
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 4, APRIL 2018 901

Reliable and Fault Diagnosis Architectures for Hardware and Software-Efficient
Block Cipher KLEIN Benchmarked on FPGA

Anita Aghaie, Student Member, IEEE, Mehran Mozaffari Kermani, Senior Member, IEEE,
and Reza Azarderakhsh, Member, IEEE

Abstract—Security-sensitive usage models, such as implantable and
wearable medical devices are prone to algorithmic cryptographic attacks
as well as malicious implementation attacks. The cryptographic algo-
rithms in these cryptosystems, such as lightweight block ciphers utilized
in constrained applications, face significant tradeoff between the high
level of security and the efficiency of their implementation metrics.
For thwarting fault analysis attacks, among effective variants of active
implementation attacks, and also to detect natural faults, efficient fault
diagnosis schemes for these lightweight block ciphers are essential.
In this paper, for the first time, we propose error detection schemes
for lightweight block cipher, KLEIN, to ameliorate its error resiliency
with low hardware complexity. The proposed fault diagnosis architec-
tures are for linear and nonlinear components of this cipher. We also
consider the notion of fault space transformation for lightweight cryp-
tography and present its potential complications. The implementation
of the proposed schemes through variants of Xilinx field-programmable
gate arrays and the error coverage assessed with fault injection simu-
lations show the effectiveness of the proposed schemes with acceptable
footprints.

Index Terms—Fault detection, field-programmable gate array
(FPGA), KLEIN, signature-based scheme.

I. INTRODUCTION

For providing different security properties, we use cryptographic
algorithms which are publicly known. To obtain the secret key,
attackers can use algebraic attacks (not efficient in most cases) or
side-channel attacks, such as fault attacks through observation of
the corresponding erroneous outputs. In choosing the countermea-
sures for such attacks, not only one needs to achieve high error
coverage, but the underlying countermeasures need not to undermine
the implementation objectives. For instance, good choices of error
detection schemes for lightweight cryptography would not impose
much area/power consumption overhead to the original lightweight
algorithms.

In this paper, among the lightweight block ciphers presented to
date, such as PRESENT, NOEKEON, and SEA which are efficient
in terms of just hardware or just software designs, we have chosen
a family of block ciphers, i.e., KLEIN [1], which is designed for
resource-constrained devices (efficient in software on legacy sensor
platforms and at the same time, in the hardware implementations).

Manuscript received March 10, 2017; revised June 4, 2017; accepted
August 2, 2017. Date of publication August 17, 2017; date of current ver-
sion March 29, 2018. This work was supported by the U.S. Federal Agency
from the U.S. Department of Commerce, National Institute of Standards and
Technology under Award 60NANB16D245. This paper was recommended
by Associate Editor P. Leong. (Corresponding author: Mehran Mozaffari
Kermani.)

A. Aghaie is with the Department of Electrical and Microelectronic
Engineering, Rochester Institute of Technology, Rochester, NY 14623 USA
(e-mail: aa6964@rit.edu).

M. Mozaffari Kermani is with the Department of Computer Science and
Engineering, University of South Florida, Tampa, FL 33620 USA (e-mail:
mehran2@usf.edu).

R. Azarderakhsh is with the Department of Computer and Electrical
Engineering and Computer Science, Florida Atlantic University, Boca Raton,
FL 33431 USA (e-mail: razarderakhsh@fau.edu).

Digital Object Identifier 10.1109/TCAD.2017.2740286

Furthermore, we note that security analysis shows KLEIN has con-
servative security margin against various cryptanalyses. Similar to
other substitution-permutation networks (SPNs), it has round-based
structure for data processing; however, the key schedule has been
realized from a Feistel network design (to prevent key recovering)
which can easily boost security margin.

Cryptographic algorithms are prone to malicious fault
attacks [2]–[4] and natural errors caused due to alpha particles
from cosmic rays creating energetic neutrons, thermal neutrons, and
the like, whose detection has been the center of the previous works,
e.g., for cryptographic applications [5]–[10]. Our main contributions
in this paper are summarized as follows.

