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Abstract—In this paper, we study a generalization of addition chains where k previous values are summed together on each step

instead of only two values as in traditional addition chains. Such chains are called k-chains and we show that they have applications in

finding efficient parallelizations in problems that are known to be difficult to parallelize. In particular, 3-chains improve computations of

inversions in finite fields using hybrid-double multipliers. Recently, it was shown that this operation can be efficiently computed using a

ternary algorithm but we show that 3-chains provide a significantly more efficient solution.
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1 INTRODUCTION

AN addition chain is a sequence of integers from one to n

such that each value is a sum of two previous values.
Addition chains have many applications in the field of com-
puting. Several essential computational tasks required, for
example, in public-key cryptosystems and computational
number theory can be modelled as addition chains includ-
ing exponentiations, scalar multiplications on elliptic
curves, primitivity tests, and inversions in finite fields. For
instance, the optimal addition-chain method computes an
exponentiation with minimal number of multiplications. As
a consequence of this importance, additions chains have
been thoroughly studied for decades. The reader is referred,
e.g., to [1] for a thorough survey on addition chains.

Addition chains can be extended or generalized into
many directions and several proposals are available in
the literature including addition-subtraction chains [2],
[3], addition-multiplication chains [4], addition sequences
[5], q-addition chains [6], [7], [8], and Lucas chains [9].
These generalizations typically offer improvements over
general addition chains in the context of certain applica-
tions by exploiting features specific to those applications;
e.g., addition-subtraction chains offer significant speed-
ups compared to addition chains for elliptic curve cryp-
tography because additions and subtractions are equally
fast in additive groups formed by points on elliptic curves

but they are useless when applied to multiplicative
groups where divisions are significantly more expensive
than multiplications.

In this paper, we study a generalization of addition
chains where each value in the sequence is a sum of at most
k previous values from the sequence. We call these sequen-
ces k-chains. To the best of our knowledge, k-chains have
been discussed previously only by Hayata and Wagatuma
in an unpublished manuscript [10] from 2006. They general-
ized many of the properties of addition chains to the proper-
ties of k-chains including an algorithm for searching the
shortest possible k-chains efficiently. However, they did not
provide any applications for k-chains.

In this paper, we deepen the knowledge on k-chains in a
number of ways

� We provide a new algorithm for finding short (but
not necessarily optimal) k-chains for an arbitrary n;

� We tighten the bounds for the length of k-chains and
provide results on the relations of addition chains
and k-chains with different values of k;

� We introduce a new parallel version of k-chains that
allows efficient parallelization of problems utilizing
k-chains;

� Most importantly, we propose applications for
k-chains. We show that (parallel) k-chains lead to the
fastest known algorithms and implementations
for computing inversions in GF ð2mÞ and, hence,
k-chains have applications in cryptography and
codes that require fast finite field arithmetic. Certain
other applications are also shortly surveyed; and

� We also present practical contributions by showing
how these findings can be utilized in designing an
efficient hardware architecture for inversions in a
binary field GF ð2mÞ. We provide implementation
results on 65-nm complementary metal-oxide-semi-
conductor (CMOS) application-specific integrated
circuit (ASIC) for inversions in the binary fields rec-
ommended by National Institute of Standards and
Technology (NIST) in [11].
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The paper is structured as follows: Section 2 reviews
basic definitions and properties of addition chains. In
Section 3, we discuss k-chains and their properties by
reviewing certain relevant aspects of [10], by deriving algo-
rithms for finding k-chains, and by providing new insight
about the properties of k-chains. Section 4 presents the link
between k-chains and inversions in GF ð2mÞ and introduces
new faster inversion algorithms. We introduce parallel
k-chains and show their applicability for inversions in
Section 5. We present proof-of-concept implementations
and their results in Section 6. We discuss certain other appli-
cations where k-chains can be useful in Section 7 and,
finally, we conclude the paper in Section 8.

2 ADDITION CHAINS

We begin with several formal definitions that are relevant
for this paper. The reader is referred, e.g., to [1] for more
background about addition chains.

Definition 1 (Addition chain). An addition chain for a positive
integer n is a sequence of natural numbers v

v ¼ ðvð0Þ; . . . ; vðsÞÞ; (1)

with vð0Þ ¼ 1, vðsÞ ¼ n, and vðiÞ ¼ vði0Þ þ vði1Þ for all
0 < i � s so that 0 � i0; i1 < i; i.e., each term in v is the sum
of two previous terms. The number s is called the length of the
addition chain.

Definition 2 (Optimality). An addition chain v for a positive
integer n is called optimal if its length s is the smallest among
all possible addition chains for n.

Optimal addition chains for n can be found, e.g., with an
efficient backtracking algorithm that was introduced by
Thurber in [12].

Definition 3 (Brauer-type addition chain [13]). An addition
chain is a Brauer-type addition chain if the previous value is
always used for the next one; i.e., i0 ¼ i� 1 or i1 ¼ i� 1 for
all 0 < i � s. Respectively, an addition chain is a non-Brauer-
type addition chain if there exists vðiÞ ¼ vði0Þ þ vði1Þ for
which i0 6¼ i� 1 and i1 6¼ i� 1.

Proposition 1 (Bounds for the length of an optimal addi-
tion chain [14]). The length of an optimal addition chain for
an integer n satisfies the following bounds:

log2 nþ log2 h2ðnÞ � 2:13 � s � blog2 nc þ h2ðnÞ � 1; (2)

where h2ðnÞ is the Hamming weigth of n; i.e., the number of
ones in the binary representation of n.

The lower bound of Proposition 1 is from [14] and the
upper bound follows trivially from the binary method
that is explained next. The left-to-right binary method is
an easy way to find a relatively short Brauer-type addi-
tion chain for an arbitrary n. The binary expansion of n is

n ¼ Pblog2 nc
j¼0 nj2

j. Then, starting from nblog2 nc�1 down to

n0, the addition chain is built so that, if nj ¼ 0, then
vðiÞ ¼ 2vði� 1Þ is added to chain. If nj ¼ 1, then one adds
two terms: vðiÞ ¼ 2vði� 1Þ and vðiþ 1Þ ¼ vðiÞ þ vð0Þ.

Example 1. Let n ¼ 19 ¼ 1; 0; 0; 1; 1h i. Then, vð1Þ ¼ 2vð0Þ ¼ 2
because n4�1 ¼ n3 ¼ 0, vð2Þ ¼ 2vð1Þ ¼ 4 because n2 ¼ 0.
Because n1 ¼ 1, we add vð3Þ ¼ 2vð2Þ ¼ 8 and vð4Þ ¼
vð3Þ þ vð0Þ ¼ 9. Similarly, we have vð5Þ ¼ 2vð4Þ ¼ 18 and
vð6Þ ¼ vð5Þ þ vð0Þ ¼ 19. Hence, the binary addition chain
for 19 is ð1; 2; 4; 8; 9; 18; 19Þ. It is one of the 33 optimal
addition chains1 for 19.

