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Abstract. ARM NEON architecture has occupied a significant share
of high-end Internet of Things platforms such as mini computer, tablet
and smartphone markets due to its low cost and high performance. This
paper studies efficient techniques of lattice-based cryptography on ARM
processor and presents the first implementation of ring-LWE encryption
on ARM NEON architecture. We propose a vectorized version of Iter-
ative Number Theoretic Transform (NTT) for high-speed computation
and present a 32-bit variant of SAMS2 technique, original from Liu et al.
in CHES2015, for fast reduction. Subsequently, we present a full-fledged
implementation of Ring-LWE by taking advantage of proposed and pre-
vious optimization techniques. Ultimately, our ring-LWE implementation
requires only 145k clock cycles for encryption and 32.8k cycles for de-
cryption for n = 256. These results are more than 17.6 times faster than
the fastest ECC implementation on ARM NEON with same security
level.

Keywords: Lightweight Implementation, Lattice-based Cryptography,
ARM NEON Architecture

1 Introduction

The 32-bit ARM processor [1] is the most widely used embedded processor in
almost all high-end Internet of Things (IoT) platforms, e.g., mini computer,
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tablets and smartphones, thanks to its low cost and high performance. ARMv6
[2] architecture introduces a small set of SIMD instructions, operating on multi-
ple 16-bit or 8-bit values packed into standard 32-bit general purpose registers.
This nice feature permits some certain operations can be executed in at least
double speed, without using any additional computation units. From ARMv7 ar-
chitecture [3], ARM introduces the Advanced SIMD extension, called “NEON ”.
It extends the SIMD concept by defining groups of instructions operating on
vectors stored in 64-bit D, doubleword, registers and 128-bit Q, quadword, vector
registers. In the literature, many papers presented cryptography primitives on
the embedded processor such as RSA [5], Elliptic Curve Cryptography (ECC)
[6], pairing-based cryptography [26], AES [7] as well as lattice-based cryptog-
raphy [8]. Despite recent research progress, efficient implementation of lattice
based cryptographic algorithm on 32-bit ARM, in particular ARM NEON, is
still an interesting and challenge topic.

1.1 Related Work

The first evaluation of cryptographic algorithm on ARM NEON architecture
belonged to Bernstein and Schwabe in CHES’12 [6]. The authors showed that
NEON supports high-security elliptic curve cryptography at surprised high speed-
s. They also summarized the useful instructions set for high-speed cryptography
and presented the experimental results of NaCl library on Cortex A8 core. In
2013, Câmaraand et al. employed the VMULL.P8 instruction to describe a novel
software multiplier for performing a polynomial multiplication of 64-bit bina-
ry polynomial and obtained a fast software multiplication in the binary field
F2m [9]. Their results emphasized the advantage of NEON for high-speed bina-
ry ECC. In SAC’13, Bos et al. in [10] presented a parallel approach to com-
pute interleaved Montgomery multiplication, which is suitable to be computed
on 2-way single instruction, multiple data platforms, e.g., ARM NEON. Seo
et al. revisited the work in [10], and introduced the Cascade Operand Scan-
ning (COS) method for multi-precision multiplication with the goal of reducing
Read-After-Write (RAW) dependencies in the propagation of carries and the
number of pipeline stalls [11]. As a follow up work, Seo et al. proposed a novel
Double Operand Scanning (DOS) method to speed-up multi-precision squar-
ing with non-redundant representations on SIMD architecture and investigated
RSA-1024 and RSA-2048 on ARM Cortex A9 and A15 cores [5]. Besides public-
key algorithm, cryptographic engineers also evaluated the impact of performance
for symmetric ciphers on ARM NEON architecture. In [12], Seo et al. evaluated
and proposed a parallel implementation of block cipher LEA on ARM NEON
and achieved a speed up of roughly 50% compared to previous fastest imple-
mentation on ARM without NEON. In 2014, Saarinenand et al. presented the
results of authenticated encryption algorithms, e.g., WHIRLBOB and STRI-
BOB on NEON platform [13]. In CT-RSA’15, Gouvêa and López used NEON
instructions vmull to multiply two 64-bit binary polynomials and presented an
optimized yet timing-resistant implementation of GCM over AES-128 on AR-
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Mv8 [14]. Similarly, Wang et al. chose the ARM NEON platform and presented
a high order masked AES implementation in [7].