1) In this paper, we have carefully chosen the proposed error
detection schemes so that they are applicable to lightweight
block ciphers which have similar structures as KLEIN.
Specifically, we propose signature-based schemes which can
be tailored not to impractically undermine the performance
and implementation metrics of the original implementations.
The proposed schemes can be generalized to KLEIN-like block
ciphers (such as Mysterion, LED, SKINNY) and customized
in terms of error coverage and overhead. For instance, the
signature-based schemes for lightweight cryptography based on
column-wise approach can be tailored to have parity (for sin-
gle faults), interleaved parity (for burst faults), or column-wise
cyclic-redundancy check. We also note that the recomputa-
tion schemes with encoded operands presented in this paper
do not undermine the area and power consumption of the
original implementations of lightweight block ciphers imprac-
tically, and are able to detect both transient and permanent
faults in the key schedule unit. Our error detection simulations
and hardware platform implementations confirm such achieved
constraints.

2) Fault space transformation (FST) remedies are also pre-
sented for lightweight cryptography and the complications are
assessed.

3) We benchmark the proposed architectures to assess their abil-
ity to detect transient and permanent faults by performing
fault injection simulations. Moreover, we implement the
proposed error detection architectures on Xilinx field-
programmable gate array (FPGA) to confirm the achieved
objectives.

II. PRELIMINARIES

Data processing of KLEIN is based on SPN architecture with
round transformations in which it has 12/16/20 rounds for KLEIN-
64/80/96, respectively. This data process in the encryption routine
consists of four operations in each round, i.e., AddRoundKey, a
straightforward modulo-2 addition of round key with intermediate
ciphertexts, SubNibbles, nonlinear S-boxes for each input nibble,
RotateNibbles, rotating the intermediate nibbles, and MixNibbles,
which uses maximum distance separable (MDS) matrices as linear

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:aa6964@rit.edu
mailto:mehran2@usf.edu
mailto:razarderakhsh@fau.edu
http://www.ieee.org/publications_standards/publications/rights/index.html


902 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 4, APRIL 2018

Fig. 1. Proposed error detection architecture for KLEIN-64/80/96 encryption.

TABLE I
PARITY (PAR.) AND INTERLEAVED PARITY (IPAR.) BITS OF 4-BIT INVOLUTIVE S-BOX IN HEXADECIMAL FORM

function over the nibbles. All of these operations are illustrated sepa-
rately in details on the left side of Fig. 1 denoted as the data process
part.

The KLEIN key schedule outputs the round-keys, e.g., in the
case of 64-bit key, the initial subkey (sk1) is divided to two 4-
byte tuples (sk1

0+j
�

sk1
1+j

�
sk1

2+j
�

sk1
3+j), j = 0, 4. In the first

step, each 4-byte unit is shifted one byte to the left cyclically as
(sk1

1+j
�

sk1
2+j

�
sk1

3+j
�

sk1
0+j), j = 0, 4. In the second step, the right

tuple becomes the next left tuple, and the remaining 4-byte tuple is
modulo-2 added with the right one and in the last step, the round
counter i is modulo-2 added with the third-byte in the left tuple.
Moreover, in the right tuple, the second and the third bytes are sub-
stituted by the KLEIN S-box as shown in the right side of Fig. 1 in
the key schedule part.

III. PROPOSED FAULT DETECTION ARCHITECTURES

In this section, through signature-based and recomputing with
encoded operands approaches, we present the following schemes to
detect both transient and permanent faults in all components of the
cipher. The schemes are also shown in Fig. 1 and are described in
details below.

A. Proposed Schemes for AddRoundKey

Our initial proposed scheme is applied to AddRoundKey (State,
ski) which is the modulo-2 addition of the round-key ski, where
iε[1, NR] and NR is the number of rounds. In this scheme, the sig-
natures of inputs are modulo-2 added to derive the output signature
in each round, i.e., ˆSig.(O) = Sig.(Si) ⊕ Sig.(ski), with “hat” denot-
ing the predicted signature as shown in the bottom of Fig. 1 as a
modulo-2 addition gate.

