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Abstract—Lightweight block ciphers are essential for provid-
ing low-cost confidentiality to sensitive constrained applications.
Nonetheless, this confidentiality does not guarantee their relia-
bility in the presence of natural and malicious faults. In this
paper, fault diagnosis schemes for the lightweight internationally
standardized block cipher CLEFIA are proposed. This symmetric-
key cipher is compatible with yet lighter in hardware than the
Advanced Encryption Standard and enables the implementation
of cryptographic functionality with low complexity and power
consumption. To the best of the authors’ knowledge, there has
been no fault diagnosis scheme presented in the literature for
the CLEFIA to date. In addition to providing fault diagnosis
approaches for the linear blocks in the encryption and the de-
cryption of the CLEFIA, error detection approaches are presented
for the nonlinear S-boxes, applicable to their composite-field im-
plementations as well as their lookup table realizations. Through
fault-injection simulations, the proposed schemes are bench-
marked, and it is shown that they achieve error coverage of
close to 100%. Finally, both application-specific integrated cir-
cuit and field-programmable gate array implementations of the
proposed error detection structures are presented to assess their
efficiency and overhead. The proposed fault diagnosis architec-
tures make the implementations of the International Organization
for Standardization/International Electrotechnical Commission-
standardized CLEFIA more reliable.

Index Terms—Application-specific integrated circuit (ASIC),
CLEFIA symmetric-key block cipher, efficient error detection,
field-programmable gate array (FPGA), reliability.

I. INTRODUCTION

THE FLOURISH of the Internet of Things and sensi-
tive embedded systems which can be deployed in both

personal and industrial setups has made lightweight cryp-
tography essential to reach acceptable confidentiality without
adding much overhead to the constrained nodes [1], e.g.,
utilized as an added security measure for Mobile Ad hoc
NETworks (MANETs) which lack physical layer security [2].
These lightweight cryptographic solutions need to provide high
security levels to counteract the malicious intents of adver-

Manuscript received July 12, 2012; revised September 17, 2012; accepted
October 31, 2012. Date of publication November 19, 2012; date of current
version June 21, 2013.

M. Mozaffari-Kermani is with the Department of Electrical Engineer-
ing, Princeton University, Princeton, NJ 08544, USA (e-mail: mozafari@
princeton.edu).

R. Azarderakhsh is with the Center for Applied Cryptographic Research
(CACR), Department of Combinatorics and Optimization, University of
Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail: razarder@uwaterloo.ca).

Digital Object Identifier 10.1109/TIE.2012.2228144

saries, similar to those for the Advanced Encryption Standard
(AES) [3]. The lightweight block cipher CLEFIA [4] (presented
in 2007) has been recently standardized in the International
Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC) (ISO/IEC 29192-2) [5] to
provide security measures for constrained applications.

The CLEFIA provides acceptable confidentiality and, com-
pared to the AES, has more compact hardware implementations
[6]. It is noted that the strength of the CLEFIA has been
benchmarked in a number of previous research works such
as [7]–[9]. The CLEFIA is a 128-b block cipher utilized to
protect the data transmitted in constrained applications such
as radio-frequency-identification tags deployed in industrial
setups, MANETs, handheld smart devices, and low-energy
wearable medical devices. The CLEFIA’s S-boxes are differ-
ent from those of the AES both in terms of the irreducible
polynomial used and the different affine transformations used
before and after the multiplicative inversion. Not only does this
lightweight cryptographic algorithm provide confidentiality for
resource-constrained applications, but it can be also utilized
as the fundamental component for various security purposes,
including authentication, integrity (including lightweight hash),
and pseudorandom number generation.

Natural fault detection (defects) has been the center
of many previous works, for instance, see [10]–[13]
for industrial electronics applications. Natural faults in
the very-large-scale integration (VLSI) implementations
of the cryptographic hardware are common due to
hardware failures such as natural VLSI single event upsets,
radiations, e.g., electromagnetic waves, which could induce
faults, or aging causes. In the software realizations of these
algorithms, these natural causes for faults cannot occur,
and therefore, the natural failures in software could be
mainly because of human factors. For the importance of fault
occurrence in the former realization method, i.e., the CLEFIA
in hardware, and, also, for the fact that it is lighter in hardware
compared to the AES, hardware architectures for the CLEFIA
are much appealing. Therefore, although, in general, error
detection schemes can be realized using hardware and software
implementations, in the case of the CLEFIA, hardware
realizations are preferred for both the original and the error
detection schemes to have better implementation/performance
metrics.

