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Introduction

@ Supersingular isogeny Diffie-Hellman (SIDH) as a strong
quantum-resistant cryptographic primitive for NIST’s PQC
standardization

e Originally presented by Jao and De Feo at PQCrypto 2011

e Provides small keys, forward secrecy and a Diffie-Hellman key
exchange

e Can be visualized as moving from elliptic curve to elliptic curve

@ This work analyzes SIDH implementation on ARMv7 cores
targeted at embedded processors

e We show that affine isogeny formulas are still useful for ARMv7
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Contributions

We provide efficient libraries for SIDH using highly optimized C
and ASM.

We present fast and secure prime candidates for 85-bit, 128-bit,
and 170-bit quantum security levels.

We provide hand-optimized finite field arithmetic computations
over various ARM-powered processors to produce constant-time
arithmetic that 1s 3 times as fast as GMP.

We analyze the effectiveness of projective and affine 1sogeny
computation schemes.

We provide implementation results for embedded devices
running Cortex-A8 and Cortex-AlS.
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SIDH Overview

@ Proposed by David Jao and Luca De Feo!

@ Public Parameters
e Smooth Isogeny Prime - p = EZAEEB f 1, where {4 and /g are
small primes, e4 and eg are positive integers, and f is a small
cofactor to make the number prime
o Starting Supersingular Elliptic Curve, Eq/IF 2

o Torsion bases {Pa, Qa} and {Pg, Qg} over Eo[¢3] and Ep[¢/F],

respectively
@ Classical and quantum security 1s approximately /p and ¢&/p,
respectively.

e Based on the difficulty of computing isogenies between
supersingular elliptic curves

[1] Jao, D., De Feo, L.: Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies. PQCrypto
2011: 19-34.

CANS 2016 Milan, Italy 5/27



SIDH Overview

@ Each round is broken into computing a double point
multiplication, R = mP + nQ, where m and n are secret scalars,
and using R as a secret kernel for an ,0:E— E/(R).

@ 0p:E— E/{maPa+naQa) = Ep for Alice and
0. E— E/(mBPB—|—n3Q3> — Eg for Bob

@ After the first round, Alice sends {Ea, 9a(Pg),9a(®@5)} and

Bob sends {Eg, 0g(Pa),05(QA)}

@ After the second round, Alice and Bob have isomorphic curves,
so the j-invariant can be used as a shared secret key.

® ¢i\ 1 Eg — Eg/{ma¢s(Pa)+na¢s(Ra)) = Eap for Alice and
0g: Ea— Ea/(meoa(PB)+ neda(Qp)) = Epa for Bob
o j(Ea)=j(EBa)
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SIDH Protocol

Public Data
Alice Bob

Input: A B,sID Input: A B,sID
my, Ny A, sID Mg, Ng
#y = EI([m,]1P, +[n,]Q,) . (P.),6,(Qp), E B = E /(Mg ]Ps +[n51Qs)
>
B,sID
b ?5(Pn) 45 (Qu). Eg
Epe = Eg /([M,]ds (Py) +[Na165 (QW)) Een = Eo/([Mg 14, (Ps) +[Ns 144 (Qs))
output: J(E,g),sID output: j(Eg,),sID

Figure: SIDH Protocol
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SIDH Computations

@ Goal: Optimize double point multiplication and large-degree

@ Solution: All arithmetic 1s performed on Kummer line of
Montgomery curve

o Represent points as (x,y) — (X : Z), where x = X/Z. P and
— P produce same isogenies

@ 3-point Montgomery differential ladder for double point
multiplication if m = 11
o Computes P+ [t]Q at each iteration

@ Fast Montgomery arithmetic to compute 1sogenies of degree 2, 3,
and 4

e Affine formulas that require an inversion for each isogeny
computation?

e Projective formulas that require an inversion at the end of the
round?

[1] De Feo, L., Jao, D., Plut, J.: Towards Quantum-resistant Cryptosystems from Supersingular Elliptic Curve Isogenies.
Journal of Mathematical Cryptography, 2014, 8(3):209-247.
[2] Costello, C., Longa, P., Naehrig, M.: Efficient Algorithms for Supersingular Isogeny Diffie-Hellman. CRYPTO 2016:

72-601
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SIDH-Friendly Primes

@ Smooth Isogeny Prime - p = (3¢ - f -1, where {4 and { are
small primes, e4 and eg are positive integers, and f is a small
cofactor to make the number prime

@ Fast known point multiplications and isogeny formulas for
/ A — 2 and ¢ B — 3
o Security of a large-degree isogeny is v/ /¢

e Quantum claw finding problem
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SIDH-Friendly Primes

@ Find several different primes at each security level for a variety
of optimizations

e Such as redundant radix representations, lazy reduction, etc.