B. Proposed Schemes for RotateNibbles

The proposed signature-based error detection scheme is not
confined to a particular signature. Furthermore, the signature-
based scheme is applicable to the third operation in each round,
RotateNibbles (State), which performs a left cyclic shift in inputs,

e.g., parity signature of input nibbles are equal to the output nibbles
signatures as shown in the left side of Fig. 1 in the RotateNibbles
part.

C. Proposed Schemes for SubNibbles (S-Boxes)

The other operation in data processing, SubNibbles (state), is per-
formed by substituting the state through 4×4 involutive S-boxes. For
the KLEIN S-boxes, we propose a fine-tuned signature-based scheme
taking into account two hardware implementation approaches, i.e.,
look-up table (LUT)-based and logic gate-based. Our case study of
(interleaved) parity-based scheme is based on deriving the predicted
parity bits to compare with the actual ones to detect errors. We pro-
pose the (interleaved) parity-based scheme for LUT-based approach
of the 4-bit involutive S-boxes as shown in Table I.

In the second approach, for each 4-bit involutive S-box, we suppose
the 4-bit input to the S-box as (a, b, c, d) and the 4-bit output as
(a′, b′, c′, d′), with ∨ representing an OR gate, then, we have the
following equations:

a′ = āc̄ ∨ b̄c̄d ∨ ābd ∨ abcd̄

b′ = b̄c̄d̄ ∨ āb̄c̄ ∨ bcd̄ ∨ dbc̄ ∨ ab̄cd

c′ = āb̄d̄ ∨ ab̄c ∨ acd ∨ bc̄d

d′ = ac̄d̄ ∨ abc̄ ∨ b̄cd̄ ∨ ab̄c ∨ āb̄c̄d ∨ ābcd. (1)

Below are the predicted (interleaved) parities

P̂S = d̄c̄a ∨ ācd ∨ abc
ˆ

P(0)
S = cb̄d̄ ∨ āc̄bd̄ ∨ acd̄ ∨ ab̄c ∨ ab̄c̄d ∨ abc̄d ∨ ābcd

ˆ
P(1)

S = db̄ ∨ ad ∨ ab̄c̄ ∨ ābd̄c̄. (2)

D. Proposed Schemes for MixNibbles

In this section, the signature-based error detection schemes for the
permutation component of KLEIN, MixNibbles, are proposed (also
refer to Fig. 1). The operation inputs {ai

0, ai
1, . . . , ai

15} in the ith
round, are divided to two 8-nibbles in the form of polynomials over



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 4, APRIL 2018 903

(a)

(b)

(c)

Fig. 2. Proposed error detection of key schedule for KLEIN. (a) KLEIN-64.
(b) KLEIN-80. (c) KLEIN-96.

GF(24) in which each of these tuples is multiplied modulo x4 + 1
with the following MDS matrix M to produce {si

0, si
1, . . . , si

15}:

S = M × C =⇒

⎛
⎜⎜⎝

s0+j
�

s1+j
s2+j

�
s3+j

s4+j
�

s5+j
s6+j

�
s7+j

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

m0 m1 m2 m3
m4 m5 m6 m7
m8 m9 m10 m11
m12 m13 m14 m15

⎞
⎟⎟⎠ ×

⎛
⎜⎜⎝

a0+j
�

a1+j
a2+j

�
a3+j

a4+j
�

a5+j
a6+j

�
a7+j

⎞
⎟⎟⎠

M =

⎡
⎢⎢⎣

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎤
⎥⎥⎦. (3)

We propose column signature-based scheme for respective error
detection in which the modulo-2 addition of the each column in the
output matrix S is equal to that of the input matrix A as shown in the
left side of Fig. 1. The modulo-2 addition of each column of matrix
M is equal to “1.” The other signature-based scheme (interleaved
cumulative column signature) is derived from modulo-2 addition of
odd row elements with each other and likewise for the even ones, for
example

s0 ⊕ s4 = 3.a0 + 2.a2 + 3.a4 + 2.a6. (4)