Moreover, in cryptographic hardware systems implemented
in critical and potentially sensitive contexts, with the presence

0278-0046/$31.00 © 2012 IEEE



5926 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 60, NO. 12, DECEMBER 2013

of malicious attackers attempting to take over the secret key, the
reliability of the CLEFIA may be compromised. Fault attacks
on the CLEFIA, which take advantage of the side-channel
information leaked through fault injections, have been the cen-
ter of attention in previous research works (see, for example,
[14]–[18]). In such attacks, preferably, single-bit faults using
the stuck-at model are injected. By repeatedly comparing the
erroneous and error-free outputs, the last subkey is derived,
and eventually, the secret key is compromised (Noting the
technological constraints, an attacker may not be able to inject a
single stuck-at fault. Therefore, multiple bits might be flipped).
We note that the stuck-at fault model (both single and multiple)
is able to model both natural and malicious faults and thus is
utilized throughout this paper to achieve this twofold goal of
the proposed schemes.

In cryptography, efficient implementations, e.g., for the point
multiplication in elliptic curve cryptography [19], [20], [21] and
fault diagnosis schemes, e.g., the schemes presented in [22]–
[27], have been presented in some previous research works.
Nevertheless, to the best of the authors’ knowledge, this paper
is the first to propose both lightweight and fault-immune archi-
tectures for the CLEFIA. In this paper, error detection schemes
for this lightweight block cipher are proposed and benchmarked
to reach more reliable hardware architectures. Almost all of
the occurring natural faults are detected using the proposed
methods. Although the proposed schemes may not result in
a complete solution to the problem of intentionally injected
faults, the high error coverage achieved would likely make the
potential fault attacks more difficult.

The main contributions of this paper are summarized as
follows.

1) Parity-prediction formulations are derived for the linear
and nonlinear blocks of the CLEFIA and utilized in
the proposed fault diagnosis scheme. For a subset of the
S-boxes which are based on inversions in GF (28), the
schemes applicable to their composite-field and lookup-
table-based hardware implementations are proposed.

2) The performed simulation results show high error cov-
erage for the presented schemes. Using the proposed
approaches, the error detection structures are capable of
detecting very close to 100% of the injected faults.

3) Through application-specific integrated circuit (ASIC)
syntheses using a 65-nm standard-cell library [28] and
field-programmable gate array (FPGA) implementations
on Virtex-5 FPGA devices [29], it is shown that the
overheads of the proposed architectures are acceptable for
resource-constrained applications.

The organization of this paper is as follows. In Section II,
preliminaries related to the CLEFIA block cipher are pre-
sented. The proposed error detection approaches are presented
in Section III. In Section IV, the results of the fault-injection
simulations are presented. Moreover, through ASIC syntheses
and FPGA implementations, the overheads are benchmarked.
Finally, conclusions are made in Section V.

TABLE I
S-BOXES SS0–SS3 WITHIN THE S-BOX S0 [4]

II. PRELIMINARIES

The algorithm frame of the CLEFIA is as follows [4]. This
block cipher consists of two parts, including a data processing
part and a key scheduling part. The plaintext input and the
ciphertext output (each contains 128-b blocks) are divided into
32-b parts. This is also performed for the whitening and round
keys. The round keys are used as inputs to the main functions
of the algorithm, and the whitening keys are XORed with the
input and the output of the entire encryption/decryption. Then,
the CLEFIA employs a type-2 generalized Feistel network with
four data lines, each data line with a length of 32 b [4]. The
CLEFIA is a 128-b block cipher with key lengths of 128, 192,
and 256 b corresponding to 18, 22, and 26 numbers of rounds,
respectively.