Another interesting research line is to evaluate lattice-based cryptography
(e.g., Ring-LWE) on different platforms. The first practical evaluations of L-
WE and ring-LWE based encryption schemes were presented by Göttert et al.
in CHES’12 [15]. The authors concluded that the ring-LWE based encryption
scheme is faster by at least a factor of four and requires less memory in com-
parison to the encryption scheme based on the standard LWE problem. Sujoy et
al. [30] proposed a complete ring-LWE based encryption processor that uses the
Number Theoretic Transform (NTT) algorithm for polynomial multiplication.
The architecture is designed to have small area and memory requirement, but is
also optimized to keep the number of cycles small. Oder et al. in [8] presented the
first efficient implementation of Bimodal Lattice Signature Schemes (BLISS) on
a 32-bit ARM processor. The most optimal variant of their implementation cost
6M cycles for signing, 1M cycles for verification and 368M cycles for key gener-
ation, respectively, at a medium-term security level. In DATE’15, De Clercq et
al. in [18] implemented ring-LWE encryption scheme on the identical ARM pro-
cessors, they investigated acceleration techniques to improve the sampler based
on the architecture of the microcontroller. Namely, the platform built-in True
Random Number Generator (TRNG) is used to generate random numbers. As
a result, their implementation required 121K cycles per encryption and 43.3K
cycles per decryption at medium-term security level while 261K cycles per en-
cryption and roughly 96.5K cycles per decryption for long-term security level.
The first time when a lattice-based cryptographic scheme was implemented on
an 8-bit processor belonged to Boorghany et al. in [19, 20]. The authors evaluated
four lattice-based authentication protocols on both 8-bit AVR and 32-bit ARM
processors. Very recently, Pöppelmann et al. [21] and Liu et al. [22] studied and
compared implementations of Ring-LWE encryption and the Bimodal Lattice
Signature Scheme (BLISS) on an 8-bit platform and presents efficient ring-LWE
results, respectively.

1.2 Motivation

Lattice-based cryptography is often considered a premier candidate for realizing
post-quantum cryptosystems [32]. Its security relies on worst-case computation-
al assumptions in lattices that will remain hard even for quantum computers.
Although some work has been done, the design and implementation of post-
quantum cryptosystems and protocols is still a big challenge. For example, it
has been recognized in a recent Microsoft Research project [23] and the Canada
“CryptoWorks21” project [24] as well as the European project “PQCrypto” [25].
However, we were surprised to find there exists no previous work about evalu-
ating Ring-LWE encryption or signature scheme on ARM NEON architecture,
which was reported, in 2014, to be present in 95 % of mini computers, tablets
and smartphones [14]. This raises one interesting question that how well this
“cryptosystems of the future” are suited for today’s most widely used mobile
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devoices and one aspect of this question is the performance and memory con-
sumption of lattice-based cryptosystems on 32-bit ARM NEON platform. In this
paper, we are going to fill the implementation gap and give our answer for this
open problem.

1.3 NEON PQCryto

This paper studies efficient techniques of lattice-based cryptography and presents
an efficient ring-LWE implementation on ARM NEON architecture, called “NEON
PQCrypto”. NEON PQCrypto includes support for core ring-LWE functions
necessary to implement most popular ring-LWE based schemes, i.e. encryption
scheme. In particular, NEON PQCrypto supports the computation of two most
important operations:

– We propose parallel Number Theoretic Transform (NTT) to reduce the ex-
ecution time for coefficient multiplication. This method introduces 4-way
NTT computations over SIMD architecture.

– We introduce the 32-bit wise Shifting-Addition-Multiplication-Subtraction-
Subtraction (SAMS2) approach for reduction operation. The approach re-
placed the expensive division operation into shifting, addition and multipli-
cation operations.