E. Proposed Schemes for Key Schedule

Different lengths of key (64, 80, 96) are applied to the KLEIN key
schedule, in parallel with the data process unit. Since the required
RoundKey for the cipher should be of the same-size as the 64-bit

TABLE II
THREE FAULT MODELS USED TO INJECT FAULTS FOR KLEIN-64

AND THEIR RESPECTIVE ERROR COVERAGE

input and output, both of key schedule units for the key sizes of
80 and 96 bits provide the RoundKey output as the 64-bit subkey
by considering just the leftmost 64 bits of the generated RoundKey.
Therefore, our proposed error detection schemes for the key schedule
of KLEIN are applicable to all of these key sizes (64, 80, and 96 bits)
shown in Fig. 2, and we take the following steps for error detection.

Step 1: Each of the tuples has a one-byte left cyclic shift; thus,
we propose the signature-based schemes similar to RotateNibbles.

Step 2: The Feistel-like structure of the key generation gives us
freedom to propose two error detection schemes, i.e., signature-based
and recomputing approach. In the former one, the signature of both
tuple inputs before Feistel structure is equal to the output tuples sig-
nature. Given the potential limitation of the signature-based scheme
in detecting all types of faults, using the proposed recomputations,
one can expand the error detection surface.

Step 3: Each tuple can apply the recomputing with rotated operands
approach (a variant of time redundancy scheme with the difference
of rotating the tuples in the second round to detect the faults), and
the signature-based error detection scheme. For instance, in the left
tuple (most significant bits), the signature-based scheme is used for
modulo-2 addition of the third byte with the counter number similar
to AddRoundKey operation. This critical place is a key point for dif-
ferential fault attack (DFA) for KLEIN to inject faults by changing the
counter number i to generate a different key for the same round [4].
The right tuple which utilizes same S-boxes (one used in data pro-
cess) in the third and second bytes, uses the same signature-based
scheme for SubNibbles.

Our proposed schemes are capable of deteriorating classic and
biased-fault attacks. For DFA attacks, in general, compared to the
error detection schemes that are not practical for lightweight block
ciphers, our proposed schemes get to high error coverage with low
overhead (that can be customized). We have considered stuck-at fault
models following the models in [11]. Applying the proposed schemes,
covering both transient and permanent faults, provides efficient error
detection in particular for the SubNibbles and MixNibbles operations.
Nevertheless, the presented variants (parity and interleaved parity)
are among other examples of the general signature-based schemes
in LUT-based and logic gate structures; the merit of the proposed
approaches is that they can be customized for all MDS matrices used
in the lightweight SPN architectures.

IV. ERROR SIMULATIONS AND FPGA BENCHMARK

Our schemes provide acceptable coverage with low-cost implemen-
tations as discussed in this section.

A. Error Coverage

The injected internal faults are modeled as transient and perma-
nent faults which are considered throughout this paper. These single
and multiple stuck-at faults occur in the ciphertext or intermediate
states for which the single-bit errors are not simulated due to their



904 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 4, APRIL 2018

TABLE III
IMPLEMENTATION RESULTS FOR THE ORIGINAL KLEIN-64/80/96 ENCRYPTION AND OUR

PROPOSED ERROR DETECTION SCHEMES ON VIRTEX-7 (XC7VX330T)

