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Common Subexpression Algorithms for
Space-Complexity Reduction of Gaussian

Normal Basis Multiplication
Reza Azarderakhsh, David Jao, and Hao Lee

Abstract— The use of normal bases for representing elements
in a binary field is attractive in some applications because it is
easy to perform squaring operations in hardware. In such cases,
the costs of implementing the multiplication operation become
a primary concern. We present new algorithms for reducing
the space complexity of Gaussian normal basis multipliers
over binary fields G F(2m), where m is odd. Compared with
previous results, our approach incurs no additional costs in time
complexity, and achieves improvements in space complexity over
a wide range of finite fields and digit sizes. For the binary fields
specified in the NIST FIPS 186-3 elliptic curve digital signature
algorithm standards document, our algorithms reduce by 16%
(respectively, 27%) the number of XOR gates needed for the
implementation of a digit-level parallel-input parallel-output
multiplier over a 163-bit (respectively, 409 bit) binary field.

Index Terms— Elliptic curve cryptography (ECC), binary
extension field, approximation algorithm, complexity reduction
algorithm, Gaussian normal basis.

I. INTRODUCTION

F INITE field arithmetic has several applications in
coding theory, classical, and modern cryptography.

Cryptographic algorithms such as elliptic curve crypto-
graphy (ECC) require different finite field arithmetic
operations including multiplication, addition, squaring, and
inversion. Among these operations, multiplication plays an
important role in determining the efficiency of such algorithms
for two reasons. First, its computation is complicated
in comparison to other operations, and second, several
applications require many multiplications. Therefore, efficient
implementation of finite field multipliers is crucial. For binary
fields G F(2m), field elements are typically represented
using either polynomial (standard) bases or normal bases,
as described in the NIST [1] and IEEE standards [2].
When working in a normal basis, squaring is simply a
right-cyclic shift, which can be implemented very efficiently
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in hardware. A Gaussian Normal Basis (GNB) is a special
class of normal basis which admits an efficient field
multiplication implementation. The existence of GNBs may
depend on generalized Riemann hypothesis (GRH) [3]. In [4],
it has been observed that there will exist some k for which
there is a GNB of type k which provides best alternative
when optimal normal basis does not exist. Massey and
Omura in [5] were the first to propose a bit-level normal
basis multiplier with the structure of parallel-input and serial-
output (PISO) for use in binary field arithmetic. Geiselmann
and Gollman in [6] presented another bit-level multiplier
with a parallel-input and parallel-out (PIPO) architecture, and
Beth and Gollman [7] proposed a serial-input and parallel-out
structure for bit-level multiplication over normal basis.

Digit-level multipliers are an alternative to bit-level and
bit-parallel multipliers in which the digit size can be chosen
depending on the amount of the resources available.
They can be easily scaled up to perform bit-parallel
multipliers and scaled down to perform as bit-level
multipliers, for high performance and resource-constrained
applications, respectively. Recently, Reyhani-Masoleh in [8]
and Kim et al. in [9] constructed a digit-level parallel-input
and parallel-output (DL-PIPO) multiplier architecture which
has been employed for point multiplication of ECC by
several researchers. Their multiplier is based on repeating
the module which implements the multiplication matrix.
Given a digit-size d with 1 ≤ d ≤ m, it takes q = �m

d �
clock cycles to generate all coordinates of the product.
In [10] and [11], Azarderakhsh et al. proposed a common
subexpression elimination algorithm to reduce the space
complexity of DL-PIPO and DL-SIPO/DL-PISO multiplier
architectures, respectively. Recently, digit-level multipliers
have been employed to develop ECC-based crypto-processors.
For istance one can refer to [12]–[14].

As recommended by NIST [1], ECC over G F(2m) requires
163, 233, 283, 409, and 571-bit key sizes for 80, 112, 128,
192, and 256-bit security levels, respectively. As of 2010,
the 80-bit and 112-bit security levels are considered
obsolete and today’s security requirements for elliptic
curve cryptography demands an increase in key size
to at least 283 bits to achieve the 128-bit security
level [15], [16]. As the key sizes increase, the space
complexity of the field multipliers increase as well and hence
efficient hardware implementation becomes challenging.
In this paper, we address this issue comprehensively
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and present new algorithms for complexity reduction of
GNB multipliers. First, we prove conjectures that were left
unproven in previous works that used special properties
of Gaussian normal bases. Second, we present two new
complexity reduction algorithms to efficiently reduce the
space complexity and the number of required XORs in the
multiplication matrix for digit-level multiplier architectures.
The first algorithm produces optimal output but runs in
exponential time. The second algorithm is an approximation
algorithm which runs in polynomial time. Our approximation
algorithm has two main advantages compared to previous
work of [10] and [11]. First of all, it is more efficient in
terms of finding common subexpressions and consequently
reducing the number of required XORs. Second, it is
scalable for larger field sizes and runs in polynomial
time. Our experiments based on simulations indicate that
our approximation algorithm always produces smaller
multipliers compared to previous work. For instance,
we require 24% fewer XOR gates to implement a
bit-parallel (d = m) multiplier architecture over G F(2283),
which is a type 6 GNB. Moreover, for bit-level
GNB multipliers our algorithms yield to requiring fewer XORs
for all field sizes which is attractive for resource-constrained
applications such as smart cards and RFIDs. We stress that
our algorithms for finding compact multiplication matrices
are not limited only to the fields in the NIST standard,
but work in general for all binary fields admitting
suitable GNBs.

The rest of the paper is organized as follows.
In Section 2, we provide relevant background on normal
basis multiplication. In Section 3, we prove some new
properties of GNB multiplication matrices. In Section 4,
we present our complexity reduction algorithms. In Section 5,
we provide simulation results and compare them to the leading
ones available in the literature for bit-level and digit-level
architectures. Finally, in Section VI we conclude the paper.

II. PRELIMINARIES

A. Gaussian Normal Basis

Elements of a finite field G F(2m) can be represented

using a normal basis N = {
β, β2, β22

, . . . , β2m−1}
where

β ∈ G F(2m) is a normal element of G F(2m) (an element for
which N forms a basis). For any element A ∈ G F(2m), we use
the notation A = (a0, a1, . . . , am−1), where A = ∑m−1

i=0 aiβ
2i

,
with ai ∈ G F(2) [17].

Definition 1 [4], [18], [19]: Let m and T be positive
integers such that p = mT + 1 be a prime number and
gcd

(mT
k , m

) = 1, where k is the multiplicative order
of 2 modulo p. Let α be a primitive (mT +1)-th root of unity
in G F(2T m). Then, for any primitive T -th root of
unity τ in Zp , β = ∑T −1

i=0 α
τ i

generates a normal basis
of G F(2m) over G F(2) given by N = {β, β2, · · · , β2m−1},
which is called a Gaussian normal basis (GNB) of
type T .