– We exploit the incomplete arithmetic for representing the coefficients and
perform the reduction operation in a lazy fashion. This technique avoids one
time of subtraction in each reduction stage.

– Efficient implementation of Gaussian distribution sampler. We employ Knuth-
Yao sampler, LUT and byte-scanning methods. Our implementation exploits
the PRNG based on block cipher, which achieved the high performance with
parallel and pipelined techniques.

NEON PQCrypto achieves high performance without compromising security. By
a combination of proposed and previous optimizations (e.g., Incomplete arith-
metic), we present high speed implementations of ring-LWE encryption for 128-
bit security level on ARM NEON. For 128-bit security level, it only requires
145, 200 and 32, 800 clock cycles for encryption and decryption. The decryption
result outperforms the previous ARM implementation (without NEON) by a
factor of 1.32. When compared with ECC implementation with same security
level, our ring-LWE is 17.6 faster on identical platform.

The rest of this paper is organized as follows. In the next section, we re-
view the background of Ring-LWE. In Section 2, we introduce the optimization
techniques for Ring-LWE on ARM-NEON processors. In particular, we propose
several optimization techniques to reduce the execution time in SIMD architec-
ture. In Section 4, we report the implementation results and compare with the
state-of-the-art implementations.

2 Implementation of NTT

In this section, we describe several optimization techniques to reduce the execu-
tion time of Ring-LWE on ARM NEON architectures. We choose the parameter
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sets (n, q, σ) with (256, 7681, 11.31/
√

2π) for security level of 128-bit. These pa-
rameter sets were also used in most of the previous hardware implementations,
e.g., [15, 30] and software implementations, e.g., [19, 20, 18, 21, 22]. This also helps
us to compare our work with previous works.

2.1 Vectorized Iterative algorithm

Previous implementations on RISC processors, e.g., [18, 21, 22], executed the
NTT computation in a sequential fashion. Namely, the coefficient multiplication
is performed in sequence in each iteration. In the following, we propose a vec-
torized variant of iterative NTT algorithm, which significantly speeds up the
execution time of NTT operations on ARM NEON. The core idea is to take
the advantages of SIMD instruction set and implement NTT computation in a
hybrid fashion. In particular, when the number of consecutive coefficient mul-
tiplication satisfies the minimum width of SIMD, we compute the SIMD based
vectored computations. Otherwise, when the number of consecutive coefficient
multiplication is smaller than width of SIMD, we simply adopt the sequential
fashion in ARM instruction.

The vectorized variant of NTT computation is given in Algorithm 1. As
shown in steps 3 to 12, in the innermost k loop, the index value of consecutive
coefficient multiplication between two coefficients (a[k+j], a[k+j+i/2]) are only
1 and 2 for i = 2 and i = 4 cases, respectively. Thus, we conduct these coefficient
multiplication in a sequential way. On the other hand, the cases i > 4 have at
least four consecutive coefficient multiplication operations, we perform these
coefficient multiplications in a parallel fashion. Specifically, we first conduct the
whole twiddle factors (ω) in consecutive array form (steps 15 ∼ 18). Observing
that the twiddle factors are fixed variables, we simply compute these values
off-line and store them into a look-up table. Thereafter, in steps 19 ∼ 28, the
coefficient variables are loaded into registers in consecutive array form such as
Uarray, Varray and ωarray. We conduct the four different modular multiplications
with ωarray[p : p + 3] · a[k + j + i/2 : k + j + 3 + i/2]. After then, the pointer
address of p increases by 4 (i.e. the SIMD width)6. Finally, the multiple number
of coefficient variables are added and subtracted each other, simultaneously.

