
86 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 64, NO. 1, JANUARY 2017

Post-Quantum Cryptography on FPGA Based on
Isogenies on Elliptic Curves

Brian Koziel, Reza Azarderakhsh, Mehran Mozaffari Kermani, and David Jao

Abstract— To the best of our knowledge, we present the
first hardware implementation of isogeny-based cryptography
available in the literature. Particularly, we present the first imple-
mentation of the supersingular isogeny Diffie-Hellman (SIDH)
key exchange, which features quantum-resistance. We optimize
this design for speed by creating a high throughput multiplier
unit, taking advantage of parallelization of arithmetic in F p2 , and
minimizing pipeline stalls with optimal scheduling. Consequently,
our results are also faster than software libraries running affine
SIDH even on Intel Haswell processors. For our implementation
at 85-bit quantum security and 128-bit classical security, we
generate ephemeral public keys in 1.655 million cycles for Alice
and 1.490 million cycles for Bob. We generate the shared secret
in an additional 1.510 million cycles for Alice and 1.312 million
cycles for Bob. On a Virtex-7, these results are approximately
1.5 times faster than known software implementations running
the same 512-bit SIDH. Our results and observations show
that the isogeny-based schemes can be implemented with high
efficiency on reconfigurable hardware.

Index Terms— Elliptic curve cryptography (ECC), field
programmable gate array (FPGA), isogeny-based cryptography,
post-quantum cryptography.

I. INTRODUCTION

PUBLIC-KEY cryptography is the foundation of internet
security as we know it today, allowing for two parties

to communicate securely without the need to exchange confi-
dential key material in advance. All public key cryptosystems
in widespread use today are based on either the problem
of factoring large integers (e.g., RSA) or the problem of
computing discrete logarithms in some group such as elliptic
curves. Elliptic curve cryptography (ECC) was invented by
Victor Miller [1] and Neal Koblitz [2] in 1985 with the
aim of providing an alternative to the popular public-key
cryptosystems of the time, such as multiplicative group over
finite field - RSA. In recent years, ECC has been the primary
cryptographic protocol for secure web pages, online banking,

Manuscript received May 10, 2016; revised July 12, 2016; accepted
July 26, 2016. Date of publication October 31, 2016; date of current version
January 6, 2017. This paper was recommended by Associate Editor Y. Ha.

B. Koziel is with Texas Instruments, Dallas, TX 75243 USA (e-mail:
kozielbrian@gmail.com).

R. Azarderakhsh is with the Department of Computer, Electrical Engi-
neering and Computer Science, and I-SENSE, Florida Atlantic University,
Boca Raton, FL, USA (e-mail: razarderakhsh@fau.edu).

M. Mozaffari Kermani is with the Electrical and Microelectronic Engineer-
ing Department, Rochester Institute of Tecchnology, Rochester, NY, USA
(e-mail: mmkeme@rit.edu).

D. Jao is with the Department of Mathematics and Optimziation, University
of Waterloo, ON, CANADA (e-mail: djao@math.uwaterloo.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2016.2611561

encrypted email, and many other types of data. Breaking these
would have significant ramifications for electronic privacy
and security. ECC adoption has been accelerated through the
recommendation of several standardization bodies including
IEEE, NIST, ANSI, IETF, and the like. In comparison to RSA,
ECC represents the most efficient public key cryptosystems
available today for a desired level of security. In a seminal
paper from 1994, Shor showed that both of these problems
would be easy to solve on a quantum computer, one which
uses quantum mechanics to perform calculations faster than
any classical computer can achieve. Since then, much work has
been done on the topic of constructing post-quantum public-
key cryptosystems which would be secure against quantum
computers. Quantum computers are different from digital com-
puters based on transistors. Large-scale quantum computers
will be able to solve some currently hard problems much
quicker than any classical computer using certain algorithms.
Although large-scale quantum computers do not yet exist,
the goal is to develop quantum-resistant cryptosystems in
anticipation of these quantum threats. Recent announcements
by the US government of upcoming plans to require post-
quantum cryptosystems for all future US government security
applications have provided new impetus to develop and deploy
post-quantum cryptosystems [3].

Isogeny-based cryptography is a method of designing
cryptosystems based on isogenies on elliptic curves which
computationally constructs an algebraic map between elliptic
curves. In particular, unlike traditional ECC, isogeny com-
putations over supersingular elliptic curves appear resistant
to quantum attacks, and hence such systems are suitable for
quantum-resistant cryptography. Originally, Rostovtsev and
Stolbunov [4] presented a key exchange based on isogenies
of ordinary elliptic curves in 2006. However, Childs et al. [5]
discovered a quantum algorithm to compute isogenies on ordi-
nary curves in subexponential time in 2010, only assuming the
Generalized Riemann Hypothesis. To address these quantum
concerns, Jao and De Feo [6] created a key exchange based
instead on isogenies of supersingular elliptic curves in 2011.
The scheme features quantum resistance and the best known
quantum attack has complexity O(p1/6). Several other papers
on the topic have appeared in the literature such as fast
isogeny computations and zero-knowledge identification [7],
undeniable signatures [8], key compression [9], and projec-
tive isogeny formulas [10]. Isogeny-based cryptography is a
strong candidate for standardized PQC applications because
it resembles its primitive, ECC, features very small key sizes
and signature sizes, and provides forward secrecy.

1549-8328 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

KOZIEL et al.: POST-QUANTUM CRYPTOGRAPHY ON FPGA BASED ON ISOGENIES ON ELLIPTIC CURVES 87

Fig. 1. Breakdown of supersingular isogeny computations.

In this paper, we propose efficient algorithms and archi-
tecture for isogeny-based cryptography, particularly the SIDH
key exchange. To the best of the authors’ knowledge, there
is no work available in the literature to consider research in
implementations of isogeny-based cryptography on hardware.
Thus, this paper provides an initial view at SIDH’s impact on
reconfigurable hardware.

Our contribution:
• We discuss the design of fast and scalable architectures

for isogeny-based cryptography in reconfigurable
hardware.
• To the best of our knowledge, we provide the first imple-

mentation of the supersingular isogeny Diffie-Hellman
key exchange on reconfigurable hardware.
• We heavily parallelize the operations in Fp2 through

the use of several Montgomery multipliers and efficient
scheduling.
• We provide a high-radix Montgomery multiplier that

features interleaved multiplications, suitable for high-
throughput arithmetic in Fp2 .
• We achieve a performance that is 1.5 times faster than

top desktop processors running the protocol in [9].

II. PRELIMINARIES: SUPERSINGULAR ISOGENY

DIFFIE-HELLMAN

In this section, we provide an overview of the supersingular
isogeny Diffie-Hellman (SIDH) key exchange protocol. The
breakdown of all computations for the isogeny-based protocols
is shown in Fig. 1. As one can see, isogeny-based cryptography
is similar to standard elliptic curve cryptography, but also
includes the use of isogenies as a way to move from elliptic
curve to elliptic curve. We point the reader to [6] and [7] for
a full look at the SIDH scheme and [11] for a more complete
look at elliptic curve background necessary for isogenies.

A. Isogeny Background

The most popular form of public-key cryptography for
today’s applications has been transitioning to Elliptic Curve
Cryptography (ECC). ECC defines points on an elliptic curve
and specific point doubling and point addition formulas to
go from point to point. Scalar point multiplication uses a
sequence of point doublings and point additions to efficiently
evaluate point multiplications Q = k P = P + P + · · · + P .
Cryptosystems based on ECC rely on the difficulty of solving

the Elliptic Curve Discrete Log (ECDL) problem, such that
given Q and P in the previous equation, it is infeasible to
determine the scalar multiple k for elliptic curves with points
of a large order. However, with the emergence of quantum
computers in the near future, such cryptosystems that rely on
the ECDL are no longer safe as the scalar multiple can be
easily recovered using Shor’s algorithm [12] on a quantum
computer. Hence, standard ECC is no longer applicable for
long-term security and other quantum resilient schemes have
been proposed.