The type T determines the space and time complexities
of GNB multiplication. Multiplication over a GNB is
based on a multiplication matrix Mm×m , whose entries

are zeros and ones. For details on the computation of the
multiplication matrix Mm×m we refer to Ash et al. [4]. It is
well known that when T is even, the multiplication matrix has
the following properties: (a) the matrix M is symmetric, (b) its
diagonal entries are all zero except for the last one, (c) the first
row has just one non-zero entry, and (d) row(m − i) is the
i -fold left cyclic shift of row(i) for all 1 ≤ i ≤ m−1. Since the
matrix is a sparse (0, 1)-matrix, for simplicity and efficiency,
it is common practice to store the column numbers of the
multiplication matrix M in which nonzero entries appear,
instead of the whole M. Accordingly, we can store those
column numbers for each row from 1 up to m − 1, obtaining
a new matrix R(m−1)×T having its first row removed [8]. The
R matrix therefore satisfies R(m − i, j) = R(i, j)+ i mod m,
1 ≤ i ≤ m−1

2 , 1 ≤ j ≤ T . It should be noted that the
R matrix is more correctly described as a list of lists, since
not all entries are filled. In the rest of this paper, we work
primarily with the R matrix instead of the multiplication
matrix M. Every GNB satisfies the complexity bound
CN ≤ T m − 1, where CN is the number of ones in the
multiplication matrix M or the number of entries in the
R matrix [4]. Let A = (a0, a1, · · · , am−1) = ∑m−1

i=0 aiβ
2i

and B = (b0, b1, · · · , bm−1) = ∑m−1
j=0 b jβ

2 j
be two field

elements over G F(2m) and assume C ∈ G F(2m) be their
product, i.e., C = (c0, c1, · · · , cm−1) = AB.

Proposition 2 [4]: Let p = T m + 1. Then every
k ∈G F(p)\ {0} can be written uniquely as

k = 2i u j mod p,

where u is a primitive T -th root of unity, and 0 ≤ i < m,
0 ≤ j < T .

Let F to be the map such that F(k) = F(2i u j ) = i for all
k ∈ G F(p)\ {0}. This is well-defined by the previous
proposition. Therefore, the first coordinate, i.e., c0 of
C = A × B can be obtained from the following summation:

c0 =
p−2∑

k=1

aF(k+1)bF(p−k). (1)

If T is even, the GNB is a self-dual basis [20],
so F(k) = F(p − k) [21] and hence the multiplication
matrix is symmetric and the summation can be simplified
as follows [8]:

c0 = a0b1 +
p−2∑

k=2

aF(k)bF(k+1)

= a0b1 +
m−1∑

i=1

ai

⎛

⎝
∑

F(k)=i

bF(k+1)

⎞

⎠. (2)

This expression is critical in our analysis of the properties
of the GNB in Section 3. It will be important to study values
of F(k + 1) given that F(k) = i .

From this equivalent construction, the multiplication
matrix R can be derived [8], and one can write c0 as

c0 = a0b1 +
m−1∑

i=1

ai

⎛

⎝
T∑

j=1

bR(i, j )

⎞

⎠, (3)
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where R(i, j) denotes the (i, j)-th element of the R(m−1)×T

matrix, with 0 ≤ R(i, j) ≤ m − 1, 1 ≤ i ≤ m − 1, 1 ≤ j ≤ T .
Note that the term ai b j simply denotes a 1 in the multiplica-
tion matrix Mm×m and is removed from the multiplication
matrix R(m−1)×T . If a term ai bF(k+1) occurs twice
in equation (2), then it makes no contribution to the R matrix
as the R matrix is constructed in modulo 2. Other elements
of product C can be obtained by cyclic shifting the input
operands. In the following, we give an illustrative example
about multiplication matrix over GNB.

Example 3: Consider the finite field G F(27) is generated
over GNB with a type 4. The following multiplication matrix
from [4] is given in [1]:

M =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0 0
1 0 1 0 0 1 1
0 1 0 1 1 1 0
0 0 1 0 0 1 0
0 0 1 0 0 0 1
0 1 1 1 0 0 1
0 1 0 0 1 1 1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

7×7

,

R =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

0 2 5 6
1 3 4 5
2 5 − −
2 6 − −
1 2 3 6
1 4 5 6

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

6×4

.

Based on (3) one can obtain c0 as follows:

c0 = a0b1 + a1(b0 + b2 + b5 + b6)+ a2(b1 + b3 + b4 + b5)

+ a3(b2 + b5)+ a4(b2 + b6)+ a5(b1 + b2 + b3 + b6)

+ a6(b1 + b4 + b5 + b6). (4)

As one can see, in (4) we can reuse some repeated signals such
as (b2 + b5), (b2 + b6), etc. which are linear combinations of
input operand B and reduce the number of XORs in hardware
implementations of GNB multipliers. However determining
these linear combinations is challenging for larger fields
sizes (recommended for ECDSA by NIST) for digit-level
architectures to implement (3). We deeply investigate this
subexpression sharing in this work.

B. Digit-Level GNB Multipliers

1) Digit-Level Serial Input and Parallel Output (DL-SIPO)
Multiplier: In [11], a digit-level serial-input and parallel-
out (DL-SIPO) GNB multiplier architecture is proposed.
In this multiplier, one of the operands is fully available while
the other one is available in a digit-serial fashion. A special
module (called a P module) is employed to implement the
multiplication matrix R(m−1)×T and d copies of this module
(1 ≤ d ≤ m) are needed in order to perform a multiplication
in q = �m

d � clock cycles to generate all coordinates of the
product. To reduce space complexity, Q module is obtained
with combining the d shifted versions of P module. Given a
digit-size d , one can construct the Q module by appending
to the R matrix a 1-time right-cyclic shifted version of R
(but without row 0), followed by a two-time right-cyclic

shifted version (having row 0 removed), continuing up to
a d − 1 times right-cyclic shifted version [11] as:

Q =

⎛

⎜
⎜⎜
⎜
⎜
⎝

R(0)

R(1)

R(2)

...
R(d−1)

⎞

⎟
⎟⎟
⎟
⎟
⎠
,

where R(�), 0 ≤ � ≤ d − 1 is an �-times right cyclic shifted
version of R.

Finally, a common subexpression elimination algorithm is
used to reduce the number of XORs needed to implement
the Q module and hence reduce the complexity of the overall
multiplier [11].

2) Digit-Level Parallel Input and Parallel
Output (DL-PIPO) Multiplier: In [8] and [9], a digit-level
parallel-input and parallel-output (DL-PIPO) multiplier
architecture is proposed. This multiplier only requires
implementing half of the multiplication matrix R(m−1)×T

(which is called a μ(m−1
2 ×T ) matrix) due to the fact that both

input operands are fully available during the multiplication
process and the products will be available after the last
clock cycle. Recently, this multiplier has been modified by
combining the modules which implement the μ matrix by
appending left-cyclic shift copies of μ to itself d − 1 times,
constructing a big ρ module as follows:

ρ =

⎛

⎜
⎜⎜
⎜
⎝

μ(0)
μ(1)
μ(2)
...

μ(d−1)

⎞

⎟
⎟⎟
⎟
⎠
,

where μ(�), 0 ≤ � ≤ d − 1 indicates an �-times left cyclic
shifted version of the matrix μ. Then, the space complexity is
reduced using a common subexpression elimination algorithm
proposed in [10].

III. PROPERTIES OF GNB MULTIPLICATION MATRICES

In this section, we prove several attractive properties of the
GNB multiplication matrix which we employ in the following
sections for our new complexity reduction algorithms.