The data processing part of the CLEFIA consists of its en-
cryption and decryption. The 128-b plaintext and ciphertext are
divided into 32-b parts, and the encryption and the decryption
are performed using whitening and round keys provided by
the key scheduling unit [4]. Whitening keys are utilized at the
beginning and the end of the CLEFIA, and round keys are used
in its two main functions, i.e., 32-b functions F0 and F1 used in
both the CLEFIA encryption and decryption [4].

Two nonlinear 8-b S-boxes are utilized in these functions,
namely, S0 and S1. The S-box S0 is generated by combining
four 4-b random S-boxes, i.e., SS0, SS1, SS2, and SS3. This is
shown in Table I in which the outputs for these four S-boxes are
shown in hexadecimal form. The input x ∈ GF (28) is divided
into two parts, i.e., x0, x1 ∈ GF (24), as follows:

t0 ←SS0(x0), t1 ← SS1(x1)

u0 ← t0 ⊕ 2.t1, u1 ← 2.t0 ⊕ t1
y0 ←SS2(u0), y1 ← SS3(u1) (1)

where finite-field multiplications with the hexadecimal value 2
are performed in GF (24) using P1(z) = z4 + z + 1.

The nonlinear S-box S1 is based on the finite-field inversion
over GF (28). The primitive polynomial used for this mul-
tiplicative inversion is P2(z) = z8 + z4 + z3 + z2 + 1. Two
affine transformations are used in the S-box S1, denoted here-
after as pre- and postinversion affine transformations, i.e., f(.)
and g(.), respectively. Let I,O ∈ GF (28) be the input and the
output to this S-box, respectively. Then, if f(I) = 0, the output
is O = g(0) ∈ GF (28). Otherwise, the 8-b output of the S-box
S1 is computed as O = g(f(I)−1) ∈ GF (28).

Finally, two 4 × 4 diffusion matrices, i.e., M0 in F0 and M1

in F1, perform multiplications in GF (28) using P2(z); more
details are presented in the next section. The key scheduling
part of the CLEFIA supports 128-, 192-, and 256-b keys to
derive the whitening keys and round keys for the data pro-
cessing part; one can refer to [4] for more details on the key
scheduling unit.
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Fig. 1. Parity-based error detection structure of the S-box S0.

III. PROPOSED ERROR DETECTION SCHEMES

In this section, the error detection approaches of subblocks
in the CLEFIA encryption and decryption are proposed.

A. Proposed Scheme for the Nonlinear S-Boxes

Different approaches for the error detection of arithmetic
units and cryptographic architectures (including the parity-
based ones) have been investigated in previous works; see,
for instance, [30]–[32]. It is noted that, in the parity-based
fault diagnosis approaches used in this paper, the parity of a
block (or subblock) is predicted using a preferably lightweight
circuitry and compared with the actual parity to derive the error
indication flag. In this section, error detection schemes for two
nonlinear S-boxes in the F-functions of the encryption and the
decryption of the CLEFIA are proposed.

1) S-Box S0: The S-box S0 presented in (1) is first consid-
ered. The first and last steps in (1) are substitution layers which
are based on four random 4-b S-box circuits, i.e., SS0–SS3.
These 4-b S-boxes can be implemented using lookup tables.
For this purpose, 16 × 4 synthesized lookup tables or memory
macros in ASIC or block or distributed memories in FPGAs
(see [33] for the AES counterpart) can be used to store the 16
possible 4-b outputs of each S-box. Finally, the middle step is a
linear finite-field multiplication layer.

Two error detection schemes for S0 are proposed through
Fig. 1. As seen in this figure, the linear and nonlinear layers
of this S-box are depicted. The first scheme is based on the
modification of the original S-boxes, and the second one is
based on investing on the derived lightweight parity prediction
circuitry of the intact original S-box S0.