Isogeny-based cryptography also utilizes points on an ellip-
tic curve, but is instead based on the difficulty of computing
isogenies between elliptic curves. An isogeny can be thought
of as a unique algebraic mapping between two elliptic curves
that satisfies the group law. An algorithm for computing isoge-
nies on ordinary curves in subexponential time was presented
by Childs et al. [5], rendering the use of cryptosystems based
on isogenies on ordinary curves unsafe in the presence of
quantum computers. However, there is no known algorithm for
computing isogenies on supersingular curves in subexponential
time.

A curve’s endomorphism ring is defined as the ring formed
by the set of endomorphisms of an elliptic curve together with
the null map under point addition and functional composi-
tion. Supersingular curves have an endomorphism ring with
Z-rank equal to 4. These curves can be defined over Fp or Fp2 .
Thus, all supersingular curves can be represented in Fp2 .
Specifically, supersingular curves have the property that for
every prime � �= p, there exist � + 1 isogenies of degree �
from a base curve.

We compute an isogeny between curves by utilizing a
kernel, k, such that φ : E → E/〈κ〉. Further we also
bring points on the original curve to the isogenous curve by
evaluating the isogeny at the points.

The j -invariant is a discriminant based on the elliptic curve
coefficients. Two curves are isomorphic iff they have a shared
j -invariant.

B. Computing Large Degree Isogenies

The degree of an isogeny is its degree as an algebraic
map. As shown in [13], isogeny computations can be done
iteratively. Given an elliptic curve E and a point R of order �e,
we compute φ : E → E/〈R〉 by decomposing φ into a chain
of degree � isogenies, φ = φe−1 ◦ · · · ◦ φ0, as follows. Set
E0 = E and R0 = R, and define

Ei+1 = Ei/〈�e−i−1 Ri 〉φi : Ei → Ei+1 Ri+1 = φi (Ri).

Essentially, point additions are used to compute the kernel at
each iteration and Vélu’s formulas [14] are used to compute
φi and Ei+1. This method applies specifically to isogenies
and curve construction. An optimal strategy to compute these
isogenies relies on walking a large directed acyclic graph in
the shape of a triangle to the leaves, which is shown in Fig. 2.
For this graph, performing a multiplication by � results in
walking left and evaluating an isogeny relationship results in
walking right. Computing an isogeny at each of the leaves
is used to compute the full isogenous mapping. Refer to [7]

88 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 64, NO. 1, JANUARY 2017

Fig. 2. Large degree isogeny computation structure.

for more information regarding the optimal strategy. The
optimal strategy differs based on the relative costs of point
multiplications and isogeny evaluations.

C. SIDH Key Exchange Scheme

In [6], Jao and De Feo proposed a key exchange based
on isogenies of supersingular elliptic curves. The scheme for
SIDH resembles the standard Elliptic Curve Diffie-Hellman
(ECDH), but goes a step further by computing isogenies
over large degrees. In the scenario, Alice and Bob want to
exchange a secret key over an insecure channel. They pick
a smooth isogeny prime p of the form �a

A�b
B · f ± 1 where

�A and �B are small primes, a and b are positive integers,
and f is a small cofactor to make the number prime. They
define a supersingular elliptic curve, E0(Fq) where q = p2.
Lastly, they choose four points on the curve that form a bases
{PA, Q A} and {PB , QB}, which act as generators for E0[�a

A]
and E0[�b

B], respectively. In a graph of supersingular isogenies
where the vertices represent isomorphic curves and the edges
represent �−degree isogenies, the infeasibility to discover a
path that connects two particular vertices provides security for
this protocol. Essentially, each party takes seemingly random
walks in the graphs of isogenies of degree �a

A and �b
B to both

arrive at a curve with the same j -invariant.
Alice chooses two private keys m A, n A ∈ Z/�a

AZ with the
stipulation that are not both divisible by �a

A. On the other
side, Bob chooses two private keys m B, nB ∈ Z/�b

BZ, where
both private keys are not divisible by �b

B . From there, the key
exchange protocol can be broken down into two rounds of the
following:

1. Compute R = 〈[m]P + [n]Q〉 for points P, Q.
2. Compute the isogeny φ : E → E/〈R〉 for a supersin-

gular curve E .
3. Compute the images φ(R) and φ(S), where R and S are

the basis of the opposite party, only for the first round.

The key exchange protocol is shown in Fig. 3. Here, we
will describe the key exchange. Alice performs the double
point multiplication with her private keys to obtain a kernel,
RA = 〈[m A]PA + [n A]Q A〉 and computes an isogeny
φA : E0 → E A = E0/〈[m A]PA + [n A]Q A〉. As she

Fig. 3. Supersingular Isogeny Diffie-Hellman Key Exchange [6]. “sID” stands
for unique session ID.

computes the isogeny, she also computes the projection
{φA(PB), φA(QB)} ⊂ E A of the basis {PB, QB}for E0[�b

B]
under her secret isogeny φA, which can be done efficiently by
pushing the points PB and QB through the isogeny at each
smaller isogeny. Over a public channel, she sends these points
and curve E A to Bob. Bob performs the same computations
and sends the curve EB and points φB(PA) and φB(Q A) to
Alice. For the second round, Alice performs the double point
multiplication to find a second kernel, RAB = 〈[m A]φB(PA)+
[n A]φB(Q A)〉, to compute a second isogeny φ′A : EB →
E AB = EB/〈[m A]φB(PA)+[n A]φB(Q A)〉. Bob also performs
a double point multiplication and computes a second isogeny
φ′B : E A → EB A = E A/〈[m B]φA(PB)+ [nB]φA(QB)〉. Alice
and Bob now have isomorphic curves and can use the common
j -invariant as a shared secret key.

D. Optimizations to the SIDH Scheme

Here, we discuss several optimizations to the SIDH
scheme that increase the performance of the scheme tremen-
dously. First, [7] implements all arithmetic on a Montgomery
curve’s [15] Kummer line (x, y) = (X : Z), where x =
X/Z . Particularly, the Kummer arithmetic features extremely
fast differential point addition and doubling formulas, which
greatly speeds up traversing left on the large degree isogeny
graph. This is also utilized for a 3-point differential addition
ladder for the double point multiplication, which is shown
in Algorithm 1. This operates under the assumption that for
the point multiplication [m]P + [n]Q = R, that either m
or n is 1, or R = P + [m−1n]Q. This does not diminish
the security of the protocol since m or n will be invertible
modulo the order of the group and, thus, P+[m−1n]Q is still
a generator. We mention a slight optimization to the above
scheme, which involves ensuring that P ,Q, and Q − P have
a Z -coordinate of 1. This reduces the cost of a differential
addition by 1 multiplication, which reduces the cost of a three-
point ladder step by 2 multiplications. This requires three
additional inversions and three additional multiplication in Fp2

before the ladder, but each ladder step requires 6 squarings and
9 multiplications in Fp2 . “dadd” refers to differential addition.
Formulas for fast computation of differential addition and
doubling for Kummer coordinates come from [15].

Second, the choice of �A = 2 and �B = 3 allows for fast
isogeny computations and fast isogeny evaluations between
Montgomery curves, which are given in [7]. We note that
an isogeny computation refers to computing a map between

KOZIEL et al.: POST-QUANTUM CRYPTOGRAPHY ON FPGA BASED ON ISOGENIES ON ELLIPTIC CURVES 89

Algorithm 1 Three-point ladder to compute P + [t]Q [6]
Input: Points P and Q on an elliptic curve E , scalar t
1: Set A = 0, B = Q, C = P
2: Compute Q − P
3: fori decreasing from|t|downto 1 do
4: Let ti be the i -th bit of t
5: if ti = 0 then
6: B =dadd(A, B, Q), C =dadd(A, C, P)
7: A = 2A
8: else
9: A =dadd(A, B, Q), C =dadd(B, C, Q − P)
10: B = 2B
11: end if
12: end for
Ensure:C = P + [t]Q

curves based on a kernel and an isogeny evaluation refers to
converting points on one curve to its corresponding isogenous
curve. We can perform these computations on Kummer coor-
dinates because P and −P generate the same subgroup of
points. For the choice of a large degree isogeny computation
over �A = 2, we note that there is an additional isogeny across
Montgomery curves to get a point of order 8 at the beginning
for fast 2-isogenies. A 4-isogeny is required to finish the large
degree isogeny at the end, when the point of order 8 is no
longer valid.