Let u be a primitive T -th root of unity in GF(T m + 1).
Note that all non-zero elements in GF(T m +1) can be written
uniquely as 2i u j where 0 ≤ i < m and 0 ≤ j < T . Therefore,
we have the following theorem.

Theorem 4:
1) F

(
2−1

) = m − 1.
2) F(ui + 1) = F(uT −i + 1) for every 0 ≤ i < T − 1
3) Let T be even. Write F(k) = i1 and F(k + 1) = i2.

Then F(kuT/2) = i1 and F(kuT/2 − 1) = i2
4) Let T be even and assume F(k) = i �= 0

and F(k + 1) = j . Then, there exists k ′ such that
F(k ′) = m − i , and F(k ′ + 1) = j − i mod m

Proof: For part one, suppose 2−1 = 2i u j , so 1 = 2i+1u j .
If one takes the T -th power of both sides to get 1 = 2T (i+1).
Notice, m − 1 is a feasible value for i , because ordT m+1(2)
divides T m. By uniqueness, i = m − 1.
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The rest are all immediate corollaries of F(ab) = F(a)+
F(b)mod m for every a, b ∈ GF(T m + 1).

For the third part of the theorem, pick k ′ so that kk ′ = 1,
then

F(k ′ + 1) = F(k ′ + k ′k) = F(k ′(k + 1))

= F(k ′)+ F(k + 1) = j − i mod m.

�
Remark 5: The third part of this theorem essentially means

that if T is even, then the multiplication matrix is symmetric.
This was already proven in [4] and [20], by showing that
the GNB for T even is a dual basis.

The fourth part of this theorem indicates that a row i �= 0 is
a i -times right cyclic shifted version of row m − i . A similar
result is shown in [8], but with only m odd (note that m is odd
implies T to be even, but not the converse). Another proof of
part four of this theorem can be also found in [22].

Lemma 6: Let T = 4. Then m is odd.
Proof: Assume m = 2n, n ∈ N. By the definition of GNB,

gcd
(4(2n)

k , 2n
) = 1, where k = ord4m+1(2). Hence, k = 8n

and 2 is a primitive root in G F(4m + 1). This implies that
4m + 1 ≡ 3, 5 mod 8, yielding a contradiction. �

Lemma 7: Let T = 4. Then 2 is a primitive root in
G F(4m + 1) and 2−1 ∈ {2m−1u, 2m−1u3}.

Proof: Since m is odd, p ≡ 5 mod 8 and the Legendre
Symbol

(
2
p

)
has a value of −1. Therefore x2 ≡ 2 mod p has

no solutions. By the definition of GNB, gcd( 4m
ordp(2)

,m) = 1,

so m | ordp(2). Write ordp(2) = km, k ∈ {1, 2, 4}, and let
g be a generator in G F(p). Then 2km = g p−1 = g4m mod p.
Therefore, 2k = g4. If k is 1 or 2, then 2 ≡ (g2)2 or 2 ≡ g2

leading to a contradiction either way.
The rest is an immediate corollary. �
Theorem 8: Suppose T = 4. Then rows m+1

2 and m−1
2 each

have at most 2 non-zero elements.
Proof: Suppose u + 1 = 2i u j mod p. Then (u + 1)4 =

u4+4u3+6u2+4u+1 = −4 = 24i . Therefore −1 = 24i−2 ⇒
1 = 28i−4 ⇒ 4m | 8i −4 ⇒ m | 2i −1. By the constraint on i,
we have m = 2i − 1 ⇒ i = m+1

2 . By part two of Theorem 4,
we conclude that F(u3 + 1) = F(u + 1) = m+1

2 .

Let k1 = u3

1+u and k2 = k1u3. Then k1 + 1 =
u3+u+1

u+1 = 1
u+1 = k1u. Additionally, k2 + 1 = k1u3 +

1 = u2(k1u − 1) = k1u2 = k2u3. This tell us that F(k1) =
F(k2) = F(k1 + 1) = F(k2 + 1). F(k1) = F( u3

1+u ) =
F( 1

1+u ) = m − F(u + 1) = m−1
2 . Therefore, row m−1

2 has
at most 2 non-zero entries. By the third part of Theorem 4,
row m+1

2 also only has 2 non-zero entries because it is a cyclic
shifted version of row m−1

2 . �
Theorem 9: For the multiplication matrix of T = 4, other

than row 0 which has 1 non-zero element, and rows m±1
2 which

have 2 non-zero elements, all other rows have 4 non-zero
elements.

Proof: Ash, Blake, and Vanstone in [4] showed that the
complexity of the multiplication matrix is CN = 4m−7. There
are 7 “missing” ones. The first row has only 1 non-zero entry,
so there are still 4 “missing” ones. By Theorem 8, we found
that row m−1

2 and m+1
2 account for 2 “missing” ones each.

All the 4 “missing” ones are accounted for; hence, all the
other rows have exactly 4 non-zero elements. �

Remark 10: This theorem proves [8, Remark 3] which has
been left as a conjecture. The fact that the multiplication
matrix has 1 non-zero element in row 1, two rows with
2 non-zero elements and all other rows have 4 non-zero
elements has already been proven in [22]. The exact rows
with the 2 non-zero elements is a new result.

Proposition 11: For T = 6, row one of the multiplication
matrix has at most 4 non-zero entries. Therefore, by the
fourth part of Theorem 4, row m − 1 also has at most
4 non-zero entries.

Proof: First note that since ord(u) = 6, it follows that
ord(u2) = 3. This gives us the identity u2 +(u2)2 +(u2)3 = 0,
which is equivalent to 2u4 + 2u2 = 2u3 = −2. Therefore,
F(2u2 + 1) = F(2u4 + 1), and the rest follows. �

Proposition 12: Let T = 6, then the row i = F(u + 1) has
at most 2 non-zero entries. Additionally, by the fourth part
of Theorem 4, row m − F(u + 1) also has at most 2 non-zero
entries.

Proof: First, note that we have u(u2−1)+1 = u3−u+1 =
u4 +u3 +1 = u4. By the first part of Theorem 4, we can write
F(u + 1) = F(u5 + 1) = i . By the symmetric property of the
multiplication matrix one can get,

k1 = u3(u + 1) = u4 − 1 and k2 = u3(u5 + 1) = u2 − 1

F(k1) = F(k2) = i and F(k1 + 1) = F(k2 + 1) = 0.

Therefore, the row F(u + 1) has at most 4 non-zero
entries.

We can write

k1u + 1 = (u4 − 1)u + 1 = u3(u2 + u)+ 1

= (2u3 + 1)(u2 + u)+ 1 = 2u5 + 2u4

+ u2 + u + 1 = 2u5 + 2u4 + 2u

= 2(1 + u4) = 2u5,

k2u−1 + 1 = (u2 − 1)u5 + 1 = u3(u4 + u5)+ 1

= (2u3 + 1)(u4 + u5)+ 1 = 2u + 2u2

+ (1 + u4)+ u5 = 2(u + u2 + u5)

= 2u

We see that k1u + 1 = 2u5, k2u−1 + 1 = 2u, which tells us
F(k1u + 1) = F(k2u−1 + 1) = 1 and that row i = F(u + 1)
must have at most 2 non-zero entries. �

Proposition 13: Let T = 6 and assume u + 1 = 2i u j for
some 0 ≤ i < m and 0 ≤ j < T . Then row i = F( k1

2 ) =
F(u + 1)− 1 has at most 4 non-zero entries. Additionally, by
part four of Theorem 4, row m − F(u + 1) − 1 also has at
most 4 non-zero entries.