2.2 Parallel Coefficient Multiplication

The coefficient multiplication is one of the most expensive operations of NTT
computation, since each NTT computation requires n

2 log2n coefficient multipli-
cations. In our implementation, the coefficient is at most 13-bit long, which can
be kept in one 32-bit ARM register. As mentioned before, it is possible to store
two coefficients into one register as De Clercq did in [18]. However, we decide
to store only one coefficient in a register since the product of a coefficient mul-
tiplication can be (at most) 26-bit long. In this case, storing 26-bit in a register
will result in some extra cost to extract the 13-bit operand out of 26-bit before

6 For AVX256 and AVX512, we can extend to 8 and 16 respectively.
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Algorithm 1: Vectorized Iterative Number Theoretic Transform

Require: A polynomial a(x) ∈ Zq[x] of degree n− 1 and n-th primitive
ω ∈ Zq of unity

Ensure: Polynomial a(x) = NTT (a) ∈ Zq[x]
1: a = BitReverse(a) {BitReverse computation}
2: for i from 2 by i = 2i to n do

3: ωi = ω
n/i
n , ω = 1 {Setting twiddle factors}

4: if i = 2 or i = 4 then
5: for j from 0 by 1 to i/2− 1 do
6: for k from 0 by i to n− 1 do
7: U = a[k + j] {sequential computations}
8: V = ω · a[k + j + i/2] {single multiplication}
9: a[k + j] = U + V {single addition}

10: a[k + j + i/2] = U − V {single subtraction}
11: end for
12: ω = ω · ωi {computation of single twiddle factors}
13: end for
14: else
15: ωarray[0] = ω
16: for p from 1 by 1 to i/2− 1 do
17: ω = ω · ωi, ωarray[p] = ω {computations of multiple twiddle

factors}
18: end for
19: for j from 0 by i to n− 1 do
20: p = 0
21: for k from 0 by 4 to i/2− 1 do
22: Uarray = a[k + j : k + j + 3] {parallel computations}
23: Varray = ωarray[p : p+ 3] · a[k + j + i/2 : k + j + 3 + i/2]

{multiple multiplications}
24: p = p+ 4 {index increment}
25: a[k + j : k + j + 3] = Uarray + Varray {multiple additions}
26: a[k + j + i/2 : k + j + 3 + i/2] = Uarray − Varray {multiple

subtractions}
27: end for
28: end for
29: end if
30: end for
31: return a
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performing the next step. For ARM NEON, the 128-bit Q register is able to store
four 32-bit wise variables. We load four different aligned consecutive variables
and then conduct the four different multiplications with one single vectorized
vmull instruction.

2.3 Fast Reduction

In NTT computation, the majority of the execution time is spent on computing
reduction operation since it is performed in the innermost k-loop (three times
nested). Thus, fast reduction operation is an essential for high-speed imple-
mentation of NTT algorithm. Our implementation chooses the prime modulus
q = 7681 (i.e. 0x1e01 in hexadecimal representation).

One of the efficient method for reduction belongs to SAMS2 method, which
was originally proposed in an 8-bit AVR implementation [22]. This method has
optimized the register usages and computation complexity. Since it replaces ex-
pensive operation (e.g., division) with relatively cheaper instructions (e.g.,
addition, shifting, multiplication), the execution time is significantly im-
proved. However, compared to RISC architecture, ARM NEON has more dis-
tinguished features. First, the length of a word is bigger, i.e. 32-bit per word.
This feature allows us to readily compute the 13-bit wise multiplication in single
instruction and up-to 31-bit shifting can be performed in single cycle. Second,
ARM NEON supplies SIMD instructions, which perform multiple operations
(up-to four 32-bit multiplications) in parallel using single instruction. Therefore,
we have craftily design an enhanced variant of SAMS2 method on ARM NEON
architecture.

We propose an optimized 32-bit wise SAMS2 reduction technique for per-
forming the mod 7681 operation. The SAMS2 method is introduced in [22] and
the method is highly optimized in 8-bit AVR processors in terms of register uti-
lization and the number of operations. However, ARM NEON processor has two
distinguished features over 8-bit AVR. First the processor provide 32-bit word
size. We can readily compute the 13-bit wise multiplication in single instruction
and up-to 31-bit shift is available within single cycle. Second multiple number of
operations are conducted at once by exploiting SIMD instructions. With these
features in mind, we redesign the original SAMS2 for ARM NEON architecture.