3 k-CHAINS AND THEIR PROPERTIES

Definition 4 (k-chain). A k-chain for a positive integer n is a
sequence of natural numbers v

v ¼ ðvð0Þ; . . . ; vðsÞÞk; (3)

with vð0Þ ¼ 1, vðsÞ ¼ n, and vðiÞ ¼Pk�1
h¼0 vðihÞ for all

0 < i � s and �1 � ih < i with vð�1Þ ¼ 0; i.e., each term in
v is the sum of k previous terms (including zero). The number
s is called the length of the k-chain.

There are many connections between addition chains and
k-chains. Many definitions and results for addition chains
have straightforward generalizations to k-chains [10]. These
include optimality, Brauer-type, etc. The most obvious con-
nections are the following:

Remark 1. 2-chain is a synonym for addition chain.

Remark 2. A 2-chain (addition chain) can be derived from
each k-chain with k > 2. Hence, a k-chain with k > 2 can
be seen as a compression of an addition chain (2-chain).
These addition chains are not necessarily optimal.

Example 2. The only optimal 3-chain for 7 is ð1; 3; 7Þ3, where
3 ¼ 1þ 1þ 1 and 7 ¼ 1þ 3þ 3. The corresponding 2-
chains (addition chains) are ð1; 2; 3; 4; 7Þ2 and
ð1; 2; 3; 6; 7Þ2 which are optimal.

3.1 The Length of an Optimal k-Chain

Optimal k-chains can be found efficiently with the back-
tracking algorithm originally proposed for addition chains
in [12] and optimized for k-chains in [10]. Fig. 1 plots the
lengths of optimal k-chains for 2 � k � 5 and 1 � n � 256.
This clearly shows the reduction of lengths when k
increases. Hence, if an application using addition chains
can exploit k-chains instead of addition chains, then results
(typically, computation latency) are likely to improve signif-
icantly. In the following, we discuss certain aspects related
to the lengths of k-chains.

Proposition 2. Let v0 be an optimal k0-chain of length s0 for an
integer n. If k1 > k0, the length s1 of an optimal k1-chain v1
for n satisfies s1 � s0.

Proof. An optimal k1-chain cannot be longer than an opti-
mal k0-chain because each k0-chain is also a k1-chain. The
k1-chain v1 can be constructed by setting v1ðiÞ ¼Pk0�1

h¼0 v0ðjhÞ þ
Pk1�1

h0¼k0 v1ð�1Þ; i.e., by adding k1 � k0 zeros

to all v0ðiÞ. tu

1. The optimality can be checked, e.g., from http://wwwhomes.uni-
bielefeld.de/achim/addition_chain.html (Oct. 27, 2014).
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Consequently, an optimal k0-chain is not necessarily an
optimal k1-chain but if an optimal k1-chain is also a k0-chain,
then it is always an optimal k0-chain.

Example 3. There is only one optimal 2-chain for the num-
ber 8: ð1; 2; 4; 8Þ2. Its length is 3. There are eight optimal
3-chains: ð1; 2; 3; 8Þ3, ð1; 2; 4; 8Þ3, ð1; 2; 5; 8Þ3, ð1; 2; 6; 8Þ3,
ð1; 3; 4; 8Þ3, ð1; 3; 5; 8Þ3, ð1; 3; 6; 8Þ3, and ð1; 3; 7; 8Þ3. Their
length is also 3. The optimal 2-chain is also an optimal
3-chain. The length reduces to 2 for the three optimal
4-chains: ð1; 2; 8Þ4, ð1; 3; 8Þ4, and ð1; 4; 8Þ4.

Proposition 3 (Bounds for s [10]). The length s of an optimal
k-chain for a positive integer n satisfies the following bounds

dlogk ne � s � blogk nc þ hkðnÞ � dkðnÞ; (4)

where hkðnÞ is the k-ary Hamming weight, the number of non-
zeros in the k-ary representation of n, and dkðnÞ ¼ 1 if

nblogk nc ¼ bn=kblogk ncc ¼ 1; otherwise, dkðnÞ ¼ 0.

The lower bound follows trivially from the fact that the
largest value reachable with h steps is kh. The upper bound
comes from a k-ary generalization of the binary method [10].
Although [10] did not explicitly present the k-ary algorithm
that was used for deriving the upper bound of (4), the algo-
rithm given in Algorithm 1 is equivalent with that algorithm
in terms of the length of the k-chains. Algorithm 1 constructs
different k-chains when ni are processed in different orders
in the for loop, but they all have the same length.

Algorithm 1. A k-ary algorithm for finding a k-chain for
an integer n

Input: k, n ¼P‘
i¼0 nik

i ¼ hn0; n1; . . . ; n‘ik where ‘ ¼ blogk nc
Output: A k-chain v for n

1 vðiÞ  ki for 0 � i � ‘
2 j 1;
3 for all xi > 0 in x ¼ fn0; n1; . . . ; n‘�1; n‘ � 1gdo
4 vð‘þ jÞ  vð‘þ j� 1Þ þ xivðiÞ
5 j jþ 1
6 return v

While addition chains derived with all variations of the
binary method (e.g., left-to-right or right-to-left) have the
same length, it is possible to derive different variations of
the k-ary algorithm so that the lengths of the resulting
k-chains differ. In the following, we propose a variation
which constructs k-chains that are at least as short as the
ones provided by Algorithm 1 and the variation considered
in [10]. As a consequence, we can also use this new algo-
rithm for improving the upper bound of Proposition 3.

3.2 An Algorithm for Finding Short k-Chains

Even though backtracking algorithm allows finding optimal
k-chains relatively efficiently, finding optimal k-chains for
an arbitrary large n becomes impractical, especially, if it
needs to be done on-the-fly. Hence, we propose a simple
procedure for finding short, but not necessarily optimal,
k-chains. It is another k-ary generalization of the well-
known binary method and it is captured in Algorithm 2.
The algorithm constructs a temporary vector t which con-

tains the indexes of vðiÞ ¼ ki which are to be summed.
Then, t is processed so that k values are always summed in
calculating each vðiÞ (excluding the last one if the number of
summands is not a multiple of k).