Proof: Let k1 = u3(u+1) = u4−1 and k2 = u3(u5+1) =
u2 − 1 as it was in the previous proof. By part
one of Theorem 4, suppose 1

2 = 2m−1uα and

k1

2
+ 1 = u4 − 1

2
+ 1 = u4 + 1

2
= u5

2
= 2m−1uα+5

k2

2
+ 1 = u2 − 1

2
+ 1 = u2 + 1

2
= u

2
= 2m−1uα+1.



AZARDERAKHSH et al.: COMMON SUBEXPRESSION ALGORITHMS FOR SPACE-COMPLEXITY REDUCTION 2361

Therefore, F( k1
2 + 1) = F( k2

2 + 1) = m − 1, and the result
follows. �

Theorem 14: For T = 6, all rows have exactly 6 non-zero
entries, except:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Row 0 with 1 non-zero

Row 1 with 4 non-zeroes

Row F(u + 1)− 1 with 4 non-zeroes

Row F(u + 1) with 2 non-zeroes

Row m − F(u + 1) with 2 non-zeroes

Row m − F(u + 1)+ 1 with 4 non-zeroes

Row m − 1 with 4 non-zeroes

Proof: It is shown in [4] that for T = 6, the complexity is
exactly 6m − 21. It is easy to check that F(u + 1) �= ±1, ±2.
Therefore, none of the mentioned rows are the same. All the
“missing” ones have now been accounted for and the proof is
complete. �

Theorem 15: Let T be even, and suppose F(ui + 1) = γ
for some i and 1 ≤ i < T

2 . Then row γ and m − γ have at
most T − 2 non-zero entries.

Proof: It is shown in Theorem 4 that F(uT −i + 1) =
F(ui + 1) = γ. Suppose k1 = uT/2(uT −i ) − 1 and k2 =
uT/2(ui ) − 1. By Theorem 4, we have F(k1) = F(k2) = γ
and F(k1 + 1) = F(k2 + 1) = 0. It is also obvious that
k2 = k1ui . Then, one can write k1 = 2γ uλ and k2 = 2γ uλ+i

and using part one of Theorem 4, write 1
2 = 2m−1uα. Applying

Theorem 4 to k1 and k2, we get φ1 = 2m−γ uα−λ, and
φ2 = 2m−γ uα−λ−i . Then, F(φ1) = F(φ2) = m − γ, and
F(φ1 + 1) = F(φ2 + 1) = 0 − γ = m − γ. Apply part four
of Theorem 4 and the result follows. �

Theorem 16: Suppose T is even and F(ui + 1) = γ for
some i and 1 ≤ i < T

2 . Then row γ − 1 has at most T − 2
non-zero elements.

Proof: Then, one can construct k1 = uT/2(uT−i )− 1 and
k2 = uT/2(ui ) − 1 as described before. Then, F( k1

2 + 1) =
F( k2

2 + 1).

k1

2
+ 1 = uT/2uT −i − 1

2
+ 1 = uT/2−i + 1

2
k2

2
+ 1 = k1ui

2
+ 1 = ui (uT/2uT −i − 1)

2
+ 1

= uT/2 − ui

2
+ 1 = ui−T/2 + 1

2

It is easy to see that ui−T/2( k1
2 + 1) = 1+ui−T/2

2 = k2
2 + 1

which completes the proof. �

IV. SPACE-COMPLEXITY REDUCTION ALGORITHMS

In this section, we present two complexity reduction
algorithms based on the facts proven in the previous section.
Before presenting our complexity reduction algorithms, we
describe a new method for generating minimum lists of
distinct distances for the multipliers discussed in Section 2.
All notation used in this paper is summarized in Table 1.

TABLE I

NOTATIONS AND THEIR DEFINITIONS

A. Generating Minimum List of Distinct Distances

In this subsection, we first propose a new approach
to achieve the minimum number of pairs to generate
the ρ and Q modules discussed in Section 2. Since the
dimension of the ρ module is smaller than the Q module,
we first consider the problem of finding the minimal number
of pairs in the ρ module. We note that almost all the
components of the algorithm will be exactly the same when
we extend it later to the Q module. The construction of the
μ matrix requires m to be odd, which we assume in this
subsection.

Definition 17: Let a, b ∈ Zm . We define the distance
between a and b to be D(a, b) := min{a − b mod m,
b − a mod m}. If a − b < b − a mod m, we say a and b
have distance a −b mod m centered at b; otherwise, they have
distance b − a mod m centered at a. Denote C(a, b) as the
center of the pair a, b. A pair a, b can be denoted as α; β
where α = D(a, b) and β = C(a, b).

Definition 18: Let ψ be a module generated by the
μ module where row i of ψ consists of every distinct
separation of pairs made from entries in row i of μ. Suppose
μi has entries {x1, . . . , x2n} for some 2n ≤ T . Then ψi j is of
the form

D(y1, y2); C(y1, y2) | · · · | D(y2n−1, y2n); C(y2n−1, y2n)

where {x1, . . . , x2n} = {y1, . . . , y2n}. For a row of size T
in the μ matrix, the corresponding row in the ψ module has
length of (T −1)(T −3) · · · (1). The order in which the entries
in a given row of ψ appear is irrelevant. We call every entry
of ψ a choice of separation and any reduction of ψ that has
only 1 choice of separation remaining in every row, a possible
ψ̂ module.

The problem of breaking down the ρ and Q matrices
into pairs can effectively be reduced to choosing the best
combination of separations in each row of ψ . By only using
ψ in the algorithm, instead of the full ρ and Q matrices, the
running time will be also reduced significantly.

Example 19: For a given m = 7 and T = 4, the ψ module
can be built as follows:

ψ =
⎛

⎜
⎝

2; 0 | 1; 3 3; 0 | 2; 2 3; 4 | 1; 2

3; 4 − −
3; 5 | 1; 2 3; 2 | 2; 1 2; 3 | 1; 1

⎞

⎟
⎠.
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A possible choice of a ψ̂ is

ψ̂ =
⎛

⎝
2; 0 | 1; 3

3; 4
3; 2 | 2; 1

⎞

⎠.

Definition 20: Let τi =
{

k(i)0 , . . . , k(i)|τi |−1

}
indicate the list

of centers (not necessarily distinct centers) of distance i in
the ψ module. This list is ordered so k(i)α ≤ k(i)β , whenever
α < β. If the distance is understood to be a particular i , the
superscript can be dropped.