This main idea of SAMS2 is to first estimate the quotient of t = a
q , and

then perform the subtraction a − t · q where the value of t is (a � 13) + (a �
17) + (a� 21). The reduction process consists of four different basic operations,
namely, 32-bit wise Shifting → Addition → Multiplication → Subtraction →
Subtraction (SAMS2). As shown in Figure 1, one Q register consists of four 32-
bit registers. Among them, multiplication over one 32-bit long register (r0, a
quarter of NEON register) is described in detail. Since remaining three 32-bit
registers and r0 register is packed in the Q register, four identical SAMS2 method
is conducted simultaneously. The colorful parts mean that the storage has been
occupied while the white part is not. The reduction with 7681 using SAMS2
approach can be performed as follows:
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r0r1r2r3

1
2

3

(s1, s0)

(t1, t0)

u0

(s1, s0) + (t1, t0) + u0

0x1e01

0x1e01 ×  [(s1, s0) + (t1, t0) + u0]

r0r1r2r3

(r3,r2,r1) » 1

(s1,s0,sx) » 4

4

(r3,r2,r1,r0) - 0x1e01 ×  [(s1, s0) + (t1, t0) + u0] (w1, w0)

(w1,w0) » 13 q0

0x1e01

0x1e01 ×  q0 5

(w1,w0) - 0x1e01 ×  q0

(r3,r2)

(s1,s0,sx) « 2

(s1, s0)

(t0)

1

(u1, u0)

(o0)

(u1,u0) « 2 (k0)

(b0,bx) « 2 (h1, h0)

2

3
(s1, s0) + t0 + (u1, u0) + o0 + k0 + (h1, h0)

0x3001

0x3001 ×  [(s1, s0) + t0 + (u1, u0) + o0 + k0 + (h1, h0)]4

(r3,r2,r1,r0) - 0x3001 ×  [(s1, s0) + t0 + (u1, u0) + o0 + k0 + (h1, h0)] (w1, w0)

(w1,w0) » 14 q0

0x3001

0x3001 ×  q0 5

(w1,w0) - 0x3001 ×  q0

2

t0

t0 + t1 + t2

0x1e01

0x1e01 ×  [ t0 + t1 + t2]

r0

r0 » 13

w0

w0 » 13 q0

0x1e01 4

w0 -- 0x1e01 ×  q0

r0 » 17

r0 » 21

t1

t2

r0 -- 0x1e01 ×  [ t0 + t1 + t2]

3

1

32-bit

Q register: 4× 32-bit

Fig. 1. Fast reduction operation with 32-bit wise SAMS2 method for q = 7681. 1©:
shifting; 2©: addition; 3©: multiplication & subtraction; 4©: multiplication and subtrac-
tion.

1. Shifting. We right shift r0 by 13-bit, 17-bit and 21-bit. This outputs results
t0, t1 and t2.

2. Addition. We then perform the addition of t0 + t1 + t2.
3. Multiplication and Subtraction. The third step is to multiply the constant

0x1e01 by (t0 + t1 + t2), which is a 16 × 13-bit multiplication and then
subtract the product from r0.

4. Multiplication and Subtraction. However, the result we get in step 3 may
still be larger than p = 7681, thus, we do the correction by subtracting the
modulus p multiplied by intermediate result larger than 13-bit.

In Algorithm 2, pseudo codes for vectorized NTT computation with constant
time reduction is described. Firstly four coefficients (q3) and four twiddle fac-
tors (q1) are multiplied in Step 1. From Steps 2 ∼ 6, the intermediate results
are shifted to right by 13, 17 and 21-bit and accumulated. In Step 7, we conduct
multiplication with modulo (d0[0]) and intermediate result (q4). This process
is readily available by using vmls instruction, which conducts four different mul-
tiplication and then subtract operations from the destination (q3). From Steps
8 ∼ 9, results over 13-bit are shifted and then reduced once again. In case of
coefficient addition, two operands (q2 and q3) are added and then one time of
reduction is follows in Steps 10 ∼ 12. For subtraction, we firstly calculate the
value (4×modulus) in Step 13. After then the value is added to operand (q2).
Since the operand (q3) is placed within [0, 2dlog2pe], the subtraction in Step 15
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does not introduce negative values. Conveniently we can conduct one time of
reduction that is same with addition case.