Algorithm 2. Another k-ary algorithm for finding a
k-chain for a positive integer n

Input: k, n ¼P‘
i¼0 nik

i ¼ hn0; n1; . . . ; n‘ik where ‘ ¼ blogk nc
Output: A k-chain v for n

1 vðiÞ  ki for 0 � i � ‘
2 j 0
3 for all xi > 0 in x ¼ fn0; n1; . . . ; n‘�1; n‘ � 1g do
4 ðtj; tjþ1; . . . ; tjþxi�1Þ  ði; i; . . . ; iÞ
5 j jþ xi

6 ðtj; tjþ1; . . . ; tdj=ðk�1Þeðk�1Þ�1Þ  ð�1;�1; . . . ;�1Þ
7 for i ¼ 0 to bj=ðk� 1Þc do
8 vð‘þ iþ 1Þ  vð‘þ iÞ þ vðtiðk�1ÞÞ þ vðtiðk�1Þþ1Þ þ � � � þ

vðtiðk�1Þþk�2Þ
9 return v

Example 4. Let n ¼ 426 and k ¼ 5. The quinary representa-
tion of n is 426 ¼ 3; 2; 0; 1h i5. Hence, we first calculate the

powers up to vð3Þ ¼ 53 ¼ 125. Then, it remains to com-
pute n ¼ 3� 125þ 2� 25þ 1 which requires dð3þ 2þ
1� 1Þ=ð5� 1Þe ¼ 2 extra steps. In Algorithm 2, this
results in t ¼ ð0; 2; 2; 3; 3;�1;�1;�1Þwhich gives

vð4Þ ¼ vð3Þ þ vð0Þ þ vð2Þ þ vð2Þ þ vð3Þ
¼ 125þ 1þ 2� 25þ 125 ¼ 301 and

vð5Þ ¼ vð4Þ þ vð3Þ þ vð�1Þ þ vð�1Þ þ vð�1Þ
¼ 301þ 125þ 3� 0 ¼ 426:

Hence, we get the following 5-chain: ð1; 5; 25; 125;
301; 426Þ5 and s ¼ 5. By chance, this 5-chain happens to

be one of the 1,627 optimal 5-chains for 426.

Proposition 4. The length s of a k-chain for a positive integer n
obtained with Algorithm 2 is

s ¼ blogk nc þ dðdkðnÞ � 1Þ=ðk� 1Þe; (5)

Fig. 1. The lengths of optimal k-chains with 2 � k � 5 for positive inte-
gers 1 � n � 256.
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where dkðnÞ ¼
Pblogk nc

i¼0 ni, the sum of digits of the k-ary repre-

sentation of n ¼Pblogk nc
i¼0 nik

i.

Proof. The first part of the length, blogk nc, follows directly

from computing the powers of k up to kblogk nc. After this,
the powers of k are summed according to the digits of

the k-ary representation. The sum n ¼Pblogk nc
i¼0 nik

i is a

sum of dkðnÞ powers of k (each ki appears ni times in the
sum). It can be computed with a k-chain with length

dðdkðnÞ � 1Þ=ðk� 1Þe because all ki are already available
which results in the bound of (5). tu

Although Algorithms 1 and 2 are both k-ary generaliza-
tions of the binary algorithm, they are, indeed, different
algorithms and they return different k-chains. The differ-
ence is that Algorithm 1 processes each digit ni indepen-
dently whereas Algorithm 2 groups processing of different
digits whenever possible. If k ¼ 2, these algorithms are
equivalent. The ternary Itoh-Tsujii (TIT) algorithm used in
[15] is essentially the same algorithm as Algorithm 1
applied to inversions in GF ð2mÞ. Indeed, Algorithm 2
improves upon them as shown in the following proposition:

Proposition 5. Algorithm 2 produces a k-chain which is at
least as short as a k-chain from Algorithm 1 for all positive
integers n.

Proof. The length of a k-chain from Algorithm 2 is given by
(5) in Proposition 4 and the length of a k-chain from
Algorithm 1 is given by the upper bound of (4) in Propo-
sition 3. Hence, we need to show that the following
inequality holds for all n:

blogk nc þ
dkðnÞ � 1

k� 1

� �
� blogk nc þ hkðnÞ � dkðnÞ: (6)

The following holds for dkðnÞ ¼
Pblogk nc

i¼0 ni because
0 � ni � k� 1:

dkðnÞ � ðk� 1ÞðhkðnÞ � 1Þ þ nblogk nc:

Hence,

dkðnÞ � 1

k� 1

� �
� ðk� 1ÞðhkðnÞ � 1Þ þ nblogk nc � 1

k� 1

� �

¼ hkðnÞ � 1þ nblogk nc � 1

k� 1

� �

¼ hkðnÞ � 1 if nblogk nc ¼ 1

hkðnÞ if nblogk nc > 1

(

¼ hkðnÞ � dkðnÞ:

tu
Example 5. Let n ¼ 607 and k ¼ 3. The ternary representa-

tion of 607 is 2; 1; 1; 1; 1; 1h i3 from which we see
that blog3 ð607Þc ¼ 5, h3ð607Þ ¼ 6, d3ð607Þ ¼ 0, and
d3ð607Þ ¼ 7. Hence, the length from (5) (Algorithm 2)
is blog3 ð607Þc þ dðd3ð607Þ � 1Þ=ð3� 1Þe ¼ 5þ 3 ¼ 8. The
upper bound of (4) (Algorithm 1) is blog3ð607Þcþ
h3ð607Þ � d3ð607Þ ¼ 5þ 6� 0 ¼ 11, which is overly pes-
simistic. For the optimal 3-chains for 607, s ¼ 7.

As a consequence of Propositions 4 and 5, we have a new
upper bound for the lengths of optimal k-chains and we can
revise Proposition 3 as follows:

Corollary 1 (New bounds for s). The length s of an optimal
k-chain for a positive integer n satisfies the following bounds:

dlogk ne � s � blogk nc þ dðdkðnÞ � 1Þ=ðk� 1Þe: (7)

Although it is easy to see that k-chainswith k > 2 obtained
with Algorithm 2 are usually shorter than binary addition
chains or even optimal addition chains, there could be cases
where they are longer. For instance, a binary addition chain
could be shorter if the binary representation is sparse and
the k-ary representation is dense and contains many large
digits. The following proposition sheds light on this issue.

Proposition 6. If k � 4, then a k-chain given by Algorithm 2 is
at least as short as an optimal addition chain for all positive
integers n.