Definition 21: For k(i)j ∈ τi and some digit-size d ,
we define consecutive distance (CD) as follows:

CD(k(i)j ) =
{

d if |τi | = 1

min(d, k(i)j+1 − k(i)j mod m) otherwise

where the subscripts are taken to be modulo |τi |.
The concepts of neighbor value and advanced neighbor

value will be used to construct weight functions for our
approximation algorithm. When we cyclic shift the μ module
to obtain the ρ module, the distance of a given pair is preserved
while the center is decreased by 1. Suppose we break the
μ matrix into pairs and store the pairs in any given way.
Additionally, suppose we store the same corresponding pairs
in every cyclic shifted version of μ. A reduction in storing
pairs of a cyclic shifted version of μ will be possible if a
pair was already stored in a less cyclic shifted version of μ.
This will happen if two pairs have the same distance, and
the difference between their centers is less than the number
of times we cyclic shift (the d-value). More specifically,
if a pair with distance i and center k(i)j , k(i)j+1 are stored, then

d − C D(k(i)j ) reductions will be possible. Consequently, the
neighbor value will reflect how valuable (based on the number
of pairs reduced) a given pair is. Why these functions yield
good weight systems will be explained in further detail in
Remark 28. In our approximation algorithm, the higher the
weight, the higher the chances that a given pair will be deleted
and resulting in a more successful subexpression elimination
in the entire multiplication matrix.

Definition 22: For k(i)j ∈ τi , we define neighbor
value (NV) as:

NV(k(i)j )

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d if |τi | = 1

0 if |{α ∈ τi : α=k(i)j }|>1

CD(k(i)j )+ CD(k(i)j−1 mod |τi |)
− min(d, k(i)j+1 mod |τi |

−k(i)j−1 mod |τi |)
otherwise.

Example 23: Consider a GNB over G F(215) with digit-size
d = 4 and T = 4. Let τi = {1, 1, 5, 6, 11}. By definition,
the neighbor values are: 0, 0, 1, 1, 4, respectively. It is easy
to observe that the NV of a particular center is lower if its
immediate neighbors are closer to it.

Definition 24: Suppose |τi | > 1. For k(i)j ∈ τi , let α be
the next index obtained by adding 1 mod |τi | to j , with the

property that k(i)α is either “in a different row of ψ than k(i)j ”

or “in the same row and same separation as k(i)j ”. Similarly,
let β be the index obtained by subtracting 1 mod |τi | from j .
If one set

x = k(i)α − k(i)j mod m

y = k(i)j − k(i)β mod m.

We can define the advanced neighbor value (ANV) as
follows:

ANV(k(i)j ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d if |τi | = 1

d if α = j or β = j

0
if k(i)j = k(i)α
or k(i)j = k(i)β

min(d, x)+ min(d, y)

− min(d, x + y mod m)
otherwise.

This advanced weight will be the primary weight used as the
idea is similar to the one used as of NV. For values of T > 4,
the weight function based on the ANV yields better results than
the more basic weight function based on the NV.

Example 25: Suppose T = 6, and a row of the μ module
is [1, 2, 5, 7, 10, 14]. Notice that two possible ways of
choosing pairs are: x1 = {(1, 2), (5, 7), (10, 14)} and
x2 = {(1, 2), (5, 10), (7, 14)}. Both of these separations have
the pair (1, 2). In the calculation of the consecutive distance
value and the neighbor value, the weight of a given pair is
determined by its immediate neighbours. Based on NV, the
weight of both pairs will be zero. However, since the two pairs
are in the same row, but different separations, and only one of
these separations can be chosen, it is not feasible for the pairs
to lower the weight of the other.

This example shows that in the calculation of the neighbour
value, it is critical that the weight of a pair is calculated
with a neighbour that is not in “the same row and different
separations”. The ANV works by finding the next immediate
and the previous neighbors which are not in “the same row
and different separations” to compute the weight.

Theorem 26: For given odd m, even T and digit-size d,
1 ≤ d ≤ m, the number of distinct pairs in τi and their cyclic
shifted copies in the ρ module is

∑
k j ∈τi

CD(k j ).

Proof: When |τi | = 1, this is trivial. For |τi | = 2, suppose
τi = {k0, k1}, k1 − k0 = d0 and k0 + m − k1 = d1. First,
one needs to store k0 and k1. Then, after a left-cyclic shift
of both, and storing any unstored values the process should
be repeated. It is easy to see that after d0 left-cyclic shifts
of k1, we obtain k0. Therefore, all the subsequent shifts of
k0 do not need to be stored as they would have already been
obtained from left-cyclic shifting of k1. However, for d0 > d ,
in which case, k0 will never be obtained by cyclic-shifting
of k1. Therefore, min(d, k1 − k0) left-cyclic shifts of k0 are
required. Similar logic applies for k1. We note that

CD(k1) = min(d, k0 + m − k1)

�= min(d, k0 − k1 mod m),

because one may have k0 = k1. In this case, by definition,
d0 = 0, d1 = d , so d pairs are generated by τi . Using the
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min(d, k0 − k1 mod m) definition will give zero pairs
generated by τi . This argument generalizes to larger sizes of τi

and proof completes. �
Theorem 26 is important as we use it to determine how

many pairs a certain ψ̂ module will generate (a ψ̂ module is
one with only one separation per column, as reduced from the
ψ module). Based on this theorem, there is a well-defined
and well-understood notion of which ψ̂ module is better
or inefficient. It is important to note that the number
of pairs generated by a certain center set τi depends
heavily on how close together the centers in the set are
located.

Theorem 27: Let |τi | �= 0 for some i and α ∈ {0, 1, · · · ,
|τi | − 1}. Define τi (α) to be τi with k(i)α removed. Then the
number of pairs generated by τi is exactly NV(kα) more then
that generated by τi (α). By Theorem 26, this is equivalent to
saying

∑

k j ∈τi

CDτi (k j )− NVτi (kα) =
∑

k j ∈τi (α)

CDτi(α)(k j ).

Proof: If |τi | = 1 then this is trivial. If there exists
some β ∈ {0, 1, 2, · · · , |τi | − 1}, β �= α and kα = kβ , then
the number of pairsets generated by τi and τi (α) are equal,
and indeed NVτi (kα) = 0 by definition. Let j �= α, then
CDτi (k j ) = CDτi (α)(k j ) if and only if j �= α ± 1 mod |τi |.
Therefore,
∑

k j ∈τi

CDτi (k j )−
∑

k�∈τi (α)

CDτi (α)(k�)

= CDτi (kα−1)+ CDτi (kα)− CDτi (α)(kα−1)

= CDτi (kα−1)+ CDτi (kα)− min(d, kα+1 − kα−1)

= NVτi (kα)

and the proof is completed. �
Remark 28: NV and ANV will be used as weight systems

in our approximation algorithm (Algorithm 2). The approxi-
mation algorithm will delete one separation in each iteration.
Theorem 27 sets a well-defined way of determining which
separation is best removed at each step. By deleting the
pair with the highest NV, the resulting module will have the
smallest number of pairs. However, a simple greedy algorithm
will not work. Additionally, the weight of a given pair heavily
depends on its “neighboring” centers in the distance set τi .
This is made evident by the definition of NV. ANV is the
better version, since it factors in the possibility of pairs in the
same row but with different separations lowering each other’s
weights.

Definition 29: Given T, m, and d , let MPd be the optimal
minimum number of pairs needed to generate the whole
ρ module from an optimal ψ̂ module.