No standardized parameters exist, so we determined a curve
and basis points of the proper cardinality based on the prime
p = 225331617− 1 through a Sage script for use as a proof of
concept.

III. PROPOSED ARCHITECTURES FOR

ISOGENY COMPUTATIONS

In this section, we discuss the major design considerations
to implement the SIDH key exchange protocol in hardware. To
give an initial look into computing large isogenies in hardware,
we chose to stick with 512-bit primes for our keys, which
feature 85-bit quantum security and 128-bit classical security.

The high level design of the isogeny core is depicted
in Fig. 4. This core features an adder unit, multiplier unit,
inversion unit, RAM file for registers, and a ROM file for
the controls. The RAM file contained 256 values in Fp, or
256 512-bit entries. The RAM file contains constants for the
parameters of the protocol, intermediate values within the
protocol, and intermediate values for Fp2 computations. There
are more intermediate values necessary for higher key sizes
as the graph traversal of the large degree isogeny is higher,
but 256 values is slightly more than enough, which allows
more flexibility and optimization with routines. The size of
the ROM unit depends on the size of the multiplier unit since
more multipliers indicates that more multiplications operate in
parallel for fewer stalls waiting for the multiplication result.
Refer to Section IV-E for more details.

Similar to standard ECC, the performance of the key
exchange is heavily dependent on its finite-field arithmetic.
Here, we provide the designs used in our Field Arithmetic

Fig. 4. Proposed High-level Architecture of an SIDH Core.

Fig. 5. Proposed Field Arithmetic Unit.

Unit (FAU) for finite field addition, multiplication, and inver-
sion. Generally, we focused on optimizing the speed as much
as possible. Thus, we chose state-of-the-art designs found in
the literature that provide the best fit for our 512-bit prime.
The FAU is shown in Fig. 5.

A. Field Adder

Finite-field addition is used to add two elements in Fp or for
reduction. Further, addition is the essential part of the Kaliski
almost inverse algorithm, discussed in Section III-D. High-
radix implementations of adders are a powerful technique to
design wide-word operands for adders. To the best of our
knowledge, a high-radix implementation of the parallel prefix
adder is the fastest adder circuit on modern FPGA’s, which
was designed by Rogawski et al. [16]. The high-radix parallel
prefix adder (HRPPA) is designed based on using optimally
embedded fast carry chain hardware on modern FPGA’s. For
demonstration purposes, assume the adder performs the addi-
tion X+Y , where X, Y ∈ Fp . As shown in Fig. 6a, the HRPPA
performs |X + Y |2n in radix R, where X = xn−1...x0 and Y =
yn−1...y0, by computing Pi×R+R−1:i×R = ∧i×R

l=(i×R+R−1) pl

as a Group Propagate Signal (GPS) and Gi×R+R−1:i×R =
gi×R+R−1 ∨ pi×R+R−1Gi×R+R−2:i×R as a Group Generate
Signal (GGS) as in Fig. 6b,where p j = x j ⊕ y j , g j = x j y j ,
0 < j < n, 0 ≤ i < k, and k = n/R�. The GPS and
GGS are sent to a parallel prefix network (PPN) which can

90 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 64, NO. 1, JANUARY 2017

Fig. 6. High Radix Parallel Prefix Adder. (a) Design of the adder. (b) Design of the GGS-GPS-Intermediate Sum with carry chain in FPGAs. (c) Design of
a sum unit. [16] We utilize n = 512 and R = 8,which is the best R to fit in the our design.

be designed using a variety of algorithms [17]. Finally, the
outputs of the PPN are used as carry inputs for the final
summation as in Fig. 6c. Our design implements the field adder
using the HRPPA technique, where n = 512 and R = 8,which
is the best R to fit in our design. Note that subtraction is also
designed by flipping the second input and adding 1 as a carry-
in. In practice, we found that using this adder method reduced
the critical path delay of a single cycle addition over 512-bits
by a factor of 15–20% over the standard IP in Xilinx Vivado
with insignificant difference in area.

Unfortunately, the datapath from the RAM unit through a
multiplexer to the adder/subtractor in the adder unit increased
the critical path too much. Since the adder/subtractor was
the bottleneck, we decided to perform the 512-bit addi-
tion/subtraction over two cycles with a carry-out from the first
256-bit addition/subtraction used as a carry-in for the second
256-bit addition/subtraction. This also required additional reg-
isters to register the control signals and output. However, this
did not affect the performance of the protocol much, as the
addition/subtraction functionality was easily pipelined and two
operations could fit in the pipeline at any given time.

On the other hand, our inversion module, which utilizes
individual 512-bit additions or subtractions was able to com-
pute individual 512-bit additions or subtractions in a single
cycle with a high clock frequency. The use of the fast addition
and subtraction here improved our overall timing by around
600 hundred thousand cycles for the entire protocol. We
discuss this further in Section III-D.

B. Field Multiplier
Finite-field multiplication computes the product C = A×B ,

where A, B, C ∈ Fp . Since the product is double the size
of the inputs, a reduction must be performed so that the

Algorithm 2 Montgomery Reduction [18]
Input:An odd m-bit modulus M
Montgomery radix R = 2m

An operand T where T = A · B in the range [0, 2M − 1]
Pre-computed constant M ′ = −M−1mod R
Output:Montgomery product Z = T · R−1mod M
1. Q = T · M ′mod R
2. Z = (T + Q · M)/R
3. if Z ≥ MthenZ = Z − M end if
4. returnZ

product is still within the field. However, the smooth isogeny
primes of the form �a

A�b
B · f ± 1 do not resemble the form of

pseudo-Mersenne primes, 2m − c, and cannot take advantage
of fast reduction. Montgomery reduction [18] and the fast-
Fourier transform [19] are the primary algorithms which are
used for designing modular multipliers over long operand
integers. However, the fast-Fourier transform method is most
often implemented only when the operand width is large
enough (e.g., more than 3072 bits [20]). On the other hand,
Montgomery multiplication is a suitable choice for general
moduli since the algorithm combines multiplications and
modular reduction. Montgomery multiplication converts time-
consuming trial divisions to shift operations, which is simple
to do in hardware. Thus, we propose to use Montgomery [18]
modular multiplication. Algorithm 2 demonstrates the Mont-
gomery reduction procedure.

Montgomery multiplication utilizes both input operands in
the Montgomery form Â = AR mod p, where R is a
power of 2 just greater than p. For our 512-bit implemen-
tation, R = 2512. We convert our starting parameters for

KOZIEL et al.: POST-QUANTUM CRYPTOGRAPHY ON FPGA BASED ON ISOGENIES ON ELLIPTIC CURVES 91

Algorithm 3 High-Radix Montgomery Multiplication
Algorithm [22]

Input:M = p, M ′ = −M−1mod p
A =∑m+2

i=0 (2k)i ai , ai ∈ {0, 1 . . . 2k − 1}, am+2 = 0B =
∑m+1

i=0 (2k)i bi , bi ∈ {0, 1 . . . 2k − 1}M = (M ′ mod
2k)M =∑m+1

i=0 (2k)i mi A, B < 2M; 4M < 2km R = 2log2 p�
Output:A× B × R−1mod M
1. S0 = 0
2. fori = 0tom + 2do
3. qi = (Si) mod 2k .
Si+1 = (Si + qi M)/2k + ai B
5. end for
6. returnSm+3 = A × B × R−1 mod M

the standard domain to the Montgomery domain by using
Â =MonMult(A, R2) = A × R2 × R−1 = AR. When both
inputs are in the Montgomery form, the result will also be in
the Montgomery domain, Ĉ =MonMult(Â, B̂) = AR× B R×
R−1 = AB R.

Ultimately, we chose to utilize the high-radix Montgomery
multiplier proposed in [21]. This multiplier uses a systolic
array of processing elements to compute various parts of the
Montgomery multiplication and reduction. Furthermore, it can
perform two multiplications simultaneously, to utilize all of its
processing elements. Lastly, we liked the utilization of DSP48
blocks in the multiplications to utilize more features of FPGA
designs.