Proof The length of an optimal addition chain is at least
dlog2 ne because the largest value reachable with h steps

is 2h. Hence, we need to show that the following inequal-
ity holds for all n:

blogk nc þ
dkðnÞ � 1

k� 1

� �
� dlog2 ne: (8)

The right-hand side of (8) is bounded from below as
follows:

dlog2 ne � log2 n: (9)

Respectively, the left-hand side of (8) is bounded from
above as follows:

blogk nc þ
dkðnÞ � 1

k� 1

� �
< 2 logkð2Þ log2ðnÞ: (10)

Consequently, the left-hand side is smaller or equal to the
right-hand side if

2 logkð2Þ � 1: (11)

Hence, (8) always holds when k � 4. tu

Many interesting applications of k-chains use k ¼ 3 that
is not covered by Proposition 6. Indeed, even binary addi-
tion chains (not necessarily optimal) are shorter than the 3-
chains given by Algorithm 2 in some extremely rare occa-
sions. For example, all such cases in the interval

n 2 ½1; 224 ¼ 16;777;216� are 32,768, 32,776, 32,800, 32,804,
65,600, 98,304, 98,306, 294,920, 526,336, 1,052,672, 2,097,152,
2,105,344, 2,105,348, 6,291,968, and 13,631,488. These cases
are slightly more common for Algorithm 1: there are in total

831 such values for n 2 ½1; 224�.

4 3-CHAINS AND INVERSIONS IN GF ð2mÞGF ð2mÞ
Fermat’s Little Theorem provides means for computing
inversions in finite fields via exponentiations with a con-
stant exponent. In GF ð2mÞ, the inverse element of
A 6¼ 0 2 GF ð2mÞ is received through the following expo-
nentiation:
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A�1 ¼ A2m�2 ¼ B2m�1�1; where B ¼ A2: (12)

Because 2m�1 � 1 ¼ 1þ 2þ 22 þ � � � þ 2m�2, the traditional
binary method for exponentiations performs badly and
requires m� 2multiplications and m� 1 squarings [16]. In
[17], Itoh and Tsujii (IT) proposed a clever technique that
reduces the number of multiplications to blog2ðm� 1Þcþ
h2ðm� 1Þ � 1. In [18], Takagi et al. presented that improve-
ments can be achieved in cases wherem� 1 has a ‘nice’ fac-
torization. Recently, Dimitrov and J€arvinen [19] proposed
algorithms based on double-base and triple-base represen-
tations of m� 1 that slightly improve the number of multi-
plications and provide certain implementation specific
advantages over IT. It is also known that an inversion algo-
rithm for GF ð2mÞ can be derived from any addition chain
for m� 1 and using an optimal addition chain leads to an
optimal number of multiplications.

A hybrid-double (HD) multiplier [20] is a multiplier that
computes the product of three elements, a� b� G, where
a;b;G 2 GF ð2mÞ, with a latency comparable to normal mul-
tipliers computing the product of two elements a� b. This
is achieved by interleaving parallel-in-serial-out (PISO) and
serial-in-parallel-out (SIPO) digit-serial multipliers so that
the PISO multiplier computes D ¼ a� b and the SIPO mul-
tiplier begins computing G� D ¼ a� b� G immediately
when the PISO multiplier starts returning the first digits of
the result D [20]. None of the above mentioned inversion
algorithms allows efficient exploitation of the potential
offered by HD multipliers in computing inversions. For
instance, using double multiplications instead of normal
multiplications in the case of IT improves the latency at
most by a latency of one multiplication [15].

In [15], Azarderakhsh et al. solved this problem and
showed how inversions in GF ð2mÞ can be computed faster
with HD multipliers. They used a variation of the IT inver-
sion algorithm where they utilized the ternary representa-
tion of m� 1 instead of the typical binary representation.
This variation called TIT is essentially Algorithm 1 applied
to inversions in binary fields. Using TIT allowed them to
utilize the potential of the HD multipliers; e.g., TIT allows

computing an inversion in GF ð2163Þ, which is the smallest
binary field included in [11], with only five double multi-
plications when IT would require nine (the number of nor-
mal multiplications would also be nine in this case).
Although TIT typically improves latency significantly
compared to the traditional IT, the results of TIT are sub-
optimal and can, in fact, perform even worse than IT in
some rare cases; e.g., IT requires nine double multiplica-

tions for computing an inversion in GF ð2393Þ whereas TIT
requires 10.

In the following, we show how we can utilize k-chains
and the findings from previous sections in inversions in
GF ð2mÞ. The essential link between k-chains and algorithms
for computing inversions in GF ð2mÞ is described in the fol-
lowing proposition:

Proposition 7. Let vðiÞ ¼Pk�1
j¼0 vðijÞ and Vij ¼ B2vðijÞ�1. Then,

Vi ¼ Vi0

Yk�1
h¼1

V 2

Ph�1
j¼0 vðijÞ

ih
¼ B2vðiÞ�1: (13)

Proof.

Vi ¼ Vi0

Yk�1
h¼1

V 2

Ph�1
j¼0 vðijÞ

ih

¼ B2vði0Þ�1 Yk�1
h¼1

�
B2vðihÞ�1�2Ph�1

j¼0 vðijÞ

¼ B2vði0Þ�1 Yk�1
h¼1

B2

Ph�1
j¼0 vðijÞ

2vðihÞ�1ð Þ

¼ B2vði0Þ�1 Yk�1
h¼1

B2

Ph

j¼0 vðijÞ�2
Ph�1

j¼0 vðijÞ

¼ B2vði0Þ�1B
Pk�1

h¼1

�
2

Ph

j¼0 vðijÞ�2
Ph�1

j¼0 vðijÞ
�

¼ B2vði0Þ�1B2

Pk�1
j¼0 vðijÞ�2vði0Þ

¼ B2

Pk�1
j¼0 vðijÞ�1 ¼ B2vðiÞ�1: tu

When k ¼ 3, Proposition 7 gets the form shown in the fol-
lowing corollary:

Corollary 2. Let vðiÞ ¼ vði0Þ þ vði1Þ þ vði2Þ and Vij ¼ B2vðijÞ�1.
Then,

Vi ¼ Vi0 � V 2vði0Þ
i1

� V 2vði0Þþvði1Þ
i2

¼ B2vðiÞ�1 : (14)

We now have a direct way to use k-chains for computing
inversions in GF ð2mÞ by computing the Vi iteratively. Espe-
cially, Corollary 2 gives a straightforward method to con-
struct inversion algorithms for GF ð2mÞ from 3-chains for
m� 1. These algorithms require s double multiplications
and, hence, selecting a short 3-chain (preferably optimal if
possible) leads to an inversion algorithm that efficiently
exploits the potential of HDmultipliers.