Definition 30: Given d and a particular ψ̂ module (where
every row has exactly 1 separation remaining), we define gap
number (GN) as

GNd(ψ̂)

=
∣∣
∣
∣{k(i)j+1 − k(i)j >d : k(i)j ∈ τi , for all 1 ≤ i ≤ m − 1

2
}
∣∣
∣
∣.

Notice that this number also corresponds to the difference
of the number of pairs generated by any given ψ̂ module
from d to d + 1.

Theorem 31: Given T, m and 2 ≤ d ≤ m − 1, we have
MPd+1 − MPd ≤ MPd − MPd−1.

Proof: Let ψ̂d−1, ψ̂d and ψ̂d+1 be optimal modules for
digit sizes d − 1, d and d + 1, respectively. It is clear that
GNd+1(ψ̂) ≤ GNd(ψ̂) for any ψ̂ .

In order for ψ̂d to be optimal for digit size d , the difference
in the number of pairsets generated by ψ̂d from d − 1 to d
must be less than or equal to that generated by ψ̂d−1.
Equivalently,

GNd+1(ψ̂d+1) ≤ GNd+1(ψ̂d )

≤ GNd(ψ̂d ) ≤ GNd (ψ̂d−1).

Additionally, since the change in optimal number of pairs can
not be as great as the change in pairs of ψ̂d+1 and can at
most be exactly equal if ψ̂d+1 is also optimal for digit size d ,
we get that

GNd+1(ψ̂d+1) ≤ MPd+1

−MPd ≤ GNd+1(ψ̂d ).

Similarly, we have

GNd (ψ̂d) ≤ MPd

−MPd−1 ≤ GNd (ψ̂d−1).

The result follows through the derived inequalities. �

B. Algorithms

1) Exponential Time Complexity Reduction Algorithm:
We introduce two new algorithms for reducing the space
complexity of GNB multiplication matrices. Both algorithms
take in the same basic parameters, namely m and T , as well as
the ψ module. From the formation of the ψ module, the
problem of constructing the ρ module with the least number
of pairs can be thought of as choosing the best combination
of separations in every row of the ψ module. The goal of both
algorithms is to reduce the number of separations, until every
row of ψ has only one separation per row, which is called
the ψ̂ module.

An exponential time program can be formed by trying every
possible combination, and computing the number of pairs
generated by that combination as given by Theorem 26. This
algorithm is presented in Algorithm 1. The approximation
algorithm also needs to receive the digit-size d as part of its
input, as it is necessary to apply Theorem 26. The index_list
in the algorithm is an array whose i -th element indicates the
length of row i in the ψ module. At each step, a different
combination of separation in each row is used for calculation,
and the index array is used to enumerate through all the
possibilities. It starts out as an array of 0’s, and increases at
each step until it reaches the index_list. For each choice of
separation, the number of pairs generated by that particular
matrix is recorded according to Theorem 26. At the end,
a matrix with the minimum number of pairs is outputted.

It is important to note that the exponential-time algorithm
(Algorithm 1) produces the optimal minimum number of pairs
when using the method of generating pairs based on the
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Algorithm 1 Exponential-Time Complexity Reduction
Algorithm
Input: T, m, d and the ψ module.
Output: A reduced module ψ̂ that has only 1 separation

per row.
1: opt_psi = [ ]
2: opt_val = ∞
3: index_list= [

length(ψi ) : for 0 ≤ i < length(ψ)
]

4: index= [0] ∗ length(ψ)
5: ψ̂i = ψi0 for 0 ≤ i < length(ψ)
6: while index �= index_list do
7: Generate τi

8: pairs= ∑
1≤i≤ m−1

2

∑
k(i)j ∈τi

CD(k(i)j )

9: k = 0
10: if pairs ≤ opt_val then
11: opt_val = pairs
12: opt_psi = ψ̂
13: end if
14: while k ≤ length(ψ) do
15: index[k] = index[k] + 1
16: if index[k] ≤ index_list[k] then
17: ψ̂k = ψk,index[k]
18: break
19: else
20: index[k] = 0
21: ψ̂k = ψk,index[k]
22: k = k + 1
23: end if
24: end while
25: end while
26: Return opt_psi

module μ with depth 1. This algorithm has a run time of
O
(
[(T − 1)(T − 3) . . . (1)] m−1

2

)
. We observe that the time

it takes for this algorithm to finish grows very fast. At first
glance, it may seem as though one does not need to worry
about its efficiency, since it only needs to be computed once
off-line; however, it is likely that due to the time constraints,
it can not even be computed once (please refer to Fig. 1).
For instance, the exponential time algorithm takes about
3,840 seconds to compute T = 4, m = 37 and as the field size
increases the time of computation grows exponentially. In the
following subsection, we present an approximation algorithm
suitable for our implementations.

2) Polynomial Time Complexity Reduction Algorithm: The
goal of the approximation algorithm (Algorithm 2) is to
remove a separation from the ψ module at every step in
such a way that produces a result close to that produced
by Algorithm 1. The algorithm goes through every row of ζ ,
which is initialized as a copy of ψ . In every row, the
weight function is used to give each separation a weight.
The maximum and minimum weight achieved are stored.
If the difference between the maximum and the minimum
weight is the highest found thus far, any separation that
achieves the maximum weight in that given row is subjected
to possible deletion. After iterating through every row,

Fig. 1. Comparison of running times of exponential time (Algorithm 1)
and polynomial time (Algorithm 2) algorithms for type 4 GNB and different
field sizes.

the separation in the row with the highest weight disparity,
and with the maximum weight in the row, is deleted. This
process occurs in lines 7 to 16. The disparity is used because
it is logical to delete the separation which is “the least likely
to be chosen” of all the separations in the same row. The
deletion continues until every row of ζ has only one separation
remaining.

This algorithm does not take in any specific digit-size d .
A module ψ̂ is generated for each possible value of d , and
the resulting matrices are stored in a list (lines 19 to 21).
For a given digit size, the matrices in this list are compared
using Theorem 26 (lines 23 to 34), and the best choice is
returned. This method ensures that the values outputted from
this approximation algorithm satisfy Theorem 31.

Let a separation of the ψ module be labeled as
δ1; c1 | . . . | δn; cn . As before, δi are distances, and ci are
centers. Let same_row(k(i)j ) indicate the number of centers
in τi that are in the same row, but have different separation
than τi . Let σi (k

(i)
j ) indicate the sum of the maximum number

of centers of distance i in each row other than the row k(i)j is in,
plus the number of centers of distance i in the same separation
as k(i)j . In the following a list of weight functions that have
been tried, and their results are given. We should note that
there are exceptions to the observed patterns.