1) Interleaved Montgomery Multiplication: The
McIvor [21] multiplication is based on the high-radix
form of Montgomery multiplication, which is shown in
Algorithm 3. Essentially, there are m+2 processing elements.
M ′ is a constant based on the form of the prime. Similar to
the best results in [21], we utilize a 216 radix, so m = 32 and
there are 34 processing elements. The critical path delay of
this design is two 16-bit multiplications in parallel followed
by a 32-bit addition. A 16x16 multiplication is efficiently
implemented with a single DSP48 block in an FPGA. Two
Montgomery multiplications can be performed in parallel
because a single multiplication only occupies the even or
odd processing elements at a given time. This introduces
the idea of an even-odd dual multiplier. Additional registers
and control is necessary for the even-odd dual multiplier,
but reuse of the processing elements achieves almost full
utilization of the multiplication hardware.

The multiplier closely follows Algorithm 3. Initially, the
starting value must be cleared, so a reset pump is initiated. This
reset pump slowly pumps through the processing elements, one
cycle at a time. This reset clears the output value Si for the
processing element. Next, the values of ai are shifted through
the processing elements one by one. The least significant digit
of A passes into the second processing element just as the
reset pump clears the summation register, allowing the first
multiplication of a0b0. The value for A is funneled through
until it has multiplied with all bi . Thus, this performs the
computation of ai B . In the algorithm, there is also a use of
feedback to multiply the Montgomery modulus by a previous

sum modded by 2k and added by Si . This functionality also
goes through a divide by 2k , which is simply a shift in
hardware. Thus, after m + 3 cycles, the full result of the
least significant digit of the result is ready. Every 2 cycles,
an additional digit of the result is ready. Therefore, the final
Montgomery result is available after 3(m+ 2)+ 1 cycles with
m + 2 processing elements.

We note that smooth isogeny primes that have the form
2a3b f − 1 have all “1”s for their least significant digits.
This has also been known as a Montgomery friendly [23]
prime. This ensures that M ′ is 1 and no multiplication from
the standard modulus is necessary. This also removes two
additional processing elements at the end, since the final m+1
and m + 2 digits are 0. Thus, our scheme requires only
3m + 3 = 99 cycles instead of the proposed 3m + 3 = 103
cycles in the original paper.

However, the processing elements are not always in use.
We note that on the last m cycles of the multiplication that
the least significant processing elements are increasingly not
used. Thus, we propose to slowly shift in the new operand
B in order just as the previous multiplication does not need
the processing element. The second multiplication can start on
cycle 2m + 3 = 68. Thus, now we can interleave multiplica-
tions and achieve 100% utilization of the multiplier. Overall,
this means that the multiplier performs a single multiplication
in 99 cycles, but can simultaneously perform two multiplica-
tions and further multiplications can be interleaved to make
the multiplier seem like it is has a latency of 68 cycles.
We wanted high throughput for our multiplier and these two
characteristics of this particular multiplier make it a strong
choice for maximum throughput.

Fig. 7 shows the design of the multiplier. (a) has the
multiplier overview, (b) has the Processing Element, (c) shows
logic for the inputs A1 and A2, and (d) shows the first
processing element. Signals like B2c4 indicate the fourth cycle
that B2 has been started. MSD stands for most significant
digit and LSD stands for least significant digit, as in the most
significant or least significant digits in the 2k + 1 bit result.
On even cycles, the even positions are performing the even
multiplications and the odd shift register is shifting. Similarly,
on odd cycles, the odd positions are performing the odd
multiplications and the even shift register is shifting.

C. Multiplier Unit

We note that the latency of multiplication in Fp is much
greater than that of addition. Further, the Montgomery mul-
tiplier is not pipelinable as it already utilizes all of its
processing elements. Multiplication in Fp is used numerous
times in squaring, multiplication, and inversion in Fp2 , and
multiple multiplications can easily be done in parallel. Thus,
we propose to use a multiplier unit that features replicated
Montgomery multipliers based on our interleaved variant to
push the parallelization of isogeny-based algorithms further.

Our multiplier unit is designed as a first-in-first-out (FIFO)
circular buffer. Multiplication instructions are issued cyclically
starting from multiplier 0 to multiplier 2n− 1 for n dual mul-
tipliers. Likewise, the results are read starting from multiplier

92 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 64, NO. 1, JANUARY 2017

Fig. 7. Proposed Interleaved high-radix [21] Montgomery multiplier.
(a) Systolic array of the processing elements. (b) Single processing element.
(c) Design of the input for A. (d) Design of the first processing element.

0 to multiplier 2n − 1. This ensures that the data integrity of
the multiplier is valid. The first multiplier in the buffer holds
multipliers 0 and 1, the second holds multipliers 2 and 3,
and so on. With the even-odd nature of the multiplier, this
means that a multiplication can be issued every cycle so long
as there are enough multiplications and the multiply unit starts
on the correct even-odd cycle. We discuss scheduling these
multiplications in Section IV-C.

The output of the multiplier unit is directly connected with
the addition unit so that the final reduction can occur. The total
cost of a multiplication in Fp is a memory load, multiplication,
reduction, and store, which is 2+ 99+ 2 + 1 = 104 cycles.

The FIFO multiplier unit requires wires and connections
for the input operands and an additional 512-bit multiplexer
of size 2n : log22n for the output. This increases the area of
the multiplier unit considerably, but the target is speed and
the protocol can benefit from issuing many multiplications in
parallel. We show a miniature design of the FIFO multiplier
in Fig. 8. In this figure, the individual multipliers are started
in order and the output multiplier outputs the currently read
multiplier.

D. Inversion Unit

Finite-field inversion finds some A−1 such that A ·A−1 = 1,
where A, A−1 ∈ Fp . There are many schemes to perform

Fig. 8. FIFO Multiplier Unit Datapath.

Algorithm 4 Kaliski Almost Montgomery Inverse
Algorithm [24] [25]
Input:A ∈ Fp, p with gcd(A, p)= 1 and
0 ≤ A < pR = 2log2 p�
Output:A−1 × R mod p,
where 2log2(p)� ≤ k ≤ 2log2(p)�
1. u ← p, v ← A, r ← 0, s ← 1, k ← 0
2. whilev �= 1do
3. ifu ≡ 0(mod 2) then
4. u ← u/2,s ← 2× s
5. else ifv ≡ 0(mod 2) then
6. v ← v/2,r ← 2× r
7. else ifu > vthen
8.u← (u − v)/2, r ← r + s, s ← 2× s
9. else
10.v ← (v − u)/2, s ← r + s, r ← 2× r
11. end if
12. T = MonMult(s, 22m−k)
13. returnA−1 × R mod p = MonMult(T, R2)

this efficiently. Fermat’s little theorem exponentiates
A−1 = A p−2. This requires many multiplications and
squarings, but is a constant set of operations. The Extended
Euclidean Algorithm (EEA) and Kaliski’s almost inverse
algorithm [24] both have a significantly lower time complexity
of O(log2n) compared to O(log3n) for Fermat’s little theorem.
There are over 800 inversions in the full SIDH protocol for
85-bit quantum security, so we chose to use a non-constant
time inversion. Further, we use operands in the Montgomery
space. Therefore, Kaliski’s almost inverse is a suitable
fit for this particular implementation because it uses only
simple shifts and additions and the final result is also in the
Montgomery domain. Kaliski’s almost inverse is shown in
Algorithm 4. In total, the inversion unit requires four shift
registers, one 512-bit addition, and two 512-bit subtraction
modules. Both results from the Kaliski module are fed
directly to the multiplier. After two additional multiplications
the inversion result is ready.

The Kaliski almost-inverse can run from 512 iterations
to 1024 iterations. The experiment in [26] showed that the
average number of iterations is around 1.412 times the word
size. Thus, we will assume that the average case for the Kaliski
almost inverse requires 723 iterations. With our choice of
fast adder and subtractor, we could perform a single 512-bit

KOZIEL et al.: POST-QUANTUM CRYPTOGRAPHY ON FPGA BASED ON ISOGENIES ON ELLIPTIC CURVES 93

addition or subtraction in one cycle. Every other cycle, we
check the registers for how to proceed and then update the
registers the next cycle with the result from the adders and sub-
tractors. Thus, each iteration requires 2 cycles and the expected
time of the inversion in Fp is 1446+2M = 1656 cycles. If we
had used 512-bit addition or subtractions over two cycles, the
expected time of the inversion would increase to 2379 cycles,
so the fast addition and subtraction improved the computation
of inversion by about 31%.