Example 6. Using Fermat’s Little Theorem, we have that
inversions in GF ð28Þ are given by A�1 ¼ A28�2 ¼
A2ð27�1Þ ¼ B27�1, where B ¼ A2, for all A 6¼ 0 2 GF ð28Þ.
The only optimal 3-chain for the integer 7 is ð1; 3; 7Þ3. Set
V0 ¼ B. Because vð1Þ ¼ vð0Þ þ vð0Þ þ vð0Þ ¼ 1þ 1þ 1 ¼ 3,

Corollary 2 gives that V1 ¼ V0 � V 2
0 � V 21þ1

0 ¼ B23�1.
Because vð2Þ ¼ vð0Þ þ vð1Þ þ vð1Þ ¼ 1þ 3þ 3 ¼ 7, we get

that V2 ¼ V0 � V 2
1 � V 21þ3

1 ¼ B27�1 ¼ A�1. Hence, inver-

sions in GF ð28Þ can be computed with two double multi-
plications. Notice that both IT and TIT require three

double multiplications. Inversions in GF ð28Þ are used in
various applications including, e.g., the S-box of the
Advanced Encryption Standard (AES) [21].

Example 7. Both IT and TIT require nine double multiplica-
tions for inversion in GF ð2233Þ. Using any of the 3,603
optimal 3-chains for 232 allows computing an inversion
with just seven double multiplications. Consider the arbi-
trarily chosen optimal 3-chain ð1; 2; 4; 6; 18; 38; 114; 232Þ3,
where 2 ¼ 1þ 1þ 0, 4 ¼ 2þ 2þ 0, 6 ¼ 2þ 4þ 0,
18 ¼ 6þ 6þ 6, 38 ¼ 2þ 18þ 18, 114 ¼ 38þ 38þ 38, and
232 ¼ 4þ 114þ 114. Applying Corollary 2 results in the
inversion algorithm given in Algorithm 3.
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Algorithm 3. Inversion in GF ð2233Þwith an optimal
3-chain and double multiplications

Input: A 2 GF ð2233Þ; A 6¼ 0
Output: B ¼ A�1

1 B A	 1
2 B;R1  B� ðB	 1Þ � 1
3 B;R2  B� ðB	 2Þ � 1
4 B R1 � ðB	 2Þ � 1
5 B B� ðB	 6Þ � ðB	 12Þ
6 B R1 � ðB	 2Þ � ðB	 20Þ
7 B B� ðB	 38Þ � ðB	 76Þ
8 B R2 � ðB	 4Þ � ðB	 118Þ
9 return B ¼ A�1

Although all the techniques based on the use of k-chains
can be used regardless of the basis of the field, all inversion
algorithms in this paper and the inverter architecture in
Section 6 use a normal basis notation for the squarings

which are simply rotations of the bit vector: B2e ¼ B	 e.
We use this notation because the HD multipliers introduced
in [20] use Gaussian normal bases (GNB). HD multipliers
can be constructed also for polynomial bases by employing
the PISO multiplier structure introduced by Reyhani-Maso-
leh in [22] together with any of the multiple SIPO multi-
pliers available in the literature. Hence, all findings of this
paper can be generalized for polynomial bases in a straight-
forward manner.

Fig. 2 shows the number of double multiplications
required to compute inversions in GF ð2mÞ with the IT, TIT,
3-chains from Algorithm 2, and optimal 3-chains. Notice
that TIT equals the upper bound given by (4) for m� 1 and
Algorithm 2 reflects the new bound given by (7) for m� 1.
Table 1 highlights the costs for the five binary fields recom-
mended by NIST in [11].

Out of the 256 cases considered in Fig. 2, IT is optimal
only in 11 cases (GF ð249Þ being the largest of them) and
even TIT is optimal only in 57 cases. In particular, TIT pro-
vides optimal results only for two out of the five NIST fields:

GF ð2163Þ and GF ð2409Þ. The smallest field for which TIT

produces sub-optimal results is GF ð28Þ which is discussed
above in Example 6. Algorithm 2 performs a bit better and
returns optimal results for 122 cases in the interval
1 � m � 256 and for three NIST fields. Even for the two
NIST fields, for which the results are sub-optimal, the
results are better than those of TIT. The smallest sub-opti-

mal case for Algorithm 2 is GF ð215Þ.
Conjecture 1. If v is an optimal 3-chain for a positive integer

m� 1, then its length s is a strict lower bound for the number
of double multiplications required for the exponentiation

A2m�2.

An algorithm requiring exactly s double multiplications
can be constructed by using Proposition 7 and if Conjecture
1 holds, then an algorithm derived from an optimal 3-chain
computes an inversion with the lowest possible number of
double multiplications.

5 PARALLEL k-CHAINS AND INVERSIONS IN

GF ð2mÞGF ð2mÞ
Parallel computation of inversions in GF ð2mÞ is known to
be difficult. Traditional techniques, such as IT, are entirely
sequential processes. In [7], N€ocker showed how a binary
addition chain can be translated into a parallel version with
a depth of s ¼ dlog2 ne. This enabled computing inversions
in GF ð2mÞ with a critical path of dlog2ðm� 1Þe multiplica-
tions with two parallel multipliers [7]. Parallel k-chains pre-
sented below generalize N€ocker’s idea for k-chains.

Definition 5 (Parallel k-chain). A parallel k-chain for a positive
integer n is the following array v of two sequences of natural
number v0 and v1:

v ¼ v0ð0Þ; v0ð1Þ; . . . ; v0ðs1Þ
v1ð1Þ; . . . ; v1ðs2 � 1Þ; v1ðs2Þ

� 	
k

; (15)

where v0ðiÞ and v1ðiÞ are set by using the k-ary representation

n ¼Pblogk nc
i¼0 nik

i ¼ hnblogk nc; nblogk nc�1; . . .n1; n0ik as

follows:

� v0ðiÞ ¼ ki for 0 � i � blogk nc
� If n 6¼ kblogk nc, then v1ðiÞ ¼ v1ði� 1Þ þ ni�1v0ði� 1Þ

for 1 � i � dlogk ne and vð0Þð1Þ ¼ 0.
If n ¼ kblogk nc, then vðs1Þ ¼ n; otherwise, vðs2Þ ¼ n.

It follows directly from Definition 5 that the length s of a
parallel k-chain is:

s ¼ dlogk ne: (16)

Fig. 2. The numbers of double multiplications that are required to com-
pute inversions in GF ð2mÞ with 1 � m � 256 by using either IT, TIT,
Algorithm 2, or 3-chain algorithms.