2.4 Coefficient Addition and Subtraction

We employ the incomplete arithmetic to represent the intermediate result of
coefficient. Our implementation of coefficient addition works as follows. We first
perform a normal coefficient addition, after that, we conduct the 13-bit shift
to the right and perform the modular reduction by multiplying the modulus
with the shifted results. Similarly, for incomplete coefficient subtraction, we first
perform a normal coefficient subtraction, after that, we add 4 × p and then
conduct the 13-bit shift to the right and perform the modular reduction by
multiplying the modulus with the shifted results. This approach replaces the
subtraction into addition which avoids the negative cases.

Algorithm 2: Assembly codes of vectorized NTT for innermost loop

Require: Eight 32-bit coefficients A[0 : 3](q2), B[0 : 3](q3), ω(q1),
modulo(q0).

Ensure: Eight 32-bit results C(q5,q10).
1: vmul.i32 q3, q3, q1 {Four 32-bit wise parallel multiplications}
2: vshr.u32 q4, q3, #13 {SAMS2 1©:shifting}
3: vshr.u32 q5, q3, #17 {SAMS2 1©:shifting}
4: vshr.u32 q6, q3, #21 {SAMS2 1©:shifting}
5: vadd.i32 q4, q4, q5 {SAMS2 2©:addition}
6: vadd.i32 q4, q4, q6 {SAMS2 2©:addition}
7: vmls.i32 q3, q4, d0[0] {SAMS2 3©:multiplication & subtraction}
8: vshr.u32 q4, q3, #13 {SAMS2 4©:shifting}
9: vmls.i32 q3, q4, d0[0] {SAMS2 4©:multiplication & subtraction}

10: vadd.i32 q5, q2, q3 {coefficient addition 1©: addition}
11: vshr.u32 q4, q5, #13 {coefficient addition 2©: shifting}
12: vmls.i32 q5, q4, d0[0] {coefficient addition 3©: multiplication

& subtraction}
13: vshl.i32 q1, q0, #2 {coefficient subtraction 1©: 4×modulo}
14: vadd.i32 q2, q2, q1 {coefficient subtraction 2©: 4×modulo

addition}
15: vsub.i32 q10, q2, q3 {coefficient subtraction 3©: subtraction}
16: vshr.u32 q14, q10, #13 {coefficient subtraction 4©: shifting}
17: vmls.i32 q10, q14, d0[0] {coefficient subtraction 5©:

multiplication & subtraction}



10 Zhe Liu, Reza Azarderakhsh, Howon Kim, and Hwajeong Seo

2.5 Look-Up Table for the Twiddle Factors

A straightforward computation of ω = ω · ωi on-the-fly needs to perform n − 1
times of coefficient modular multiplications. Both of the computations of the
power of ωn in i-loop and twiddle factor ω = ω · ωi in j-loop can be considered
as fixed costs. We can pre-compute the all twiddle factors ω into RAM which is
similar to the technique used in [22]. Fortunately, ARM-NEON process provides
huge RAM size (1 ∼ 4GB) and the storing all the intermediate twiddle factors
ω into RAM is very cheap approach. We only need to transfer the twiddle factor
that is required for the current iteration. For vectorized operation, whole twiddle
factors are stored in aligned vector form which ensures efficient memory access
pattern and vector operations as well.

3 Implementation of Gaussian Sampler

Both key-generation and encryption require the operation of Gaussian samplers,
thus efficient implementation of the Knuth-Yao sampler is another important
factor for a high-speed ring-LWE encryption scheme. In this section, we describe
optimization techniques that can be used to reduce the execution time of the
Knuth-Yao sampler on ARM NEON processors.