@ Prime search criteria:

e Security: The relative security of SIDH over a prime is based on
min(¢3,(5).

e Size: These primes should feature a size slightly less than a power
of 2 to allow for some speed optimizations such as lazy reduction
and carry cancelling, while still featuring a high quantum security.

e Speed: These primes efficiently use space to reduce the number
of operations per field arithmetic, but also have nice properties for
the field arithmetic. Notably, all primes of the form
p= 236% - f —1 will have the Montgomery friendly property
because the least significant half of the prime will have all bits set
to’1°.
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Proposed SIDH-Friendly Primes

Security Prime o o L en e Classical | Quantum
. . p=L0F -fE£1 | min({]0F) . _

Level Size (bits) Security Security
499 225131555 1 3155 123 82
p512 503 22503159 _ 1 2250 125 83
510 0252315937 _ 1 0252 126 84
751 23723239 _q 372 186 124
P768 758 2378323717 1 32317 188 125
766 0382323879 _ 1 3238 189 126
980 24933307 _ 1 3307 243 162
1004 2499331549 1 0499 249 166
P1024 1008 2501331647 1 3316 250 167
1019 2508331935 _ 1 3319 253 168
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ARMY7 Finite-Field Arithmetic

@ Since supersingular curves can be defined over I 2, all
finite-field operations are over I¥ >

o Optimize at I, and join operations to get [f' 2

e With choice of /4 = 2, —1 is not a quadratic residue and x2 + 1
1s an efficient modulus

@ The following arithmetic utilizes a non-redundant scheme for
registers
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Finite-Field Addition

@ A+B=C,where A,B,C c I,
o f C>p,thenC=C—p
@ Use Idmia and stmia instructions to load multiple registers at a
time and iteratively add with carry

@ For conditional subtraction, perform a masked subtraction
o C=C—{0if C<p,pif C> p}
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Finite-Field Multiplication

@ AxB=C,where A,B,C c I,

@ Requires a reduction from 2m bits to m bits, so Montgomery
reduction was used

@ Perform separated multiply and reduce with Cascade Operand
Scanning (COS) method!

o Utilizes ARM-NEON vector unit

o Efficiently performs many 32 x 256 bit multiplications by
utilizing a transpose of inputs to minimize data dependencies and
expands to 512 x 512 bits

o With choice of primes, we reduce the complexity from k? + k to
k? single-precision multiplications, where k is the number of
words in the field
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Finite-Field Multiplication

Quad Register 1 Quad Register 0
A As As Ay A A, A Ao
(I,

Transpose

I,

A4 X Bo Ao X Bo
Carry Chains

)(—O—O

Step 1: A5 x By A1 x By

Multiplication
and Carry Step 2: A Xk Az XN

W
Sy //x’f?/

Step 3: A7 X Bo A3 X Bo
Step 4: l
A4 X Bo
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Finite-Field Multiplication and Squaring

@ Base multiplier performs 512-bit multiplications

@ Karatsuba’s method 1s used to perform 1024-bit multiplications

@ Squaring 1s similar to multiplication, but partial products can be
reused

e Approximately 75% of the cycles for a multiplication
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Finite-Field Inversion

e Finds some A~! such that A- A1 =1, where A,A"! ¢ Fp

e Fermat’s little theorem performs A1 = AP—2
o Complexity O(log®n)
@ Extended Euclidean Algorithm (EEA) or Kaliski Montgomery
Inverse
o EEA finds ax + by = gcd(a, b) to perform inverse
o Complexity O(log®n)
@ Choice of EEA for fast inversions with affine formulas

e Timing attack countermeasure: Multiplying value to be inverted
before and after by a random value

e GNU Multiprecision Library (GMP) implements heavily
optimized inversion
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Extension Field Arithmetic

@ Let A= (Ao,A1), B=(Bo,B1) € IF2.The results of operations
inIF 2 are C = (Co, 1)

A+ B = (Ao—I—Bo,Al—I—Bl)
A-B = (Ao — By, A — B)
As B — (AoBo — A1 B1, (Ao + A1),
(Bo+ B1) — AeB1 — A1 By)
A? = ((Ao—l—Al)(Ao—Al),QAoAl)
A= (A(AG+AD) T —A(AT+AT) )
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Affine or Projective Isogenies

@ Here we compare the relative costs of affine and projective
1sogenies
@ Let /, M, and S refer to inversion, multiplication, and squaring in

¥, respectively. A tilde above the letter indicates that the
operation is in I .

Table: Affine isogeny formulas vs. projective 1sogenies formulas

Computation Affine Cost | Projective Cost
Point Mult-by-3 TM+45 8M +55
Iso-3 Computation 1/ +5M+1S 3M + 35
Iso-3 Evaluation 4M + 25 6M +2S
Point Mult-by-4 6M+S 8M +45
Iso-4 Computation 1/+3M 55
Iso-4 Evaluation 6M + 45 OM +1S
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Affine or Projective Isogenies

Table: Comparison of break-even inversion/multiplication ratios for
large-degree 1sogenies at different security levels. When the inversion over
multiplication ratio is at the break-even point, affine 1sogenies require
approximately the same cost as projective 1sogenies. Ratios smaller than
these numbers are faster with affine formulas.