1) Side-Channel Considerations:: The Kaliski almost
inverse is not constant time, as the algorithm can run from
512 to 1024 iterations. To make it constant-time, one can
ensure that the full 1024 iterations is always experienced.
This increases the total time of the inversion by 602 cycles.
Over 800 inversions, this increases the total latency by
481 600 cycles. This reduces the impact of timing analysis, but
the inverter is most likely stalled for the last iterations, which
could still reveal information about the number being inverted.
Under this scheme, the cost of the inversion is 2258 cycles,
or 1.36 times more.

Another approach to mystify the inversion is to multiply the
value to be inverted by a random value before and after the
inversion. This aids in defending against simple power analysis
attacks. Adding two multiplications increases the cost of the
inversion to 1866 cycles, or 2468 cycles for constant-time.

We provide these alternatives to the standard Kaliski almost
inverse because inversion is the only non-constant finite field
computation. Addition chains have been created as a way
to perform large exponentiations with as few multiplications
as possible. Using exponentiation with small addition chains
is still much more expensive than the Kaliski method. For
instance, let us assume that we utilize an addition chain with
600 multiplications for our 512-bit prime. Little parallelism
can be taken advantage of in large exponentiations as it is
primarily an accumulator being squared and multiplied. Using
a serial multiply strategy for inversion requires 600× 105 =
63 000 cycles. This is more than 27 times greater than the
Kaliski inversion with added side-channel resistance measures.
Thus, for the large number of inversions in the current
SIDH scheme the constant-time inversion is impractical.

IV. INSTRUCTION SCHEDULING

This section details our approach to maximizing the
throughput of our architecture. Instruction scheduling was
done in a Python script and the results were put into a ROM
unit to issue instructions to the control unit. The total number
of instructions depends on the size of the multiplier unit.
We optimized based on SIDH, but a similar approach can be
taken for the other protocols.

A. Extension Field Arithmetic

As was previously stated, SIDH operates in the extension
field Fp2 . For this extension field, we use the irreducible
polynomial x2 + 1 based on our prime choice. With this, we
propose reduced arithmetic in Fp2 based on fast arithmetic
in Fp . These equations were made in a Karatsuba-like fashion
to reduce the total number of multiplications and squarings.

TABLE I

COST OF OPERATIONS IN Fp2 FOR 512-BIT SIDH

The lazy reduction technique was also employed for inversion
to minimize computational cost. For the equations below,
assume A = (A0, A1), B = (B0, B1) ∈ Fp2 .The results of
operations in Fp2 are C = (C0, C1)

A + B = (A0 + B0, A1 + B1)

A − B = (A0 − B0, A1 − B1)

A × B = (A0 B0 − A1 B1, (A0 + A1),

(B0 + B1)− A0 B1 − A1 B0)

A2 = ((A0 + A1)(A0 − A1), 2A0 A1)

A−1 = (A0(A2
0 + A2

1)
−1,−A1(A2

0 + A2
1)
−1)

The total cost of all arithmetic in Fp2 is shown in Table I.
The total number of clock cycles assume that there is no
competition for resources and enough multipliers available
to issue multiplications. The latency also indicates when the
results have been written to the RAM unit. For this table,
Ĩ stands for inversion, M̃ stands for multiplication, S̃ stands
for squaring, and Ã stands for addition, all in Fp2 . The absence
of a tilde indicates an operation in Fp . We did not implement
a dedicated squaring unit, so squaring has the same latency as
multiplication. Implementing a dedicated squaring would have
only a small effect on the latency of the protocol since squaring
is only used twice in inversion in Fp2 and the multiplications
can already be interleaved effectively.

B. Scheduling Methodology

For our architecture, a few things must be kept in mind in
regards to scheduling. First, a memory load and memory store
cannot occur on the same cycle as the address for the dual-port
RAM is the same for each. Second, multiplications are issued
and reduced in order. Third, instructions should be ordered
in such a way to minimize data dependency and emphasize
parallel computations (e.g., 3 point Montgomery ladder that
performs 2 point additions and 1 point doubling in parallel).

Extension field arithmetic was scheduled by using a greedy
algorithm. The instructions were compiled in order. Additions
and subtractions were issued if a load, add, reduce, and store
sequence could fit. Multiplications were issued if the load and
multiply controls were available as well as an available multi-
plier. For multiplications, squarings, and inversions in Fp2 ,
the multiplication and addition instructions were issued in
advance, meaning that multiplications had priority in the load
and store controller for the RAM unit. In practice, we found
this to be most effective as the multiplication latency in Fp

was 15 times greater than the add/subtract latency in Fp.

94 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 64, NO. 1, JANUARY 2017

TABLE II

EVEN-ODD MULTIPLICATION PIPELINE STALL EXAMPLES

Thus, even if the addition or subtraction was pushed back
several cycles because of multiply logic in the pipeline, the
additions and subtractions could still be finished long before
the multiplications are done. Further, the data dependencies
based on the multiplication required much more time than
those on the additions, so starting multiplications first is
imperative to reducing the total number of cycles.

Each instruction is 26 bits long. The first and second
bit indicate a special register address for a load or store,
as indicated by the controller instead of the instruction
line. This was used for scheduling isogeny computations,
shown in Section IV-D. The third bit was reserved for
starting the inversion unit with the data loaded from RAM.
Bits 4 and 5 were reserved for the multiplication unit. The
multiplication could use registers outputted from the Kaliski
inversion module or RAM file and the even-odd parameter
could be reset. Bit 6 indicated if the registers should be
read into the adder/subtractor unit. Bits 7–9 were used by
the adder/subtractor. The adder/subtractor could perform a
memory add, accumulator add, and reduction. The subtraction
option was also available and the multiplication result could
be reduced here as well. Bit 10 indicates if a write to the RAM
unit at address A should be done. Lastly, bits 11-18 indicated
the address used by the first port (A) of the RAM unit and
bits 19–26 indicated the address used by the second port (B)
of the RAM unit.

Pipeline stalls were experienced for data dependencies. If an
input to a multiplication or addition was not ready, further
instructions could not be issued.

There are 256 values in Fp in memory to hold and store
values. Squaring, multiplication, and inversion in Fp2 each
require temporary variables to store intermediate values. Mul-
tiplication requires the most at 4 intermediate registers to
achieve full throughput. We further note that there can be
at most 6–10 multiplication instructions at one time, so we
dedicate the final 10 × 4 = 40 values in our RAM unit to
store the intermediate values for these operations. Based on
the number of intermediate values needed for the rest of this
SIDH protocol, reserving 40 values for finite-field operations
did not contest with any other parts of the protocol.

Inversions in Fp, which are required for the inversion in Fp2

require all previous additions to be finished. Since the Kaliski
inversion is not constant-time, the control unit waits for a
response from the inversion unit indicating that the inversion
result is ready.

C. Scheduling with Even-Odd Multiplications
The only caveat to using the interleaved multiplier that we

proposed earlier was that the multiplications must be issued on

even instructions that go to even starting multipliers and odd
instructions that go to odd starting multipliers. Our proposed
design issues in order: odd multiplier, then even multiplier,
then odd multiplier again. This way, multiplication instructions
could theoretically be issued every cycle so long as there are
enough multipliers. However, the data dependencies in the
SIDH protocol only require about 3–5 double multipliers at
max. This equates to a maximum of 10 multiplications running
at any given time.