TABLE 1
The Number of Double Multiplications Required for Inversions

Over NIST Binary Fields

Field GF ð2163Þ GF ð2233Þ GF ð2283Þ GF ð2409Þ GF ð2571Þ
IT 9 9 11 10 13
TIT/Algorithm 1 5 9 8 7 8
Algorithm 2 5 8 7 7 7
Optimal 3-chain 5 7 6 7 7
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Example 8. Because 232 ¼ h2; 2; 1; 2; 1i3, an inversion in

GF ð2233Þ can be computed with the following parallel
3-chain:

1; 3; 9; 27; 81
1; 7; 16; 70; 232

� 	
3

;

where v0ðiÞ ¼ 3i for 0 � i � 4 and v1ð1Þ ¼ v0ð0Þ, v1ð2Þ ¼
v1ð1Þþ 2v0ð1Þ, v1ð3Þ¼ v1ð2Þ þ v0ð2Þ, v1ð4Þ ¼ v1ð3Þþ 2v0ð3Þ,
and v1ð5Þ ¼ v1ð4Þ þ 2v0ð4Þ. The length is s ¼ s2 ¼ 5. This
translates into the algorithm given in Algorithm 4 that
computes inversions with a critical path of only five dou-
ble multiplications.

Remark 3. A parallel k-chain for n improves the critical path
if and only if the length of optimal k-chains for n is longer
than dlogk ne. In particular, if dkðnÞ � k, then it follows
directly from Corollary 1 that optimal k-chains for n have
the same length with the parallel k-chain and that one of
such optimal k-chains can be obtained with Algorithm 2.
Hence, using parallel k-chains for such n is guaranteed
not to offer any improvements.

Algorithm 4. Inversion in GF ð2233Þ using two HD
multipliers

Input:A 2 GF ð2233Þ; A 6¼ 0
Output: T2 ¼ A�1

1 T1  A	 1
2 T1  T1 � ðT1 	 1Þ � ðT1 	 2Þ j T2  T1

3 T1  T1 � ðT1 	 3Þ � ðT1 	 6Þ j
T2  T2 � ðT1 	 1Þ � ðT1 	 4Þ

4 T1  T1 � ðT1 	 9Þ � ðT1 	 18Þ j T2  T2 � ðT1 	 7Þ � 1
5 T1  T1 � ðT1 	 27Þ � ðT1 	 54Þ j

T2  T2 � ðT1 	 16Þ � ðT1 	 43Þ
6 T2  T2 � ðT1 	 70Þ � ðT1 	 151Þ
7 return T2 ¼ A�1

Table 2 collects the costs of inversions over the NIST
fields with different parallelization schemes. Sequential
inversions using IT and optimal addition chains are
included for convenience. As can be seen in Table 2, (par-
allel) 3-chains offer significant improvements over both
the traditional sequential techniques as well as the paral-
lelization technique presented by N€ocker [7]. Keeping in
mind that an HD multiplier with a latency comparable to
a normal multiplier occupies approximately twice the
area of the normal multiplier [20], we see that optimal
3-chains offer a significant reduction in latency with
approximately the same area requirements compared to
N€ocker [7]. Naturally, the requirement for a special type

of a multiplier may restrict the applicability of the tech-
nique in some applications. The use of parallel 3-chains
offers further improvements in latency, especially for

GF ð2233Þ, but not without a hefty penalty in area require-
ments. Hence, parallel 3-chains are likely to be a feasible
solution only in applications requiring extremely fast
inversions with loose area constraints.

Remark 4. The fact that critical paths achieved with parallel
k-chains are at least as short as the critical paths with
optimal k-chains does not violate Conjecture 1. This is
because the total number of double multiplications com-
puted by using a parallel k-chain is the same or larger
than that computed with an optimal k-chain but some of
them can be computed in parallel.

A different approach to parallel computation of inver-
sions in GF ð2mÞ was introduced by Rodr�ıguez-Henr�ıquez
et al. in [23]. Instead of aiming to compute multiplications
in parallel, they decomposed the inversion algorithm so
that one essentially runs two algorithms in parallel: one
based on squarings in GF ð2mÞ and the other on square roots
in GF ð2mÞ. Thanks to this decomposition, the squarings and
square roots can be computed faster, but the number of
multiplications on the critical path remains the same and
equals the length of an optimal addition chain for m� 1.
Multiplications are typically significantly slower than
squarings or square roots. Consequently, our approaches
(using either optimal 3-chains or parallel 3-chains) are likely
to offer faster inversions unless very fast multipliers are
available; e.g., the results in [23] were obtained using a bit-
parallel Karatsuba-Ofman multiplier that has a latency of
one clock cycle but occupies a very large area and operates
at a low clock frequency.

6 IMPLEMENTATIONS AND RESULTS

6.1 Architecture

An architecture for computing inversions using the TIT
algorithm was recently introduced in [15] and it can be used
directly with algorithms derived from 3-chains. This archi-
tecture employs the HD multiplier presented in [20]. Fig. 3
depicts the architecture and the following example shows
how the architecture is used in computing inversions; the
reader is referred to [15] for further details.

Example 9. The architecture of Fig. 3 computes an inversion
inGF ð2233Þ using Algorithm 3 as follows. In order to com-
pute the algorithm, the set of exponents used in the multi-
plexer should be e ¼ f1; 2; 4; 6; 18; 38; 114g. Line 1 of
Algorithm 3 is given directly with the rotation used at the
input. Line 2 is computed by setting r0 ¼ r1 ¼ r2 ¼ r3 ¼ 1

TABLE 2
The Lengths of the Critical Paths (Multiplications) for the Techniques for Parallel Inversions Over the NIST Fields

Field GF ð2163Þ GF ð2233Þ GF ð2283Þ GF ð2409Þ GF ð2571Þ Note

Itoh-Tsujii [17] 9 10 11 11 13 One multiplier
Opt. addition chain 9 10 11 10 12 One multiplier

N€ocker [7] 8 8 9 9 10 Two multipliers
Optimal 3-chain 5 7 6 7 7 One HDmultiplier
Parallel 3-chain 5 5 6 6 6 Two HDmultipliers
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and line 3 is computed with the selections r0 ¼ 0,
r1 ¼ 3, r2 ¼ 2, and r3 ¼ 1. The results of these compu-
tations are stored in the register file. Whenever R1 or
R2 from the register file are used as the first operand
(lines 4, 6, and 8), they are selected with r0 ¼ 2, other-
wise r0 ¼ 0. Whenever the third operand is used, the
rotation is computed from the already rotated second
operand. For example, on line 5, one first computes
the second operand ðB	 6Þ by selecting r1 ¼ 3 and
r2 ¼ 6. This result is then used to compute ðB	 12Þ
by selecting it with r1 ¼ 0 and rotating it again by 6
with the selection r2 ¼ 6. This is possible because the
DL-SIPO multiplier in the HD multiplier starts its
operation one clock cycle later than the DL-PISO mul-
tiplier [15]. When all lines of Algorithm 3 have been

processed, A�1 is available at the output.