3.1 Pseudo-Random Number Generation

Gaussian sampler needs random sequences. As ARM NEON does not support
the build-in TRNG, our implementation adopts the PRNG algorithm, which
runs the block cipher in counter mode, i.e. it encrypts successive values of an
incrementing counter. There are a number of lightweight block ciphers that can
be used for generating random numbers. Recently, ATmel company introduced
AES peripheral based PRNG [34]. This module is available in modern XMega
products which can be used for high performance of PRNG and Seo et al. in
WF-IoT’14 implemented the AES accelerator based PRNG implementation on
XMega processor [35].

Our implementation exploits the LEA block cipher [33] for random gen-
erations. LEA is a new lightweight and low-power encryption algorithm. This
algorithm has a certain useful features which are especially suitable for paral-
lel hardware and software implementations, i.e., simple ARX operations, non-S-
BOX architecture, and 32-bit word size. We follow the parallel implementation of
LEA introduced by [12]. ARM NEON processor supports 128-bit register which
consists of four different 32-bit registers. By assigning four different 128-bit wise
data into four 128-bit registers, we can conduct four different encryption com-
putations in parallel fashion. Finally, the implementation results achieved 10.06
cycle/byte for encryption by computing four different encryptions at once.

3.2 Look-up Table for Probability matrix

In order to ensure a precision of 2−90 for dimension n = 256, the Knuth-Yao
algorithm is suggested to have a probability matrix Pmat of 55 rows and 109
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columns [18]. On 32-bit ARM processor, we stored each 55-bit column in two
words, where each word size is 32-bit long. In this case, 9-bit is wasted per each
column and the probability matrix only occupies 872 bytes in total.

3.3 Byte-wise scanning

The bit-scanning operation requires to check each bit and decreases the distance
(d) whenever the bit is set. Instead of executing the scanning operation in a
bit-level, we perform the scanning operation in a byte-wise fashion [22] . The
byte-wise scanning method counts the number of bits in the byte and decreases
the distance by the number of bits. Since the byte-wise method does not conduct
the subtraction by each bit, it only requires eight additions, one subtraction and
one conditional branch statements, saving seven conditional branch statements
at the cost of one subtraction rather than bit-wise scanning.

3.4 Efficiently skip the consecutive leading zeros

The probability matrix includes an occurrence of consecutive leading zeros. In
order to skip the consecutive leading zeros, we conduct the simple comparison
between zero and bit counter. One time of byte comparison can decide that the
probability matrix has leading zeros or not by byte wise. This approach can skip
one byte-scanning at the cost of one conditional branch statement, if the counter
is zero.

3.5 Look-up table in DDG tree

We exploit the Look-Up Table (LUT) approaches proposed in [18] into byte-wise
scanning implementations. First, we perform sampling with an 8-bit random
number as an index to the LUT in the first 8 levels for a Gaussian distribution
with σ = 11.31/

√
2π. If the most significant bit of the lookup result is reset,

then the algorithm returns the LUT result successfully. Otherwise, the most
significant bit of the LUT result is one, then a LUT failure occurs, and the
next level of sampling will execute. Similarly, a second LUT will be used for
level 9 ∼ 13 in the same Gaussian distribution. Since two levels of LUT method
shows about 99% hit ratio, this is the computation efficient approach.

4 Performance Evaluation and Comparison

4.1 Experimental Platform

The ARM Cortex A9 is full implementations of the ARMv7 architecture in-
cluding NEON engine. Register sizes are 64-bit and 128-bit for double(D) and
quadruple(Q) word registers, respectively. Each register provides short bit size
computations such as 8-bit, 16-bit, 32-bit and 64-bit. This feature provides more
precise operation and benefits to various word size computations. We complied
our implementation with speed optimization option -O3. In order to obtain ac-
curate timings, we ran each operation at least 1000 times and calculated the
average cycle count for one operation.
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Table 1. Performance comparison of software implementation of Number Theoretic
Transform on different processors.

Implementations NTT/FFT

8-bit AVR processors, e.g., ATxmega64, ATxmega128:

Boorghany et al. [20] 1,216,000

Boorghany et al. [19] 754,668

Pöppelmann et al. [21] 334,646

Liu et al. [22] 193,731

32-bit ARM processors, e.g., Cortex-M4F, ARM7TDMI:

Boorghany et al. [19] 109,306

DeClercq et al. [18] 31,583

32-bit ARM-NEON processors, e.g., Cortex-A9:

This work 25,574

Table 2. Performance comparison of software implementation of lattice-based cryp-
tosystems on different processors (clock cycle 103).