First, the scheme which is based on expanding the S-box S0

is devised. It is noted that P and P̂ denote the actual and the
predicted parities, respectively. The original 16 × 4 S-boxes
SS0–SS3 have been modified to 16 × 5 ones, i.e., their entries
are now 5 b and the added bit is the modulo-2 addition (XOR)
of the input and the output parities. For instance, as seen in
Fig. 1, for SS0 with the input x0 and the output b, Px0

⊕ P̂b is
added to each S-box entry, where ⊕ denotes the XOR operation.
The predicted parity of the 4-b output vector b, i.e., P̂b, is
then derived by adding the input parity (P̂x0

) and this stored
value (the lookup table address is x0). Similarly, P̂a is derived
for SS1, where a is the 4-b output of this S-box. The same
procedure is done for SS2 and SS3, as seen in Fig. 1. Finally,
the error indication flag of the S-box, i.e., eS0

, is derived as
shown in Fig. 1. The following lemma is presented for the parity
prediction of the linear multiplication layer of the S-box S0.

Lemma 1: Let P1(z) = z4 + z + 1 be denoted as the prim-
itive polynomial in GF (24) for the finite-field multiplications
in the S-box S0. Let θ ∈ GF (24) be the input to the multipli-
cation with constant 2 using P1(z), i.e., z ∈ GF (24). Then,
the predicted parity of the output δ ∈ GF (24) is derived as
P̂δ = Pθ + θ3, where θ3 is the most significant bit of θ =
θ3z

3 + θ2z
2 + θ1z + θ0.

Proof: Considering P1(z) = z4 + z + 1, one can derive
the result of 2× θ after reduction as δ = θ2z

3 + θ1z
2 + (θ0 +

θ3)z + θ3. Therefore, by the modulo-2 addition of the co-
efficients, one can obtain P̂δ = Pθ + θ3, and the proof is
complete. �

Lemma 1 is used in Fig. 1 for the parity predictions of the
two finite-field multiplications (see dotted lines in this figure).

The second parity-based scheme proposed for the S-box
S0 is based on deriving the predicted parities of the S-boxes
SS0–SS3 using logic gates, noting their relatively small sizes,
for instance, compared to those for the AES. Lemma 1 is used
for the linear multiplication layer of the S-box S0. We propose
the following theorem for the parity prediction of the 16 × 4
S-boxes SS0–SS3.

Theorem 1: Let μ, λ, ψ, χ ∈ GF (24) be considered as the
inputs of the S-boxes SS0–SS3, respectively, corresponding
to their respective 4-b vectors, e.g., μ = (μ3, μ2, μ1, μ0). The
predicted parities of these S-boxes are derived as follows:

P̂SS0
=μ3μ1μ0 ∨ μ1 ((μ3 + μ2) ∨ μ3μ0)

P̂SS1
=λ2(λ1 ∨ λ3λ0) ∨ λ2(λ3λ0 ∨ λ3λ1λ0)

P̂SS2
=ψ3ψ2ψ1ψ0 + ψ2(ψ3 ∨ ψ1ψ0) ∨ ψ0(ψ3ψ2 ∨ ψ1)

P̂SS3
=χ0 (χ3 ∨ (χ2 + χ1)) ∨ χ3χ0(χ2 + χ1) (2)

where ∨, +, and overline represent OR, XOR, and NOT opera-
tions, respectively.

Proof: Based on the CLEFIA’s algorithm, the 16 × 4
S-boxes SS0–SS3 are defined in Table II, where the predicted
parity of each entity has been derived and shown in the
parenthesis next to the hexadecimal value of the entity. For
each S-box, based on the 16 predicted parities of the 16 entries
(shown in the parentheses in the rows of Table II), one can
derive the formulations in (2). For example, for SS0, one can
derive P̂SS0

based on the parities in the parentheses of the row
of SS0 as P̂SS0

= μ3μ2μ1μ0 + μ3μ2μ1μ0 + μ3μ2μ1μ0 +
μ3μ2μ1μ0 + μ3μ2μ1μ0 + μ3μ2μ1μ0 + μ3μ2μ1μ0 which
gives P̂SS0

= μ3μ1μ0 + μ3μ2μ1 + μ3μ2μ1 + μ3μ1μ0. Consi-
dering that μiμj ∨ μjμi = μi + μj , one can obtain P̂SS0

=
μ3μ1μ0 ∨ μ1((μ3 + μ2) ∨ μ3μ0). Similar methods can be
used for deriving P̂SS1

− P̂SS3
whose details are not presented

for the sake of brevity. Therefore, the proof is complete. �
Depending on the resources available and the platform to

be utilized, one can choose the proposed error detection ap-
proaches for the S-box S0. In what follows, the error detection
schemes for the other nonlinear S-box of the F-functions are
presented.