1)
n∑

i=1

(
NV(ci )+ d

|τδi |

)

2)
n∑

i=1

(
ANV(ci )+ d

|τδi | − same_row(ci )

)

3)

[
n∑

i=1

(
ANV(ci )+ d

|τδi | − same_row(ci )

)]
/n

4)
n∑

i=1

(
ANV(ci )+ d

σδi (ci )

)

5)

[
n∑

i=1

(
ANV(ci )+ d

σδi (ci )

)]
/n

The first weight function is the standard weight system. The
NV gives an interpretation of how much better the reduced
ψ module will be if this particular separation is deleted.
However, this weight function only works well when T = 4.
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Algorithm 2 Polynomial Time Complexity Reduction
Algorithm With Deleting Separations
Input: T, m, a weight function f and the ψ module.
Output: A reduced module, ψ̂ that has only 1 separation per

row for d , 1 ≤ d ≤ m.
1: opt = empty
2: for 1 ≤ d ≤ m do
3: ζ = ψ
4: while ∃ i such that |ζi | > 1 do
5: disparity = 0
6: cord = [0, 0]
7: for all i such that |ζi | > 1 do
8: α = max j∈|ζi | f (ζi j , d)
9: β = any k where f (ζik , d) = α

10: γ = minh∈|ζi | f (ζih , d)
11: diff = α − γ
12: if diff > disparity then
13: disparity = diff
14: cord = [i, β]
15: end if
16: end for
17: delete ζiβ

18: end while
19: if ζ /∈ opt then
20: opt = opt ∪ {ζ }
21: end if
22: end for
23: for 1 ≤ d ≤ m do
24: min = ∞
25: ψ̂d = [ ]
26: for all ζ ∈ opt do
27: Generate τi for all feasible i based on ζ

28: α = ∑m−1
2

i=1

∑
k(i)j ∈τi

CD(k(i)j )

29: if α < min then
30: min = α
31: ψ̂d = ζ
32: end if
33: end for
34: Return ψ̂d

35: end for

It should be noted that for a particular distance i , regardless
of the size of τi or the d value, if there is a pair in the
final ψ̂ module with distance i , then at least d pairs are
required. It makes sense to distribute this base amount d
amongst all pairs of distance i , thus the term d

|τδi | . Example 25

illustrates a situation where it is vital that ANV is used instead
of NV, for T > 4. By the same logic, it make sense to use

d
|τδi |−same_row(ci )

instead of d
|τδi | . Additionally, it may make

even more sense to use d
σδi (ci )

, because in other rows, centers of
distance δi may be in every separation of that row, despite the
fact that only one of them may be chosen. However, through
computation with different m, T and d values, we find that
one is better than the other in some cases and worse in others.
There does not seem to be a pattern in predicting which is

better and when. Therefore, predicting which score is better,
is the subject for more study. For larger T values, there are
many rows of varying lengths. The rows with more entries
have separations that, in general, have higher weight values
than separations in rows of smaller size. Therefore, it makes
sense to balance the weight by dividing by the number of pairs
in a particular separation. This makes no difference for T = 4,
yields varying results for T = 6, and generally gives better
results for T = 10.

For the comparison purpose, we plot the running times of
both Algorithms 1 and 2 in terms of different field sizes for
type 4 GNB in Fig 1. As one can see, the running time
of exponential-time algorithm grows very fast and for larger
field sizes it is infeasible to employ this algorithm for the
complexity reduction purpose (even for m = 55). For instance,
Algorithm 2 takes only about 1.56 seconds for the field size
of m = 163 and it may never end if we run Algorithm 1
in a general PC. Therefore, one definitely needs to employ
Algorithm 2 instead of Algorithm 1 for the space-complexity
reduction discussed in this paper. In the following, we provide
examples about the polynomial time algorithm.

Example 32: Suppose m = 7, T = 4 and d = 3.
We show an example where weight function number 1) is
used. Breaking the ψ module into weights gives
⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

3

4
+ 1 + 1

4
1 + 1

5
+ 1

4

1

5
+ 1

4
1

5
− −

1

5
+ 1

4
1 + 1

5
+ 1

4
1 + 1

4
+ 1 + 1

4

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

2 1 + 9

20

9

20
1

5
− −

9

20
1 + 9

20
2 + 1

2

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

.

Notice the entries with the highest weight in rows with more
than one separation are the top-left most, and the bottom-right
most entries. The bottom-right most entry has a larger
difference in weight in comparison to the lowest weighted
entry in that row. Therefore, the bottom right most entry will
be deleted. A one-step-reduced ψ module is now obtained.

⎛

⎝
2; 0 | 1; 3 3; 0 | 2; 2 3; 4 | 1; 2

3; 4 − −
3; 5 | 1; 2 3; 2 | 2; 1 −

⎞

⎠.

New τi ’s will be generated and the process repeated. At the
end, a fully reduced ψ̂ module will be outputted as:

ψ̂ =
⎛

⎝
3; 4 | 1; 2

3; 4
3; 5 | 1; 2

⎞

⎠.

From Algorithm 1 and Algorithm 2, the ψ module is reduced,
so that only one separation remains in every row, and outputted
as the ψ̂ module. Algorithm 3 will be used to generate the
pairset when given a particular ψ̂ module. Pairs of different
distances are generated separately. Starting from the smallest
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Algorithm 3 Generating Pairsets

Input: A simplified ψ̂ module, m and an integer
1 ≤ d ≤ m.

Output: A set of pairs.
1: pairset = [ ]
2: for 1 ≤ i ≤ m−1

2 and |τi | �= 0 do
3: δ = |τi |
4: start = 0
5: while start �= δ do
6: if start = 0 then
7: α = k(i)0 − k(i)δ−1 + m
8: else
9: α = k(i)start − k(i)start−1

10: end if
11: β = 0
12: while β �= min(α, d) do
13: pairset = pairset ∪

(
k(i)start − β, k(i)start − β + i

)

mod m
14: β = β + 1
15: end while
16: start = start + 1
17: end while
18: end for
19: Return pairset

center of some distance i , the pair corresponding to the center,
and its left-cyclic shift copies will be stored. This is done
up to d times, or up to reaching the subsequent center. This
process appears in lines 12 to 14. Upon reaching d , or the
next center, the process repeats for the subsequent center
and its corresponding pair. This is done for all distances.
All pairs are stored during the process and outputted at the end.
For DL-SIPO, a similar algorithm can be used by right-cyclic
shifting every center, until the center becomes the next center
in τi or at most d (reversed).

In the following examples, we show how the above
algorithm works in reducing complexity and generating
optimal pairsets to construct the ρ block of the multiplication
module.

Example 33: Let m = 7, T = 4 and d = 3. From before,
a possible ψ̂ module produced is:

ψ̂ =
⎛

⎝
3; 4 | 1; 2

3; 4
3; 5 | 1; 2

⎞

⎠.

Observe that τ3 = {4, 4, 5}. Starting from the first 4,
Algorithm 3 will have to cyclic-shift 6 times to get from the
first 4 to the previous center, 5. Therefore, only d = 3
left-cyclic shifts will happen giving the pairs
{(4, 0), (3, 6), (2, 5)}. Next, it takes 0 shifts to get from the
second 4 to the first 4, so no cyclic-shifts will happen. Finally,
it takes 1 shift to get from 5 to the previous center which
was 4, so one cyclic-shifted pair will be added. Hence, the
final pairset generated for τ3 is {(4, 0), (3, 6), (2, 5), (5, 1)}.
The final pairset generated for the entire module will then be:

{(4, 0), (3, 6), (2, 5), (5, 1), (2, 3), (1, 2), (0, 1)}.