6.2 ASIC Implementations Results

In this section, we provide synthesis results for the architec-
ture from Section 6.1. In order to have a fair comparison to
the previous works available in the literature, we have
selected 65-nm CMOS library for the synthesis on ASIC
technology. The architectures were synthesized using Syn-
opsys Design Compiler tools. The architecture was mod-
elled in VHDL and synthesized for different d, the digit
sizes of the HD multiplier (the same digit size was used in
both PISO and SIPO multipliers).

We chose fields based on the NIST recommendations
[11]. We implemented the architecture for the three fields
where using optimal 3-chains improves the results pre-
sented in [15], i.e., m 2 233; 283; 571f g. For the remaining
two fields, i.e.,m 2 f163; 409g, the results would be identical
with the results from [15]. In the implementations, we used
the following 3-chains that were selected from the sets of
optimal 3-chains:

� m ¼ 233: ð1; 2; 4; 6; 18; 38; 114; 232Þ3 (Algorithm 3)

� m ¼ 283: ð1; 3; 9; 19; 47; 94; 282Þ3
� m ¼ 571: ð1; 2; 4; 10; 30; 90; 270; 570Þ3:
The implementation results with any of the optimal 3-

chains are similar and, therefore, the 3-chain can be chosen
arbitrarily as long as it is optimal.

We investigated the performance of the proposed
scheme by varying the digit-size d. The digit-sizes were cho-
sen so that we found the minimum time required for an
inversion with every scheme. The syntheses results are
reported in Tables 3, 4, and 5, for m ¼ 233, m ¼ 283, and
m ¼ 571, respectively. The latency of a single multiplication
is q ¼ dm=de and the latency of a double multiplication is
q þ 1. The tables include minimum critical path delays
(CPD) given by the syntheses. The inversion times were
computed by assuming that the circuitry is clocked at the
maximum clock frequencies determined by the CPDs.

The results show that 3-chains with HD multipliers
lead to the fastest inverters available in the literature. We
stress that our main contributions are based on employ-
ing 3-chains for reducing the latency of inversions and it
is natural that the results come with the expense of larger
area requirements than traditional schemes, such as IT.
However, 3-chains also allow area-time trade-offs and
provide faster inversion than IT or TIT with the same
area requirements. Fig. 4 demonstrates this by showing
the area-time plots of the results given in Tables 3, 4, and
5. Fig. 4 shows that, as expected, using 3-chains leads to
faster inversions than TIT when the area requirements of
the two implementations are similar. As shown by Fig. 4,
the 3-chain scheme also achieves better timing with
smaller area than IT for all three fields when the digit-
size d gets large enough; i.e., 3-chains achieve faster
inversion times with approximately the same area as IT
and TIT.

When designing inverters for extremely high-perfor-
mance applications, one can increase d further and get even

Fig. 3. The inverter architecture introduced in [15] using an HD multiplier from [20].
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faster results by occupying more area. This is not possible to
this extent with IT because synthesizing inverters with large
d becomes very difficult and leads to poor CPDs and, conse-
quently, longer inversion times.

If the clock frequency used by the system is fixed and the
system cannot be clocked at the maximum frequency deter-
mined by the CPDs (e.g., if the maximum CPD of other
parts of the system is larger than that of the inverter), then

TABLE 3
ASIC (65-nm CMOS Standard Technology) Synthesis Results for the Inverter Using 3-Chains and its Comparison to Inverters Using
Optimal Addition Chains (Opt. AC) or IT, Which Has the Same Number of Multiplications, and TIT for Type 2 GNB over GF ð2233Þ for

Different Digit Sizes

Opt. AC / IT (DL-PIPOMultiplier) 3-chain (HDMultiplier)
d q q þ 1

Latency CPD
[ns]

Time
[ns]

Area
[mm2]

Latency CPD
[ns]

Time
[ns]

Area
[mm2]

8 30 31 312 0.98 305.76 30,776 226 1.55 350.30 57,215
10 24 25 252 1.18 297.36 36,059 184 1.68 309.12 68,197
12 20 21 212 1.42 301.04 41,259 156 1.82 283.92 80,711
14 17 18 182 1.57 285.74 46,272 135 2.01 271.35 92,084
16 15 16 162 1.71 277.02 51,844 121 2.18 263.78 103,492
20 12 13 132 2.10 277.20 62,469 100 2.48 248.00 126,936
24 10 11 112 2.45 274.40 74,076 86 2.66 228.76 150,291
26 9 10 102 2.69 274.38 78,729 79 2.97 234.63 161,962
30 8 9 92 2.95 271.40 90,490 72 3.37 242.64 184,882
34 7 8 82 3.19 261.58 101,245 65 3.59 233.35 207,650
39 6 7 72 3.63 261.36 114,231 58 4.17 241.86 236,791
47 5 6 62 4.34 269.08 136,594 51 4.94 251.94 282,507
59 4 5 52 5.43 282.36 169,434 44 6.30 277.20 351,667

TABLE 4
ASIC (65-nm CMOS Standard Technology) Synthesis Results for the Inverter Using 3-Chains and its Comparison to Inverters Using
Optimal Addition Chains (Opt. AC) or IT, Which Has the Same Number of Multiplications, and TIT for Type 6 GNB over GF ð2283Þ for

Different Digit Sizes

Opt. AC / IT (DL-PIPO Multiplier) TIT (HDMultiplier) [14] 3-chain (HDMultiplier)
d q q þ 1

Latency CPD
[ns]

Time
[ns]

Area
[mm2]

Latency CPD
[ns]

Time
[ns]

Area
[mm2]

Latency CPD
[ns]

Time
[ns]

Area
[mm2]

3 95 96 1,058 0.98 1,036.84 26,930 778 1.55 1,205.90 53,377 584 1.58 922.72 53,458
4 71 72 794 1.02 809.88 31,573 586 1.60 937.60 65,092 440 1.62 712.80 65,152
7 41 42 464 1.39 644.96 46,482 346 1.95 674.70 102,332 260 1.98 514.80 102,419
15 19 20 222 2.26 501.72 85,943 170 2.71 460.70 199,123 128 2.77 354.56 199,357
29 10 11 123 3.84 472.32 156,141 98 4.12 403.76 370,651 74 4.16 307.84 370,753
36 8 9 101 4.60 464.60 190,573 82 5.08 416.56 455,238 62 5.10 316.20 455,538
41 7 8 90 5.10 459.00 215,265 74 5.57 412.18 516,789 56 5.59 313.04 516,903
48 6 7 79 5.91 466.89 250,518 66 6.43 424.38 615,322 50 6.45 322.50 601,863

TABLE 5
ASIC (65-nm CMOS Standard Technology) Synthesis Results for the Inverter Using 3-Chains and its Comparison to Inverters Using