2) S-Box S1: Unlike the S-box S0 which consists of smaller
random S-boxes, the S-box S1 is based on arithmetic opera-
tions in GF (28), including a multiplicative inversion and two
affine transformations. This allows to devise the error detection
schemes which are based on the arithmetic properties of this
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TABLE II
PREDICTED PARITIES (IN PARENTHESES) OF THE S-BOXES SS0–SS3 WITHIN THE S-BOX S0 (ENTRIES IN HEXADECIMAL FORM)

Fig. 2. Error detection structure of the S-box S1 including pre- and postinver-
sion affine transformations.

S-box rather than storing the predicted parities in the S-boxes.
One important benefit of this approach is its applicability
to the composite-field S-boxes as well. These S-boxes have
lower hardware complexity and can be pipelined for higher
performance compared to the ones using lookup tables (see,
for instance, [34] for the AES). It is noted that, as seen in
the following, a nonlinear multiplication method is used rather
than a linear method so that the proposed approach becomes
independent of the structure of the CLEFIA’s S-box S1.

Fig. 2 illustrates the obtained error detection scheme for the
entire S-box S1, including its linear and nonlinear blocks. As
seen in this figure, one can multiply the input and the output
of the multiplicative inversion in GF (28) and then compare the
result with 1 ∈ GF (28) using the irreducible polynomial P2(z)
which is unique for the CLEFIA. Another unique characteris-
tics for the CLEFIA is that it consists of two new different affine
transformations before and after the multiplicative inversion
in GF (28). It is noted that using finite-field multipliers for
the input and the output of the inversion [and then comparing
the result with 1 ∈ GF (28)] introduces much overhead to the
S-box S1. Based on the aforementioned observations, a parity-
based scheme for the S-box S1 is proposed considering the
following theorem which is adopted from [31].

Theorem 2: Let C be the product of two arbitrary elements
A and B of GF (2m). Let P̂Z(j) = PA +

∑j−1
k=0 Z

(k)
m−1 for

1 ≤ j ≤ m− 1, where PA is the parity (modulo-2 addition of
bits) of A. Moreover, let Z(k)

m−1 be the (m− 1)th coordinate
of Z(j) = Aαj mod F (α). We note that, for the irreducible
polynomial F (α), αj denotes exponents for α. Then, P̂C =∑m−1

j=0 bjP̂Z(j).
Based on Theorem 2, the following theorem is presented for

the parity prediction of the S-box S1.

Theorem 3: Considering the S-box S1 presented in Fig. 2
with the input I ∈ GF (28) and the output O ∈ GF (28), one
can obtain the parity prediction of the multiplicative inversion
as well as the preinversion (f(.)) and postinversion (g(.)) affine
transformations for the case f(I) = X �= 0 as

P̂S1
= i0(PO + o5 + o2 + o0) + i1(PO + o6 + o4 + o2)

+ i2(o5 + o4) + i3(PO + o7 + o4 + o1)

+ i4(o7 + o5 + o2) + i5(PO + o7 + o3 + o2)

+ i6(o6 + o4 + o2) + i7(PO + o6 + o5 + o4)

+ o5 + o4 + o2 + o1 (3)

where i = (i7, . . . , i0) and o = (o7, . . . , o0) are the vectors
corresponding to I,O ∈ GF (28), respectively, and PO is the
parity of O.