Prime | Alice R1 Iso | BobR1 Iso | Alice R2 Iso | Bob R2 Iso
ps1y | 1=20.8TM | 1=1926M | I=17.87TM | I =13.26 M
pres | 1=22.73M | 1=20.48M | 1=19.73M | | = 14.48M
prooa | | =23.41M | [=21.156M | [ =20.41M | [ =15.15M
psia | 1 =52.62M | I =47.78M | | =43.62M | | =29.78M
pres | | =58.20M | | =51.44M | | =49.20M | | =33.46M
Prosa | 1 =60.23M | | =53.46M | | =51.23M | | =35.46M

CANS 2016 Milan, Italy

20/27



Affine or Projective Isogenies

@ //M ratio for ARM processors is generally much smaller than

PC’s
@ From the last slide, the breakeven points for pgi> ranges from
29.78 to 52.62

e Thus, improvements in speed can be achieved from affine isogeny

formulas

Table: Comparison of / /M ratios for various computer architectures based
on GMP library

. . | / M ratio
Architecture Device /
P512 | P768 | P1024

ARMYvV7 Cortex-A8 | Beagle Board Black | 7.0 | 6.4 6.1

ARMYV7 Cortex-AlS Jetson TK1 7.1 | 6.1 5.9
ARMvS Cortex-AS3 Linaro HiKey 82 | 7.3 6.5
Haswell x86-64 17-4790k 149 | 14.77 | 13.8
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ARMYV7 Results

@ Benchmarked using BeagleBoard Black (Cortex-A8 @ 1.0 GHz)
and Jetson TK1 (Cortex-Al5 @ 2.3 GHz)

@ GMP version 6.1.0

@ Works with any valid parameters file

D512 — 22503159 1
D763 — 23723239 1
Pi02a = 2501331641 1
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BeagleBoard Black Results

Table: Timing results of key exchange on Beagle Board Black ARMv7
device for different security levels

Beagle Board Black (ARM v7) Cortex-A8 at 1.0 GHz using C

Field Fp [cc] Key Exch. [cc x 103]
Size A S M mod / Alice Bob
ps12 | 115 | 1866 | 2295 | 3429 | 40100 483,968 | 514,786
pres | 142 | 3652 | 4779 | 6325 | 71500 1,406,381 | 1,525,215
pro2a | 168 | 5925 | 8202 | 10150 | 111900 3,135,526 | 3,367,448

Beagle Board Black (ARM v7) Cortex-A8 at 1.0 GHz using ASM and NEON

Field Fp [cc] Key Exch. [cc X 103]
Size A S M mod / Alice Bob
P512 70 718 953 962 40100 216,503 229,206
pio24 | 120 | 2714 | 3723 | 3956 | 111900 1,597,504 | 1,708,383
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Table: Timing results of key exchange on NVIDIA Jetson TK-1 ARMv7

device for different security levels

Jetson TK-1 Board (ARM v7) Cortex-A15 at 2.3 GHz using C

Field Fp [cc] Key Exch. [cc x 103]
Size A S M mod / Alice Bob
ps1o | 83 | 926 | 1152 | 2271 | 24302 285,026 302,332
pres | 99 | 1679 | 2403 | 4024 | 39100 783,303 848,461
proza | 117 | 2955 | 4144 | 6053 | 59800 1,728,183 | 1,851,782

Jetson TK-1 Board (ARM v7) Cortex-Al5 at 2.3 GHz using ASM and NEON

Field Fp [cc] Key Exch. [cc % 103]
Size A S M mod / Alice Bob
P512 39 516 640 732 | 24302 148,003 154,657
pio2a | 73 1856 | 2464 | 2961 | 59800 1,118,644 1,140,626
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Comparison of Results

Table: Comparison of affine and projective 1sogeny implementations on

ARM Cortex-A15 embedded processors. Our work and Costello et al.’s was

done on a Jetson TK1 and Azarderakhsh et al.’s was performed on an

Arndale ARM Cortex-A15. Costello et al’s implementation only supports

generic arithmetic for ARM.

Field | Iso. Timings [cc x 10°]
Work Size Eq. , _
. Alice R1 | BobR1 | Alice R2 | BobR2 | Total
[bits]
Costello et al. 751 Proj. 1,794 2,120 1,665 2,001 7,580
Azarderakhsh 521 N/A N/A N/A N/A 1,069
771 Affine N/A N/A N/A N/A 3,009
ctal 1035 N/A N/A N/A N/A | 6477
503 83 87 66 68 302
This work 751 Affine 437 474 346 375 1,632
1008 603 657 516 484 2,259
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Conclusions

e Efficient implementation of SIDH on ARMv7 platforms
@ Proposed several fast SIDH-friendly primes

@ Hand-optimized finite-field arithmetic — up to 3 times faster
than GMP

@ Analysis of the efficiency of affine and projective 1sogeny
formulas — ARMvV7 can benefit from affine

@ Implementations on BeagleBoard Black and Jetson TK1 —
currently fastest known implementations for ARMv7

@ Push for robust and high-performance implementations for
standardization of SIDH by NIST
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Thank You!
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