TABLE IV
IMPLEMENTATION RESULTS FOR THE KLEIN-64 ENCRYPTION WITH OUR PROPOSED ERROR DETECTION

SCHEMES ON TWO OTHER XILINX FPGA FAMILIES FOR SUBNIBBLES AND MIXNIBBLES

perfect detection (100% error detection) by our proposed signature-
based scheme. One merit of the error injection in this section is
that it is general and can be applied to similar architectures. The
proposed schemes would be applicable to the Advanced Encryption
Standard (AES)-like ciphers regardless of hardware platforms. Noting
that in practice, flipping the exact bit or byte might be impractical for
attackers, we simulate two, three, and multiple stuck-at faults as well
to verify the error coverage of our proposed error detection schemes
as presented in Table II. Through using two fault injection exper-
iments, i.e., 10 000 and 100 000 faults which are different in fault
injection locations, type of faults, and their counts for KLEIN-64,
the error indication flags are derived. A linear-feedback shift register-
based architecture injects the faults in the test bench, applied to both
parts of the KLEIN cipher. The simulation results show that the pro-
posed signature-based schemes for both parts are capable of detecting
stuck-at faults with high error coverage as shown in Table II. This
aforementioned error coverage includes that of the control unit as
well (we also note that we have injected the faults in the eventual
comparison XOR gate; nevertheless, this very gate can be hardened
with low overhead). Finally, we note that the example subsets of the
proposed approaches include simple parity capable of detecting odd
faults (including single faults which is the ideal case for the attack-
ers), interleaved parity covering hardware defects resulting from burst
faults, e.g., adjacent faults, and linear codes with the capability of
detecting random errors of different multiplicity.

B. Implementation Results

We present the overhead assessment through FPGA implementa-
tion as shown in Table III. The Virtex-7 (xc7vx330t) FPGA family
with VHDL as design entry in the integral of squared error version
14.7 has been utilized for the original and fault diagnosis structures in
S-boxes (logic gate-based) and MixNibbles which are the most area
consuming units. In general, all of the KLEIN types have the area
and delay overheads under 7% and 12%, respectively, which shows
the low cost of the proposed schemes. In order to benchmark the
results on other FPGA platforms, we also present Table IV. This table
summarizes the overheads of our proposed schemes (in parentheses)
with respect to the original KLEIN encryption operation through two
other Xilinx families (Spartan-6Q and Zynq) that are widely used.
As a result, the proposed implemented schemes with the mentioned
reasonable overheads and for high error coverage are efficient to real-
ize more reliable hardware implementations of KLEIN. We note that
although there has not been prior work on error detection of KLEIN,

the overhead of the proposed error detection schemes is close to the
fault diagnosis overheads of new lightweight cipher Midori (AES-like
cipher) [12].

We note that, typically, in lightweight block ciphers, the most
expensive components in terms of area are the S-boxes (SubNibbles)
and the MDS matrices, which provide diffusion and confusion by
nonlinear functions through S-boxes and linear transformations (XOR

operation), respectively. This point has given us an accurate view to
analyze the results of Table III, in which the implementation data for
the proposed schemes for KLIEN-64 and KLEIN-80 are close or the
same, with a minor variation for KLEIN-96. The first reason for such
observation is that the difference of these types of KLEIN is primar-
ily in the key schedule process which is minor, i.e., the number of
modulo-2 addition gates with the same number of S-boxes. Moreover,
the FPGA architectures do not closely follow the theoretical results
due to mapping and place and routing processes.

C. Fault Space Transformation for KLEIN

In what follows, we also present the complications of adopt-
ing FST for lightweight block ciphers similar to KLEIN cipher.
In FST for the AES [13], noting that biased fault attacks weaken
redundancy-based countermeasures using the precise quantification
of the bias of a fault model regarding the variance of the fault
probability distribution, a generic mapping is done for data storage
during encryption/decryption operations of AES-like ciphers. This
increases the security of expensive redundancy-based countermea-
sures against both DFA- and DFIA-based attacks [13]. In other words,
this approach changes the odds of occurrence of faults injected dur-
ing the round operations by mapping them to different numbers with
a special function.

We have applied this method to KLEIN. Implementing the “naive”
spatial redundancy of KLEIN, we need 232 occupied slices on
Virtex-7 and that shows the high area overheads with simple hard-
ware spatial redundancy. Moreover, we have implemented the spatial
redundancy with FST method that applies MixNibbles as a map-
ping function W through this redundancy and using InvMixNibbles
as its inverse W−1. We note that although KLEIN allows two types of
decryption through: 1) encryption transformations but through modes
of operations and 2) through reverse transformations, this might not
be the case for other lightweight block ciphers and that adds to the
complications of using FST. Our implementations show that higher
area, i.e., 239 occupied slices, is achieved, as expected, due to the
W function. Because of the KLEIN AES-like structure, applying the



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 4, APRIL 2018 905

pipeline method, which utilizes MixNibbles operation as W function,
improves the spatial redundancy algorithm with occupying 235 slices
on Virtex-7.