Proof: According to Fig. 2 and Theorem 2, first, the
predicted parity of the multiplicative inversion with the input
X ∈ GF (28) and the output Y ∈ GF (28) is derived. Utilizing
P2(z) = z8 + z4 + z3 + z2 + 1 as the polynomial for reduc-
tions, one can consecutively first obtain the most significant bits
of Xαj mod P2(α) for 1 ≤ j ≤ 7. Then, based on Theorem 2,
the following is obtained for the predicted parity of multiplica-
tion, i.e., P̂M :

P̂M =x0PY + x1(PY + y7) + x2(PY + y7 + y6)

+ x3(PY + y7 + y6 + y5) + x4(y3 + y2 + y1 + y0)

+ x5(y7 + y2 + y1 + y0) + x6(y6 + y1 + y0)

+ x7(y7 + y5 + y0). (4)

The affine transformations f(.) and g(.) are presented in [4].
The inverse of the postinversion affine transformation g(.), i.e.,
g−1(.), has been derived and presented hereinafter, respectively,

f(.) : x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 0 0 0
0 1 0 1 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0
0 1 1 0 0 1 0 1
0 1 0 1 1 1 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

i+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
1
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

g(.) : o =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 1
0 1 0 1 1 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

y +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
1
0
1
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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g−1(.) : y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 0 1 0
1 0 1 1 1 1 0 0
0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0
1 0 0 0 0 1 0 0
1 0 1 1 1 1 0 1
0 0 0 0 0 1 0 0
1 1 1 1 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

o+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
1
0
1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Based on Fig. 2 and considering (4), one can substitute the
coordinates of X,Y ∈ GF (28) with those of I,O ∈ GF (28)
to derive (3) after reordering and some calculations. This com-
pletes the proof. �

Using subexpression sharing, the hardware complexity of (3)
is decreased. As seen in Fig. 2, the obtained predicted parity
can be XORed with 1 (or simply inverted) to derive the error
indication flag eS1

. It is noted that the case of X = 0 is also
separately detected to compare the final result with g(0) for
error detection. In the following section, the proposed scheme
for the two linear operations (4 × 4 diffusion matrices) in the
F-functions is presented.

B. Proposed Scheme for the Diffusion Matrices

In what follows, for every 8 b of the two 4 × 4 diffusion
matrices, i.e., M0 in F0 and M1 in F1, predicted parities are
derived. The following theorem is presented for these matrices.

Theorem 4: Let X = X1|X2|X3|X3 and Y = Y1|Y2|Y3|Y3

be the 32-b input and output (divided into four 8-b parts each)
of the M0 (or M1) matrix, respectively. Then,

∑3
i=1 Xi =∑3

i=1 Yi.
Proof: Matrices M0 and M1 with hexadecimal entries

are as follows:

M0=

⎛
⎜⎝

01 02 04 06
02 01 06 04
04 06 01 02
06 04 02 01

⎞
⎟⎠ M1=

⎛
⎜⎝

01 08 02 0a
08 01 0a 02
02 0a 01 08
0a 02 08 01

⎞
⎟⎠ .

For these matrices, the modulo-2 additions of each col-
umn entry is {01}h. For instance, for M1, the first
column becomes {01 + 08 + 02 + 0a}h = {01 + 08 + 02 +
08 + 02}h = {01}h. Thus,

∑3
i=1 Xi =

∑3
i=1 Yi, and the proof

is complete. �
Theorem 4 implies that there is no overhead in deriving one

predicted parity for these matrices, i.e., P̂X = P̂Y . Moreover, it
gives freedom in utilizing up to eight checkers for each of the
matrices.

This section is finalized by briefly presenting the overall
structures of the error detection schemes for the CLEFIA
encryption and decryption. The error detection structures of
two main functions of the CLEFIA are shown in Fig. 3. As
seen in this figure and discussed in the previous section, one
parity bit is used for every 8 b of the nonlinear S-boxes (see
Lemma 1, Figs. 1 and 2, and Theorems 1 and 3) and linear
diffusion matrices (see Theorem 4). Using the proposed fault di-
agnosis approaches in this section for the F-functions, the fault
diagnosis of these operations is straightforward. The CLEFIA’s
encryption and decryption parity-based error detection archi-

Fig. 3. Error detection structures of the two main functions of the CLEFIA,
i.e., F-functions F0/F1.