TABLE II

SPACE COMPLEXITY (NUMBER OF XORS) COMPARISON AMONG

BIT-LEVEL NORMAL BASIS MULTIPLIERS FOR THE BINARY

FIELDS RECOMMENDED BY NIST FOR ECDSA. IT IS

NOTED THAT THE TIME COMPLEXITY REMAINED

UNCHANGED IN COMPARISON TO THE LEADING

ONES AND HENCE WE DO NOT INCLUDE

THAT IN THIS TABLE

Example 34: Let m = 7, T = 4 and d = 7 (bit-parallel
structure). The corresponding ψ̂ module generated by our
approximation algorithm is:

ψ̂ =
⎛

⎝
3; 4 | 1; 2

3; 4
3; 5 | 1; 2

⎞

⎠.

From the fact that ψ̂ has only 2 distinct distances, the pairset
produced following the approximation algorithm will have size
2 × 7 = 14 (all cyclic-shifts of pairs with distance 1 and 3).
Therefore, the pairs are as follows:
{
(0, 3) (1, 4) (2, 5) (3, 6) (4, 0) (5, 1) (6, 2)
(0, 1) (1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 0)

}
,

and one needs these 14 pairs to construct the ρ module
of a DL-PIPO multiplier. It is worth mentioning that the
complexity reduction algorithm presented in [10, Sec. 3.2]
yields a pairset of size 18, compared to which the algorithm
we presented is more efficient. In the following section
we examine the performance of our algorithms for larger
field sizes.

V. EXPERIMENTAL RESULTS AND COMPARISONS

In this section, we evaluate the performance of the
complexity reduction algorithm we presented over the
NIST recommended fields, i.e., G F(2m), where m = 163,
283, and 409, for ECDSA and compare our results
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Fig. 2. Comparison of the number of XOR gates required in DL-PIPO multiplier architectures for (a): m = 163 (T = 4), (b): m = 283 (T = 6) and
(c): m = 409 (T = 4). DL-PIPO (RM) [8], MDL-PIPO (A-RM) [10].

Fig. 3. Comparison of the number of XOR gates required in DL-SIPO multiplier architectures for (a): m = 163 (T = 4), (b): m = 283 (T = 6) and
(c): m = 409 (T = 4). DL-SIPO (Lee) [23], MDL-SIPO (A-RM) [11].

to the ones presented in [10] and [11], for DL-PIPO and
DL-SIPO multiplier architectures, respectively. Our algorithms
work on any binary field with a GNB, but we limit our
treatment to the NIST recommended fields for concreteness.
We used Sage to run Python code for our approximation
algorithm.

For the purpose of illustrating the efficiency of our
algorithms in the case of bit-level multipliers, Table 2 shows
the space complexity (number of XORs) of the available
bit-level normal basis multipliers for the three binary fields.
As one can see, for all bit-level multiplier architectures
available, our algorithm always yields multipliers having
fewer XORs in comparison to the counterparts. For instance,
for m = 283 (T = 6 GNB) with BL-PIPO architecture
our algorithm yields a multiplier of 817 XORs which is
about 16% less than previous works ([8] and [10]). It is worth
mentioning that the time complexity remained unchanged
while the space complexity is reduced. This improvement is
attractive for applications where the value of m is large but
space is of concern, e.g., resource-constrained cryptographic
systems on smart cards and RFIDs.

Our experimental results are illustrated in Figs. 2 and 3, for
DL-PIPO and DL-SIPO architectures, respectively. We plot
the required number of XOR gates in terms of the digit-size d
for both multiplier architectures and counterparts. As one can
see, our complexity reduction algorithm yields multipliers
requiring fewer XORs in comparison to the counterparts.
For instance, the unoptimized [8] and optimized [10]

DL-PIPO multiplier architectures over G F(2163) with
digit-sizes of d = 163 require 65,852 and 50,400 XORs,
while our algorithm yields 47,270 XORs. Our algorithm
works better even for larger field sizes and types such as
m = 283 which is of type T = 6. In comparison to the
scheme presented in [10], our algorithm requires 24% fewer
XOR gates for a DL-PIPO multiplier. Our approximation
algorithm does not require the whole ρ module to generate the
pairset; therefore, it is scalable to higher m values, effectively.
We examine our algorithm for m = 409 (T = 4) and as one
can see in Fig. 2 it requires 27% fewer XOR gates for the
DL-PIPO architecture. It is worth mentioning that our
algorithm runs in polynomial time and is more efficient than
that of [10], being able to return results for large values of m.
It is worth mentioning that for the filed size m = 283 with
type T = 6 does not have very low complexity. Therefore,
depending on the applications, it is more efficient to employ
polynomial basis multiplier for this field if the overall
computations of the design outperforms while
employing GNB.

For DL-SIPO multiplier architectures, we obtained better
results as one needs to implement the entire multiplication
module (i.e., R(m−1)×T ) for unoptimized architectures.
In comparison to the complexity reduction algorithm proposed
for DL-SIPO multipliers in [11], our approximation algorithm
yields better results for all digit sizes as one can see in Figs. 3.
For instance, for m = 163 our algorithm yields 18% and 17%
fewer XOR gates for d = 1 (bit-level architecture) and d = 55
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(the most efficient digit size for ECC over GNB [9] and [12])
in comparison to the algorithm presented in [11].
Therefore, our algorithm is not only suitable for
high-performance applications which require larger digit
sizes but also provides efficient area complexity for
resource-constrained applications with smaller digit sizes.

We further note that the space complexity reduction
algorithms presented in this paper do not increase the time
complexity of the multiplication architectures. For type T
GNB over G F(2m) the time-complexity or critical-path
delay of the multipliers depends to the architecture of
the multiplier which can be bit-level (d = 1), digit-level
(1 < d < m), and bit-parallel (d = m). The time-complexity
of the architecture devised based on the presented complexity
reduction algorithms for digit-level PIPO multiplier is
the same as the original multiplier (without having its
space complexity reduced [8]). The space-complexity
reduction method proposed for the multiplier architecture
decomposes the ρ module into two different modules: one
includes pairs and the other one includes XORs to construct
ρ module) with the delay of TX and

⌈
log2

T
2

⌉
TX , respectively

(TX denote the delay of an XOR gate). The delay of J blocks
is the delay of an AND gate denoted by TA and the final
G F(2m) adder has a delay of

⌈
log2(d + 1)

⌉
TX . Then, the

total critical-path delay due to delays through mentioned
logic gates is TX + ⌈

log2
T
2

⌉
TX + TA + ⌈

log2(d + 1)
⌉

TX =
TA + (⌈

log2 T
⌉ + ⌈

log2(d + 1)
⌉)

TX which is the same as
the original multiplier given in [8]. Note that same analysis
is true for DL-PISO and DL-SIPO multiplier architectures.

VI. CONCLUSION

In this paper, we have presented new methods for space-
complexity reduction of Gaussian normal basis multiplication.
Low space-complexity multiplication is extensively needed
in emerging embedded and high-performance cryptosystems.
Our space-complexity reduction algorithm is based on gener-
ating minimum lists of distinct distances for Gaussian normal
basis multiplication matrices for binary extension fields.
Our presented space-complexity reduction algorithm outper-
forms the counterparts available in the literature. For instance,
we have compared the number of XORs of our algorithm
and the counterparts and a reduction of 15%–30% is obtained
based on the architecture of the multiplier. It has been shown
that the space-complexity reduction algorithm presented in this
paper does not change the time-complexity of the multiplier.
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