper have shown that the area
complexity of the AESP-based multiplier is slightly increased
by d(4[,/%1 +2) XOR gates as compared to the trinomial-
based multiplier, where d is the selected digit-size. We note
that the proposed architectures for trinomials and AESPs
require 2[ /%] clock cycles and are particularly suitable for
implementing the ECC cryptography and in the resource-
constrained environments. We have performed ASIC synthe-
sis to benchmark the performance of our proposed multiplier
and it is shown that it outperforms its counterparts in terms of
area and total-time x area performance metrics. Moreover,
our proposed architecture leverages the features of regularity,
modularity, and concurrency, and is suitable for efficient and
high-performance applications.
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