Fig. 4. Error detection structures of the CLEFIA’s (left) encryption and
(right) decryption.

tectures are also presented in Fig. 4. As seen in this figure, the
encryption and the decryption include similar F-functions and
modulo-2 additions including those with the whitening keys,
whose parity predictions are the additions of the input parities
(shown by PWK and PRK in Fig. 4 for whitening or round
keys, respectively). Moreover, for the key scheduling part, the
F-functions are the major components inside the generalized
Feistel network, and thus, the presented scheme is applicable to
this part as well.

IV. ANALYSIS OF THE PROPOSED SCHEMES

The error coverage assessments and overhead benchmark of
the error detection structures are presented in this section.
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TABLE III
ASIC SYNTHESES OF THE ORIGINAL AND THE ERROR DETECTION STRUCTURES FOR THE CLEFIA ENCRYPTION/DECRYPTION

USING A 65-nm CMOS STANDARD-CELL LIBRARY

A. Error Coverage

Throughout this paper, both single and multiple stuck-at
faults are considered. These models cover both natural faults
and malicious fault attacks [23]. If exactly 1-b error occurs
at the output of the linear or nonlinear blocks of the CLEFIA
functions, the presented parity-based error detection approach
is able to detect it, and the error coverage of the proposed
scheme is 100%; thus, no simulation is needed for this case.
Although it is not claimed that all the presented fault attacks are
entirely detected, the proposed approach would make it difficult
for these attacks to be mounted, e.g., analytically, more than
99.99% of the faults through the attack presented in [17] are
detected.

Noting the technological constraints, an attacker may not
be able to inject single stuck-at faults to flip exactly 1 b
[23]. Thus, multiple bits will actually be flipped. Most internal
faults are modeled by transient random faults [23]. Therefore,
by relying on simulations, error coverage through multiple
stuck-at fault injections is evaluated for the CLEFIA encryp-
tion and decryption. The results of the performed simula-
tions are valid for both transient faults and permanent internal
faults.

Based on the used fault model presented in this section,
stuck-at faults (both stuck-at zero and stuck-at one) are injected
in multiple random locations. For the sake of brevity, the
CLEFIA-128 encryption and decryption have been considered
as reference for the fault-injection simulations. By applying
100 000 random inputs, 1000 multiple and random faults (in
terms of the type of the fault, its location, and its count) have
been injected for each input. For each injection, error indication
flags are monitored, and the detected errors are counted for the
encryption and the decryption operations.

The results of the performed simulations show that more
than 99.999% of the errors are detected (these comply with the
theoretical results using 16 predicted parities per round). Only
the instances in which the output is erroneous are evaluated, and
the ones in which the injected faults are masked, i.e., the output
is correct, are not relevant for calculating the error coverage.
Moreover, it is assumed that the comparison units (which are
composed of simple XOR gates), comparing the actual and the
predicted parities, are fault free. The obtained error coverage
of very close to 100% makes the hardware implementations
of the CLEFIA more reliable. To theoretically verify the error
coverage for multiple errors, let us denote p as the probability
of error detection of one parity bit. Therefore, 1− pn is the
error detection probability for using n parity bits. Now, let
us consider the CLEFIA-128 with 18 rounds (18 F0s and

18 F1s), each of which uses eight predicted/actual parities. For
p = 0.5 and n = 36× 8, we have the error detection proba-
bility as 1− (2× 10−87) � 0.99999, which complies with our
error simulation results.

As it is seen in the next section, the proposed scheme has
the area overhead of less than 20% and delay overhead of less
than 8% on both ASIC and FPGA (compared to 100% overhead
for the redundancy-based approaches). With these acceptable
overheads, the error coverage of 100% is achieved in case
of ideal fault attacks with 1-b flips, and in other cases, the
proposed scheme reaches the error coverage of about 100%
[theoretically 1− (2× 10−87)] which would make it much
difficult for these attacks to be mounted.

B. ASIC and FPGA Overhead Benchmark

This section presents the results of the overhead assessments
using the ASIC and the FPGA hardware platforms. The analysis
has been performed for the original and the error detection
structures of the CLEFIA-128, CLEFIA-192, and CLEFIA-
256. Through this benchmarking, the overheads (degradations)
are derived. A 65-nm standard-cell library [28] has been used
for the ASIC results using Design Compiler [35]. Moreover,
ISE version 13.4 and Virtex-5 FPGA device xc5vlx50t-3 [29]
have been utilized for the FPGA implementations (FPGAs are
used in high-performance and cost-effective applications [36]–
[39], including FPGA-based control units/systems for fault
diagnosis [40]). Verilog has been used as the design entry for
the original and the error detection structures.