The greedy algorithm for scheduling above does not nec-
essarily account for the even/odd nature of the multiplier.
Further, assigning multiplications in the future may have
different even-odd values if an additional multiplication was
inserted earlier. Thus, we enhanced the scheduling by tracking
if even multiplier or odd multipliers were next. Our approach
checks all instructions in order, changing the value of even-
odd if a multiplication is experienced. If a multiplication
occurred on a cycle that did not match the even-odd nature,
then we incurred stalls. Unfortunately, there are a few specific
cases that need to be taken into account when delivering
the stall cycle. Notably, if there was a memory store the
cycle after the memory load for the multiplication, then the
addition/subtraction pipeline that got this result must be stalled
as well. We show a few exceptions in Table II. For this table,
assume that a multiplication initially occurs at cycle 0 and the
load for the multiplication occurs at cycle −2. If cycle 0 does
not match up with the current selection of even and odd, then
it must be pushed back to have a load at-1 and a multiply
at 1. Our observations show that we must push any add/sub
instruction starting with a load starting on or after −7 each
back at least 1 cycle. The cycle −7 is critical because it is
the total delay of a load, add, reduce, and store instruction
pipeline. We must push all reduction instructions (including
multiplication reduction) starting on or after −3 each back
1 cycle, since the reduction indicates a store on −1 which
will be used by the load multiply. We must push any memory
loads on −1 back a single cycle. Lastly, all instructions in
the memory, add, multiply, and inversion datapath starting on
or after 0 must be pushed back a single cycle. With these
corrections, we ensure data integrity.

Table II also illustrates an example of a multiple stall
incurred by the multiplication starting on the wrong cycle.
We ensure that any stores or load mults before cycle -2 must
be preserved. This ensures that the previous multiplications
(which are already on the correct starting cycle) stay valid
and the datapath leading up to the store is not altered.
We also cannot interfere with the addition pipeline that led
up to the stall. With these additional requirements, multiple
stalls could occur if there are load add instructions before

KOZIEL et al.: POST-QUANTUM CRYPTOGRAPHY ON FPGA BASED ON ISOGENIES ON ELLIPTIC CURVES 95

Algorithm 5 Rescheduling Incorrect Starting Multiplica-
tions
Input: Multiplication on current_cycle is on the wrong
even-odd cycle
Output:Multiplication pushed back by 1 cycle and all data
pipeline in tact
1. index = current_cycle− full_add_delay, num_stalls = 1
2. whileindex = current_cycle−read_delay do
3. ifmem_ctrl[index] has a load and add path then
4. while(index + num_stalls is a store —— load mult)
&& index+num_stalls < current_cycle−read_delay do
5. copy load pipeline at index
6.num_stalls+ = 1
7. end while
8. Copy contents from index to index+num_stalls
9. end if
10.index+ = num_stalls
11. end while
12. forall other cycles after current_cycle–1
13. Copy contents num_stalls forward
14. end for
15. Push multiplication on wrong cycle forward

a load multiplication instruction and other stores or load
multiplications blocking the load add from simply going a
single cycle forward. The worst possible case is a 4 cycle
stall, but this was not experienced. For our routines, there are
a total of 104 single stalls, 28 double stalls, and 26 triple stalls,
and 0 quadruple stalls.

Our rescheduling algorithm for these incorrect even/odd
starting multiplications is depicted in Algorithm 5. For
our implementation, the full_add_delay is 7 cycles and the
read_delay is 2 cycles. All copies are made to a new schedule
and the new schedule is copied back at the end.

There are a few exceptions to the above algorithm that are
accounted for. Notably, if a first load add has a stall of one
cycle and the second load add has a stall of two cycles, the
addition unit might experience a collision from both load adds
utilizing it. We carefully considered each case and ensure that
the minimum number of stalls is incurred.

D. Scheduling Isogeny Computations and Evaluations

Here, we describe how our control unit implemented the
large degree isogeny computation. For our particular imple-
mentation, we targeted isogeny degrees of size 2253 and 3161.
However, we give a generic implementation for any parameter
in Algorithm 6, which was adapted from [7]. This algorithm
efficiently iterates to the leaves of the large degree isogeny
graph, shown previously in Fig. 2, as long as optimal splits
are given. Finding optimal splits was done externally using
a Sage script and is based on a combinatorial problem. The
optimal splits were placed in the control unit as a large lookup
table in ROM. One lookup table was used to hold the optimal
splits of 2253 and 3161, but the most significant address bit
indicated if it was Alice’s splits or Bob’s splits. There were
418 ROM lines of 8 bits to hold both Alice’s and Bob’s splits.

Algorithm 6 Computing a large degree isogeny using an
optimal strategy

Input: Isogeny degree e in �e

A lookup table of size e with the optimal strategy for S
Kernel point (X0, Z0)
Montgomery curve: A0y2 = x3 + B0x2 + xsi is the optimal
split for isogeny graph
Stack structure composed of (Xi , Zi , si)
Output:Isogenous curve Ae y2 = x3 + Bex2 + x
1. push(X0, Z0, e)onto the empty stack
2. whilethe stack is not empty do
3. (Xi , Zi , si) =the top of the stack
4. All points in stack on Ak y2 = x3 + Bk x2 + x
5. h = si ,split = Ssi

6. whileh > 1do
7. for j in range(0,h − split)
8. (Xi , Zi) = �× (Xi , Zi), scalar point multiplication
9. end for
10. push(Xi , Zi , split)
11.h = split
12. end while
13. compute �-isogeny mapping
14. e.g., (i so,Ak+1, Bk+1) = �comp(Ak, Bk, Xi , Zi)
15. for j in range(0,len(stack))
16. push point from curve (Ak, Bk) to curve (Ak+1, Bk+1)
using isogeny mapping, i so
17.(X j , Z j) = �apply(i so, X j , Z j)
18. end while
19. returnAey2 = x3 + Bex2 + x

As Algorithm 6 shows, the ordering of the point multiplica-
tions resembles a recursive function. The initial large isogeny
degree is broken down by an optimal split. When that split
is reached through a series of point multiplications, the result
of that point multiplication is pushed to the top of a stack.
The isogeny 2253 requires a maximum stack size of 13 points
in Kummer coordinates. Thus, we must reserve 52 values
in Fp in the RAM unit to hold each of these. To ensure
correct scheduling of point multiplications, we kept track of
the size of the stack and would apply point multiplications and
isogeny computations to the top of the stack. The control unit
would alter the addresses for these instructions to point to the
coordinates at the top of the stack. To apply isogeny mappings,
the control unit would iterate from the top of the stack to the
bottom and push each Kummer point (Xi , Zi) to the new curve
from the isogeny relationship. Only one curve, E , is needed to
be stored at any given time. The total increase to the area for
implementing this queue system and other control logic was
minimal compared to the size of the FAU and datapath.

E. Total Cost of Routines
Table III demonstrates the total cost of the routines for our

isogeny core, dependent on the number of multipliers in the
multiply unit. It is also assumed that there is multiplication
interleaving every 68 cycles. The completion of a protocol
indicates that all of its results have been stored to memory.

96 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 64, NO. 1, JANUARY 2017

TABLE III

COST OF ROUTINES FOR OUR PROCESSOR

We counted operations in Fp as a half operation in Fp2 . There
were a few smaller routines for the protocol, but these merely
include moving registers so that the routines only have to be
implemented once over specific registers.

Description of routines:
• Subtract Points (init): We perform a projective subtraction

of Montgomery coordinates and perform inversions on
the projective coordinates so that the Z -coordinate is 1
to speed up the differential ladder by 2 multiplications.
• Differential Ladder Step: We compute two differential

point additions and one differential point doubling for
each step of a 3-point differential Montgomery ladder.
• Compute �-isogeny: We compute an isogeny of degree

�. The Mont isogeny produces a point of order 2 for 2-
isogenies. The 4-isogeny is only used at the end of the
large degree isogeny computation for 2a .
• Evaluate �-isogeny: We convert points from their starting

curve to the isogenous curve. We convert the public points
using the projective formula and the points in the kernel
with the Kummer formula. Projective conversion only
needs to be done on the first round for both parties.
Projective conversion always uses two points, so we
loop unrolled the routine for two points, which reduces
stalls by data dependencies and allows us to reuse shared
computations.
• Compute j -invariant: We compute the quantity that deter-

mines a curve’s isomorphism structure, which is used as
the shared secret.

As this table shows, generally increasing the number of
multipliers allows more parallelism to be exploited, thus
improving the performance. However, this impacts certain
algorithms much more than others. For instance, evaluation of
isogenies over projective coordinate has many multiplications
in parallel, which means that more multipliers allow these to be
done quicker. The large degree isogeny computation required
approximately 65% of the round time for Alice and 58% of
the round time for Bob.