Implementations NTT/FFT Sampling Gen Enc Dec

Implementations on 8-bit AVR processors, e.g., ATxmega64, ATxmega128:

Boorghany et al. [20] 1,216.0 N/A N/A 5,024.0 2,464.0

Boorghany et al. [19] 754.7 N/A 2,770.6 3,042.7 1,369.0

Pöppelmann et al. [21] 334.6 N/A N/A 1,315.0 381.3

Liu et al. [22] 193.7 26.8 589.9 671.6 275.6

Implementations on 32-bit ARM processors:

DeClercq et al. [18] 31.6 7.3 117.0 121.2 43.3

Implementations on 32-bit ARM-NEON processors, e.g., Cortex-A9:

This work 25.5 18.8 123.2 145.2 32.8

4.2 Experimental Results

Table 2 summarizes the execution times of Number Theoretic Transform, Gaus-
sian sampling, key generation, encryption and decryption of the proposed im-
plementation for medium-term security level. Our parallel NTT operations only
require 25, 574 clock cycles for 128-bit security level. We also compare software
implementations of Number Theoretic Transform on different processors. For
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Table 3. Comparison of Ring-LWE encryption schemes with RSA and ECC on ARM
NEON processors (Enc and Dec in clock cycles)

Implementation Scheme Enc Dec

Seo et al. [5] RSA-2048 535,020 20,977,660

Bernstein et al. [6] ECC-255 1,157,952 578,976

This work LWE-256 145,200 32,800

the 8-bit AVR and 32-bit platforms, the previous works [19–21, 18, 8] and our
implementations adopt the same parameter sets. The most suitable comparison
is 32-bit ARM implementations, since the target processor shares similar AR-
M instructions of ARMv7. A comparison of our implementation (parallel) with
De Clercq’s implementation (sequential) clearly show the advantage of NEON
engine, roughly 19 % enhancements can be achieved for NTT computation. For
Gaussian sampling, our current implementation is slower than the work in [18].
This can be explained that the authors in [18] adopted build-in true random num-
ber generator (in hardware) and our implementation simply adopts the pseudo
random number generator using software implementation. For 128-bit security
level, our ring-LWE implementation requires only 145, 200 clock cycles for en-
cryption and 32, 800 cycles for decryption. Comparing with the implementation
on ARM Cortex M4 in [18], the key generation and encryption are slightly slower
while the decryption is faster.

Table 3 compares the results of our ring-LWE encryption scheme with some
classical public-key encryption algorithms, in particular recent RSA and ECC
implementations for ARM NEON platform. The to-date fastest RSA software
for an ARM NEON processor was reported in [5]; it achieves an execution time
of approximately 20.9 M clock cycles for RSA-2048 decryption at the 96-bit se-
curity level. For comparison, our LWE-256 implementation requires only 32.8 k
cycles for decryption, which is more than 639 times faster despite a much higher
(i.e. 128-bit) security level. The fastest implementation ECC software imple-
mentations on NEON belongs to Bernstein et al.[6]. For comparison, our im-
plementation of ring-LWE is roughly 8 times faster for encryption and 17.6 for
decryption.

5 Conclusion

This paper presented several optimizations for efficiently implementing ring-
LWE encryption scheme on high-end IoT platform, 32-bit ARM NEON architec-
ture. In particular, we proposed three optimizations to accelerate the execution
time of the NTT-based polynomial multiplication. A combination of these opti-
mizations results in a very efficient NTT computation, which is 19% faster than
the previous best implementation. All of these achieved results set new speed
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records for ring-LWE encryption implementation on 32-bit ARM NEON plat-
forms. Finally, a comparison of our implementation with traditional public-key
cryptography (i.e. RSA, ECC) also sheds some new light on practical application
of ring-LWE on 32-bit ARM NEON processors.
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