Let us explain the ASIC and the FPGA architectures whose
results are shown in Tables III and IV. We have followed
the loop architecture implementation methods for the original
CLEFIA-128, CLEFIA-192, and CLEFIA-256, which have
been realized in the CLEFIA standard as well. In this architec-
ture which takes one clock cycle per round, both F-functions,
i.e., 32-b functions F0 and F1 used in the CLEFIA encryption
and decryption, are implemented in parallel (not merged). How-
ever, we note that our schemes are independent of the methods
that these functions are realized. For this method, 18, 22, and
26 clock cycles corresponding to the same number of rounds in
these three original CLEFIA structures are needed. For the error
detection structures, both the predicted parity architectures and
the structures for the actual parities (modulo-2 addition of the
respective bits of the corresponding outputs) are synthesized
and implemented. Moreover, the comparison units are included
in these architectures in order to have complete benchmarks
for the entire error detection architectures. All the syntheses
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TABLE IV
FPGA IMPLEMENTATION RESULTS FOR THE ORIGINAL CLEFIA ENCRYPTION/DECRYPTION AND ITS PROPOSED

ERROR DETECTION SCHEME ON VIRTEX-5 FPGA DEVICE XC5VLX50T-3

and implementations are performed using the same settings
(medium map and area efforts), tools, devices (for FPGA), and
libraries (for ASIC) to have a meaningful benchmark.

We would like to emphasize that these results are for
benchmarking purposes and the original architectures could be
optimized. However, this does not change the applicability of
the proposed architectures. As seen in these two tables, the
area, frequency, throughput (considering 18, 22, and 26 rounds
for the different key sizes of the CLEFIA, respectively), and
efficiency (throughput/area) for the original and the error
detection structures of the CLEFIA with different key sizes
are presented. The area of the ASIC designs are presented in
terms of NAND gate equivalent (GE) in order to make the area
results meaningful when switching technologies. Moreover, for
the FPGA implementations, the number of occupied slices is
reported.

As seen in Tables III and IV, the overheads are presented
in parentheses. For the ASIC syntheses in Table III and the
FPGA implementations in Table IV, the highest area overheads
are 18.8% and 19.7%, respectively. The maximum overheads
for the frequencies and the throughputs on ASIC and FPGA
are 4.8% and 7.9%, respectively. Finally, the maximum ef-
ficiency degradations in Tables III and IV are 19.6% and
28.1%, respectively. Based on the simulation results in this
section, these overheads are added for the error coverage of
very close to 100%. The proposed effective fault diagno-
sis approaches provide high error coverage at the expense
of the presented acceptable overheads on the hardware plat-
forms, making the hardware architectures of the CLEFIA more
reliable.

V. CONCLUSION

In this paper, new fault diagnosis approaches for the recently
standardized lightweight block cipher CLEFIA have been pre-
sented. These include the nonlinear S-boxes and the linear
diffusion matrices of the F-functions, the main components of
the CLEFIA encryption and decryption. The presented scheme
for the S-box of the CLEFIA, including the finite-field inversion
and pre- and postinversion affine transformations, is applicable
to the low-complexity composite-field realizations as well as
the lookup table ones. The results of the error coverage analysis
show very high error coverage (close to 100%) for the proposed
error detection structures for the injected stuck-at faults. More-
over, the ASIC and the FPGA analysis results show acceptable
overheads for different key sizes of the CLEFIA when the
presented schemes are utilized.

The proposed schemes are a step forward in the area of fault-
immune lightweight cryptographic hardware, essential for pro-

tecting the extremely sensitive applications. The applicability of
the schemes presented is not confined to lightweight block ci-
phers; lightweight hash functions with similar structures can be
made more reliable investing on the schemes devised, making
the presented schemes suitable for providing reliability to their
lightweight security-constrained hardware implementations.
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