With more multiplications, the memory and addition units
become the bottleneck. There are a few cases where more

TABLE IV

SIDH ROUND COMPUTATIONS

multiplications did not improve the time, such as computing
a 4-isogeny. For this case, 2 dual multipliers provides a better
time most likely because the order of additions and storings
is more efficient. The code generation software aggressively
schedules multiplications in the future, which might not benefit
for cases like this. However, the difference is only 1 to 3 cycles
over the course of the entire routine for these.

One can also loop unroll several isogeny evaluations. As an
example, instead of performing a single Kummer evaluation
over 2-isogenies the control unit could perform multiple
2-isogeny evaluations at once, depending on the queue size.
For instance, three 2-isogeny evaluations over Kummer coor-
dinates could be easily parallelized since there are relatively
few data dependencies. Instead of requiring 254 cycles for
a 2-isogeny evaluation over 3 dual multipliers, it requires
373 cycles for a triple 2-isogeny evaluation. However, this
makes the control logic more complex with how the controller
determines the 2-isogeny evaluations as well as the inputs
to the 2-isogeny evaluation equations. This shows that the
isogeny evaluations can benefit from loop unrolling since the
isogeny evaluations over Kummer coordinates has fairly trivial
computations.

We also give an approximate latency of the entire protocol
for both party’s computations in Table IV as well as the total
number of lines in the ROM file for the number of interleaved
multipliers.

V. FPGA IMPLEMENTATIONS

Our SIDH core was compiled with Xilinx Vivado 2015.4
to a Xilinx Virtex-7 xc7vx690tffg1157-3 board. Since the
software results available to compare against are primarily

KOZIEL et al.: POST-QUANTUM CRYPTOGRAPHY ON FPGA BASED ON ISOGENIES ON ELLIPTIC CURVES 97

TABLE V

IMPLEMENTATION RESULTS OF SINGLE-CORE ARCHITECTURES FOR KEY EXCHANGE PROTOCOL BASED ON ISOGENIES ON ELLIPTIC CURVES FOR
XILINX VIRTEX-7 FPGA FOR 512-BIT PRIME (85-BIT QUANTUM AND 128-BIT CLASSIC SECURITY LEVEL)

TABLE VI

IMPLEMENTATION RESULTS OF MULTI-CORE ARCHITECTURES FOR KEY EXCHANGE PROTOCOL BASED ON ISOGENIES ON ELLIPTIC CURVES FOR

XILINX VIRTEX-7 FPGA DEVICE FOR 512-BIT PRIME (85-BIT QUANTUM AND 128-BIT CLASSIC SECURITY LEVEL)

using high performance desktop processors from the Opteron
or Haswell architectures, we justify the use of this powerful
board to make a comparison between software and hard-
ware implementations of the SIDH protocol. All results were
obtained after place-and-route.

A. Implementation Results and Discussion

Our first architecture is a single SIDH core which features
a variable number of multipliers. We place all area and
timing results for the single-core architecture in Table V.
The implementation was optimized to reduce the net delay to
maximize the clock frequency. The latency results are based on
the assumption that Kaliski inversion requires 723 iterations.

Thus, as we can see, the performance of the protocol
does improve by up to a factor of 1.35 as the number of
multipliers increases. There are diminishing returns from using
more multipliers. Three interleaved multipliers appears to be
the best choice for performance. Four interleaved multipliers
provides a similar complexity as three multiplications, but with
many more resources. Increasing the number of multipliers
decreases the number of block RAM’s because there are fewer
instructions in the instruction ROM. Approximately 30 full
supersingular isogeny Diffie-Hellman key exchanges can be
pushed through per second with 3 dual multipliers.

The critical path delay was typically the cost of the single
cycle adders and subtractors used in the Kaliski inversion
module. The logic delay was relatively low for these modules,
but the net delay grew larger for more multipliers. Notably, for
2 dual multipliers, the Xilinx software had trouble implement-
ing the design without high net delays. As such, the frequency
of that implementation is actually lower than that of using
3 dual multipliers.

Compared to standard ECC modules, the above resource
usage appears fairly large and the protocol takes many cycles.
However, this protocol is based on a very large prime field.
All operations are in Fp2 . Further, we also particularly geared
our implementation for a fast performance. The quantum-
resistance of the scheme make it much more valuable as a
post-quantum cryptographic element. Lastly, our time results
include the total time of both parties computations. Normally,

the metric for ECDH is the rate at which scalar point mul-
tiplications occur, which is a fourth of the entire ECDH key
exchange. SIDH first round computations are slightly higher
than the second round, so we opted to use the total protocol
time as our metric.

We also implemented the above design as a multi-core
implementation. A single interleaved dual multiplier featured
the best performance per area, so we replicated that core
and used a FIFO buffer to issue and read results from the
SIDH cores. This method is virtually identical to our use
of replicated multipliers in a multiplier unit. To start the
protocol with standardized parameters, Alice and Bob’s private
keys are inserted, which only required 8 cycles. Reading the
j -invariants required 16 more cycles, so the overhead to start
and stop the protocol was insignificant.

With multiple cores, we were able to improve the throughput
of SIDH protocols by a factor of 11 over the single-core
results. As our results show, the frequency of the device
appeared to slowly drop as more cores were added. The
bottleneck of resources were slices, of which 88% of slices
were occupied for our device with 18 cores.

B. Comparison to Previous Works

Our protocols and formulas resemble that of [7]. We did
improve the double point multiplication to have two fewer
multiplications per step with an inversion at the beginning.
Other than that, the main difference lies in the fact that we
implemented on reconfigurable hardware and the other work
is implemented in C for a computer. [9] contains a similar
implementation of the protocol, but for different devices,
notably on an Haswell PC. We compare our implementation
to these previous software works in Table VII.

As we compare to other works, it should be noted that
[6] served as an introduction to isogeny-based cryptography
and does not feature many of the optimizations that the other
works include. Otherwise, we note that our implementation
does feature a smaller prime, but the difference in performance
between a 511-bit prime and a 521-bit is expected to be small.
The security of isogeny-based cryptography is based on the
minimum of �a and �b. The larger prime utilizes the same

98 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 64, NO. 1, JANUARY 2017

TABLE VII

COMPARISON TO SOFTWARE IMPLEMENTATIONS OF AFFINE SIDH OVER 512-BIT KEYS

size of �b, so the difference in security is relatively small.
The complexity of the computations are also similar, so our
implementations are comparable.

When we compare our results to [7], our timings per
round are approximately 3 times faster. Compared to the
performance on the 4.0 GHz Haswell architecture in [9], our
timings are still about 1.5 times faster for the entire protocol.
This shows that our implementation, which took advantage
of parallel operations in hardware, is now the fastest known
SIDH protocol for the 512-bit level. There are no other known
hardware implementations in the literature, but these results
show that implementation of the SIDH protocol in hardware
is feasible and can perform very well.

Costello et al. [10] recently proposed several new optimiza-
tions to the SIDH protocol that our implementation could
greatly benefit from. Among these, the use of “projective”
isogeny formulas allow for the computation of a large degree
isogeny with only a single inversion. In our implementation,
inversions were the bottleneck. Not only will this allow us
to parallelize more parts of the isogeny computation, but the
adaptation of these new formulas allow for a constant-time
implementation and remove the need for an inversion unit.
Costello also mentions various other improvements to the
protocol such as finite-field optimizations and evaluating the
isogeny at the points P ,Q, and P−Q in Kummer coordinates
for the protocol. However, a direct comparison to Costello’s
software implementation is difficult as we targeted different
prime sizes (511-bit vs. 751-bit). Costello’s work did improve
the protocol by a factor of 2.5 times and we believe that
these optimizations could provide a similar improvement to
our implementation.

VI. CONCLUSION

Overall, this paper served as the first hardware implemen-
tation of the supersingular isogeny Diffie-Hellman protocol.
This is one such protocol for isogeny-based cryptography, but
our approach to elaborating the large degree isogenies has
merits for other protocols as well, such as a zero-knowledge
identification scheme [7] or undeniable signatures [8]. We pre-
sented efficient finite-field arithmetic, scheduling methods, and
design of isogeny-based cores. Hardware can take advantage
of much more parallelism in Fp2 operations than standard
software. Our implementation runs at 1.5 times faster than
a Haswell architecture running an optimized C version of
the same SIDH protocol [9]. Minimizing the numerous inver-
sions with Costello’s [10] formulas would greatly benefit a
future implementation. Isogeny-based cryptography represents
one possible solution to the impending quantum computing

revolution because it features forward-secrecy, small keys, and
resembles current protocols based on classical ECC.