V. CONCLUSION

In this paper, we have proposed efficient error detection schemes,
i.e., signature-based and recomputing with encoded operands
approaches, to increase the reliability of the cipher KLEIN. The pro-
posed fault detection schemes are presented for different parts in
key schedule and data processing including signature-based schemes
for the only nonlinear component, S-box, with both logic gate-
based and LUT structures. We have benchmarked the proposed
architectures to assess their ability to detect transient and perma-
nent faults by performing fault injection simulations. Moreover,
we have implemented the proposed error detection architectures
on different Xilinx FPGA families and adopted the FST approach
for the KLEIN cipher. As a result, the proposed efficient error
detection architectures can be feasibly utilized for KLEIN, are
platform- and architecture-oblivious, and are suitable for the required
performance, reliability, and implementation metrics of constrained
applications.

REFERENCES

[1] Z. Gong, S. Nikova, and Y. W. Law, “KLEIN: A new family of
lightweight block ciphers,” in Proc. Radio Frequency Identification
Security Privacy Issues, Amherst, MA, USA, 2011, pp. 1–18.

[2] E. Biham and A. Shamir, “Differential fault analysis of secret key cryp-
tosystems,” in Proc. Adv. Cryptol., Santa Barbara, CA, USA, 1997,
pp. 513–525.

[3] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of
checking cryptographic protocols for faults,” in Proc. Int. Conf. Theory
Appl. Cryptograph. Techn., Konstanz, Germany, 1997, pp. 37–51.

[4] H. Yoshikawa, M. Kaminaga, A. Shikoda, and T. Suzuki, “Round addi-
tion DFA on lightweight block ciphers with on-the-fly key schedule,”
J. World Acad. Sci., vol. 17, no. 9, pp. 1743–1746, 2015.

[5] X. Guo and R. Karri, “Recomputing with permuted operands:
A concurrent error detection approach,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 32, no. 10, pp. 1595–1608,
Oct. 2013.

[6] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “A lightweight high-
performance fault detection scheme for the advanced encryption standard
using composite fields,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 19, no. 1, pp. 85–91, Jan. 2011.

[7] X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri, “Security analy-
sis of concurrent error detection against differential fault analysis,”
J. Cryptograph. Eng., vol. 5, no. 3, pp. 153–169, 2015.

[8] M. Mozaffari-Kermani, R. Azarderakhsh, and A. Aghaie, “Fault detec-
tion architectures for post-quantum cryptographic stateless hash-based
secure signatures benchmarked on ASIC,” ACM Trans. Embedded
Comput. Syst. Special Issue Embedded Device Forensics Security State
Art Adv., vol. 16, no. 2, pp. 1–19, 2017.

[9] N. F. Ghalaty, B. Yuce, and P. Schaumont, “Analyzing the efficiency of
biased-fault based attacks,” IEEE Embedded Syst. Lett., vol. 8, no. 2,
pp. 33–36, Jun. 2016.

[10] N. Joshi, K. Wu, J. Sundararajan, and R. Karri, “Concurrent error
detection for involutional functions with applications in fault-tolerant
cryptographic hardware design,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 25, no. 6, pp. 1163–1169, Jun. 2006.

[11] T. Fuhr, E. Jaulmes, V. Lomné, and A. Thillard, “Fault attacks on AES
with faulty ciphertexts only,” in Proc. Conf. Fault Diagnosis Tolerance
Cryptograp., Santa Barbara, CA, USA, 2013, pp. 108–118.

[12] A. Aghaie, M. M. Kermani, and R. Azarderakhsh, “Fault diagnosis
schemes for low-energy block cipher Midori benchmarked on FPGA,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 4,
pp. 1528–1536, Apr. 2017.

[13] S. Patranabis, A. Chakraborty, D. Mukhopadhyay, and P. P. Chakrabarti,
“Fault space transformation: A generic approach to counter differen-
tial fault analysis and differential fault intensity analysis on AES-like
block ciphers,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 5,
pp. 1092–1102, May 2017.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