Optimal Addition Chains (Opt. AC) and TIT for Type 10 GNB Over GF ð2571Þ for Different Digit Sizes

Opt. AC (DL-PIPO Multiplier) TIT (HDMultiplier) [14] 3-chain (HDMultiplier)
d q q þ 1

Latency CPD
[ns]

Time
[ns]

Area
[mm2]

Latency CPD
[ns]

Time
[ns]

Area Latency CPD
[ns]

Time
[ns]

Area
[mm2]

11 52 53 638 2.03 1,295.14 164,328 434 2.81 1,219.54 433,405 380 2.85 1,083.00 433,495
13 44 45 542 2.30 1,246.60 190,443 370 3.95 1,461.50 506,675 324 3.09 1,001.16 506,689
22 26 27 326 3.57 1,163.82 307,559 226 4.01 906.26 836,351 198 4.07 805.86 836,491
26 22 23 278 4.09 1,137.02 361,435 194 4.48 869.12 984,782 170 4.52 768.40 984,980
28 21 22 266 4.20 1,117.20 392,682 186 4.70 874.20 1,058,140 163 4.76 775.88 1,058,230
29 20 21 254 4.37 1,109.98 403,217 178 4.89 870.42 1,094,805 156 4.91 765.96 1,094,937
31 19 20 242 4.71 1,139.82 433,000 170 5.10 867.00 1,167,750 149 5.12 762.88 1,167,844
34 17 18 218 4.93 1,074.74 468,577 154 5.40 831.60 1,277,456 135 5.42 731.70 1,277,504
36 16 17 206 5.25 1,081.50 493,956 146 5.78 843.88 1,350,567 128 5.79 741.12 1,350,704
39 15 16 194 5.60 1,086.40 536,060 138 6.03 832.14 1,461,921 121 6.10 738.10 1,462,033
41 14 15 182 5.76 1,048.32 559,529 130 6.29 817.70 1,535,087 114 6.32 720.48 1,535,168
44 13 14 170 6.29 1,069.30 597,902 122 6.85 835.70 1,644,678 107 6.91 739.37 1,644,759

J€ARVINEN ET AL.: A GENERALIZATION OF ADDITION CHAINS AND FAST INVERSIONS IN BINARY FIELDS 2429



using 3-chains provides even more significant speedups
compared to IT because the speedup is determined by the
latency columns of the tables, and not by the time columns.

7 OTHER APPLICATIONS FOR k-CHAINS

It is widely known that addition chains can be used for com-
puting general exponentiations An. Similarly, 3-chains and
HDmultipliers can be used for computing general exponen-
tiations An, where A 2 GF ð2mÞ and n is an arbitrary positive
integer. The special structure of n in the case of inversions,
where n ¼ 2m � 2, allowed one to find an efficient algorithm
directly for an entire n because it was enough to find an
optimal k-chain for m� 1 which is small. Unfortunately, n
is typically very large in practical applications which often
prevents one from finding an optimal 3-chain for an entire
arbitrary n. If n is predefined, it is possible to derive an opti-
mal, or at least piecewise optimal, result offline and use it
for efficient exponentiation by hardcoding it. Another
option is to find a short, but probably sub-optimal, 3-chain
using Algorithm 2. The use of even these suboptimal
3-chains instead of regular binary addition chains results in
significant speedups for general exponentations An if an
HD multiplier is available: the exponentiation requires
blog3 nc þ dðd3ðnÞ � 1Þ=2e double multiplications instead of
blog2 nc þ h2ðnÞ multiplications. General exponentiations
can be accelerated also by using parallel 3-chains and, in
that case, the latency reduces to only dlog3 ne double
multiplications.

The proposed techniques based on 3-chains can have
importance in basically all applications that require expo-
nentiations (or specifically inversions) in binary fields.
Speeding up pseudo-random number generation (PRNG)
using inversions in finite fields is an example of this. In [24],
Eichenauer-Herrmann and Niederreiter proposed a PRNG
scheme where a sequence of pseudo-random numbers is
retrieved from gi 2 GF ðqÞ defined by the recursion

gi ¼ ag�1i�1 þ b; i � 1: (17)

Fig. 4. Area-time plots of the ASIC implementations for (a) m ¼ 233, (b)
m ¼ 283, and (c)m ¼ 571.

TABLE 6
The Number of Double Multiplications with IT and
Optimal 3-Chains for the Fields with Optimal Nor-
mal Bases Proposed to Be Used for PRNG in [24]

m IT Opt. 3-chain Reduction

30 6 4 �33%
33 5 4 �20%
35 6 4 �33%
36 7 4 �43%
58 7 4 �43%
60 8 5 �38%
65 6 5 �17%
66 7 5 �29%
119 9 6 �33%
130 8 5 �38%
131 8 6 �25%
251 11 7 �36%
254 12 6 �50%
508 14 7 �50%
509 13 7 �46%
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Clearly, the computational cost of the scheme is dominated
by the inversion: g�1i�1 ¼ g2

m�2
i�1 .

Eichenauer-Herrmann and Niederreiter proposed
using GF ð2mÞ with an optimal normal basis such that m
is reasonably close to a power of two [24]. The suggested
m are collected in Table 6 together with the costs of
inversions using IT that was suggested in [24] and an
optimal 3-chain. Clearly, using optimal 3-chains and HD
multipliers would allow significant reductions (between
17-50 percent) in the latency of the PRNG scheme intro-
duced in [24].

8 CONCLUSIONS

In this paper, we discussed a generalization of addition
chains called k-chains. Especially, we showed how 3-chains
can lead to very fast computation of inversions in GF ð2mÞ if
one can employ an HD multiplier. Using an optimal 3-chain
leads to significant speedups over both traditional sequen-
tial solutions such as [17], [18], [19] and parallel solutions
such as [7], [23]. It is notable that 3-chains offer speed
improvements over N€ocker’s parallel approach from [7]
with approximately the same area requirements because the
area of an HD multiplier is approximately twice the area of
the single multiplier having the same latency. We also intro-
duced parallel k-chains which can lead to even more effi-
cient parallelizations, especially, if n is very large. Practical
consequences of parallel k-chains will be studied more thor-
oughly in the future.

The findings of this paper can be utilized also in the con-
text of general exponentiations and can have importance in
various applications using finite field arithmetic. An exam-
ple of such an application is the PRNG via inversions in
binary fields. As future research, we plan to study the use of
Algorithm 2 for general exponentiations in practice. It is
also possible that (parallel) k-chains have independent
interest in applications beyond finite field arithmetic with
HD multipliers and, hence, we encourage future research
on applications of k-chains.
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