ACKNOWLEDGEMENT

The authors would like to thanks the reviewers for their
constructive comments. This material is based upon work
supported by the National Institute of Standards and Tech-
nology (NIST) under award 60NANB16D246.

REFERENCES

[1] V. S. Miller, “Use of elliptic curves in cryptography,” in Proc. Adv.
Cryptol., Dec. 1986, pp. 417–426.

[2] N. Koblitz, “Elliptic curve cryptosystems,” Math. Comput., vol. 48,
no. 177, pp. 203–209, 1987.

[3] L. Chen and S. Jordan, Report on Post-Quantum Cryptography, 2016.
[4] A. Rostovtsev and A. Stolbunov, Public-Key Cryptosystem Based on

Isogenies, 2006.
[5] A. Childs, D. Jao, and V. Soukharev, Constructing Elliptic Curve

Isogenies in Quantum Subexponential Time, 2010.
[6] D. Jao and L. D. Feo, “Towards quantum-resistant cryptosystems

from supersingular elliptic curve isogenies,” in Proc. Post-Quantum
Cryptography–PQCrypto, 2011, pp. 19–34.

[7] L. De Feo, D. Jao, and J. Plut, “Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies,” J. Math. Cryptol.,
vol. 8, no. 3, pp. 209–247, Sep. 2014.

[8] D. Jao and V. Soukharev, “Isogeny-based quantum-resistant undeni-
able signatures,” in Proc. 6th Int. Workshop Post-Quantum Cryptogr.
(PQCrypto), Waterloo, ON, Canada, Oct. 2014, pp. 160–179.

[9] R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi, “Key
compression for isogeny-based cryptosystems,” in Proc. Int. Workshop
ASIA Public-Key Cryptogr., 2016, p. 1–10.

[10] C. Costello, P. Longa, and M. Naehrig, “Efficient algorithms for super-
singular isogeny diffie-hellman,” in Advances in Cryptology. New York,
NY, USA: Springer, 2016.

[11] J. H. Silverman, The Arithmetic of Elliptic Curves. New York, NY, USA:
Springer-Verlag, 1992, vol. 106.

[12] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Annu. Symp. Found. Comput. Sci., 1994,
pp. 124–134.

[13] J.-M. Couveignes, “Hard homogeneous spaces,” Cryptology ePrint
Archive, Tech. Rep. 2006/291, 2006.

[14] J. Gärtner “Courbes elliptiques,” Comp. Rendus De l’Académie Des
Sciences Paris Series A-B, vol. 273, pp. A238–A241, 1971.

[15] P. L. Montgomery, “Speeding the Pollard and elliptic curve methods of
factorization,” Math. Comput., vol. 48, no. 177, pp. 243–264, 1987.

[16] M. R. E. Homsirikamol and K. Gaj, “A novel modular adder for one
thousand bits and more using fast carry chains of modern fpgas,” in
Proc. 24th Int. Conf. Field Program. Logic Appl., Sep. 2014, pp. 1–8.

[17] D. Harris, “A taxonomy of parallel prefix networks,” in Proc. IEEE
Conf. Rec. 37th Asilomar Conf. Signals, Syst., Comput., vol. 2.
Nov. 2003, pp. 2213–2217.

[18] P. L. Montgomery, “Modular multiplication without trial division,” Math.
Comput., vol. 44, no. 170, pp. 519–521, Apr. 1985.

[19] M. Fürer, “Faster integer multiplication,” in Proc. 39th Annu. ACM
Symp. Theory Comput., 2007, pp. 57–66.

[20] D. D. Chen, G. X. Yao, R. C. C. Cheung, D. Pao, and C. K. Koc,
“Parameter space for the architecture of fft-based montgomery modular
multiplication,” IEEE Trans. Comput., vol. 65, no. 1, pp. 147–160,
Jan. 2016.

KOZIEL et al.: POST-QUANTUM CRYPTOGRAPHY ON FPGA BASED ON ISOGENIES ON ELLIPTIC CURVES 99

[21] M. M. C. McIvor and J. V. McCanny, “High-radix systolic modular
multiplication on reconfigurable hardware,” in Proc. IEEE Int. Conf.
Field-Program. Technol., Dec. 2005, pp. 13–18.

[22] T. Blum and C. Paar, “High-radix montgomery modular exponentiation
on reconfigurable hardware,” IEEE Trans. Comput., vol. 50, no. 7,
pp. 759–764, Jul. 2001.

[23] S. Gueron and V. Krasnov, “Fast prime field elliptic-curve cryptography
with 256-bit primes,” J. Cryptograph. Eng., vol. 5, no. 2, pp. 141–151,
2014.

[24] B. S. Kaliski, “The Montgomery inverse and its applications,” IEEE
Trans. Comput., vol. 44, no. 8, pp. 1064–1065, Aug. 1995.

[25] E. Savas and C. K. Koc, “The Montgomery modular inverse-revisited,”
IEEE Trans. Comput., vol. 49, no. 7, pp. 763–766, Jul. 2000.

[26] J. W. Bos, “Constant time modular inversion,” J. Cryptograph. Eng.,
vol. 4, no. 4, pp. 275–281, 2014.

Brian Koziel (M’16) received a dual-degree B.Sc.
and M.Sc. degree in computer engineering from
Rochester Institute of Technology (RIT), Rochester,
NY, USA, in May, 2016. He is currently with
Embedded Processing group at Texas Instruments.
His current research interests include efficient soft-
ware and hardware implementations of elliptic
curve cryptography and post-quantum cryptogra-
phy. At RIT, he was a recipient of the prestigious
Outstanding Undergraduate Scholar award.

Reza Azarderakhsh received the Ph.D. degree in
electrical and computer engineering from Western
University, London, ON, Canada. After that he
was a Postdoctoral Research Fellow at Center for
Applied Cryptographic Research and the Department
of Combinatorics and Optimization, University of
Waterloo, Canada, while he was the recepient of
NSERC PDF award. After that he was with the
Department of Computer Engineering at Rochester
Institute of Technology, Rochester, NY, USA. Cur-
rently, he is an Assistant Professor at the Department

of Computer, Electrical Engineering and Computer Science and I-SENSE
Fellow at Florida Atlantic University, Boca Raton, FL, USA. His current
research interests include finite field arithmetic and its application, elliptic
curve cryptography, pairing based cryptography, and post-quantum cryptog-
raphy. He is serving as an Associate Editor of IEEE TRANSACTIONS ON
CIRCUITS AND SYTEMS—PART I (TCAS-I).

Mehran Mozaffari Kermani received the
B.Sc. degree in electrical and computer engineering
from the University of Tehran, Tehran, Iran, in
2005, and the M.E.Sc. and Ph.D. degrees from the
Department of Electrical and Computer Engineering,
University of Western Ontario, London, Canada, in
2007 and 2011, respectively. He was a recipient of
the prestigious Natural Sciences and Engineering
Research Council of Canada (NSERC) Post-
Doctoral Research Fellowship. Currently, he is with
the Department of Electrical and Microelectronic

Engineering, Rochester Institute of Technology, Rochester, NY, USA. His
current research interests include emerging security measures for embedded
systems, fault diagnosis in cryptographic hardware, and low-power secure
and efficient FPGA and ASIC designs. He served as the guest editor of the
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING special issue
on Emerging Security Trends for Deeply-Embedded Computing Systems
(2014–2015).

David Jao received the Ph.D degree in mathematics
from Harvard University, Cambridge, MA, USA,
in 2003. From 2003 to 2006, he worked in the
Cryptography and Anti-Piracy Group at Microsoft
Research, contributing cryptographic software mod-
ules for several Microsoft products. He is currently
an associate professor in the Mathematics Faculty at
the University of Waterloo, Canada, and the director
of the Centre for Applied Cryptographic Research.
His research interests include elliptic curve cryp-
tography, protocol design, and implementation, and

post-quantum cryptography.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

