
NEON-SIDH: Efficient Implementation of
Supersingular Isogeny Diffie-Hellman Key

Exchange Protocol on ARM

Paper by: Brian Koziel (Texas Instruments) [corresponding author,
kozielbrian@gmail.com], Amir Jalali (Rochester Institute of Technology), Reza

Azarderakhsh (Florida Atlantic University), David Jao (University of Waterloo), and
Mehran Mozaffari-Kermani (Rochester Institute of Technology)

CANS 2016
Milan, Italy

Outline

1 Introduction

2 SIDH Protocol

3 Proposed Choice of SIDH-Friendly Primes

4 ARMv7 Finite-Field Arithmetic

5 Affine or Projective Isogenies

6 Results

7 Conclusions

CANS 2016 Milan, Italy
2 / 27

Introduction

Supersingular isogeny Diffie-Hellman (SIDH) as a strong
quantum-resistant cryptographic primitive for NIST’s PQC
standardization

Originally presented by Jao and De Feo at PQCrypto 2011
Provides small keys, forward secrecy and a Diffie-Hellman key
exchange
Can be visualized as moving from elliptic curve to elliptic curve

This work analyzes SIDH implementation on ARMv7 cores
targeted at embedded processors

We show that affine isogeny formulas are still useful for ARMv7

CANS 2016 Milan, Italy
3 / 27

Contributions

We provide efficient libraries for SIDH using highly optimized C
and ASM.

We present fast and secure prime candidates for 85-bit, 128-bit,
and 170-bit quantum security levels.

We provide hand-optimized finite field arithmetic computations
over various ARM-powered processors to produce constant-time
arithmetic that is 3 times as fast as GMP.

We analyze the effectiveness of projective and affine isogeny
computation schemes.

We provide implementation results for embedded devices
running Cortex-A8 and Cortex-A15.

CANS 2016 Milan, Italy
4 / 27

SIDH Overview

Proposed by David Jao and Luca De Feo1

Public Parameters
Smooth Isogeny Prime - p = `

eA
A `

eB
B f ±1, where `A and `B are

small primes, eA and eB are positive integers, and f is a small
cofactor to make the number prime
Starting Supersingular Elliptic Curve, E0/Fp2

Torsion bases {PA,QA} and {PB ,QB} over E0[`
eA
A] and E0[`

eB
B],

respectively
Classical and quantum security is approximately 4

√
p and 6

√
p,

respectively.
Based on the difficulty of computing isogenies between
supersingular elliptic curves

[1] Jao, D., De Feo, L.: Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies. PQCrypto
2011: 19-34.

CANS 2016 Milan, Italy
5 / 27

SIDH Overview

Each round is broken into computing a double point
multiplication, R =mP+nQ , where m and n are secret scalars,
and using R as a secret kernel for an isogeny, φ : E → E/〈R〉.

φA : E → E/〈mAPA+nAQA〉= EA for Alice and
φB : E → E/〈mBPB +nBQB〉= EB for Bob

After the first round, Alice sends {EA,φA(PB),φA(QB)} and
Bob sends {EB ,φB(PA),φB(QA)}
After the second round, Alice and Bob have isomorphic curves,
so the j-invariant can be used as a shared secret key.

φ ′A : EB → EB/〈mAφB(PA)+nAφB(QA)〉= EAB for Alice and
φ ′B : EA→ EA/〈mBφA(PB)+nBφA(QB)〉= EBA for Bob
j(EAB) = j(EBA)

CANS 2016 Milan, Italy
6 / 27

SIDH Protocol

Alice Bob

Input: sID ,,BA

AA nm ,

AAAAA QnPmE][][/:
BB nm ,

BBBBB QnPmE][][/:

sID ,A

ABABA EQP),(),(

sID ,B

BABAB EQP),(),(

Public Data

)(][)(][/: ABAABABAB QnPmEE

Output: sID),(ABEj

)(][)(][/: BABBABABA QnPmEE

Output: sID),(BAEj

Input: sID ,,BA

Figure: SIDH Protocol

CANS 2016 Milan, Italy
7 / 27

SIDH Computations

Goal: Optimize double point multiplication and large-degree
isogeny
Solution: All arithmetic is performed on Kummer line of
Montgomery curve

Represent points as (x ,y)→ (X : Z), where x = X/Z . P and
−P produce same isogenies

3-point Montgomery differential ladder for double point
multiplication if m = 1

1

Computes P+[t]Q at each iteration
Fast Montgomery arithmetic to compute isogenies of degree 2, 3,
and 4

Affine formulas that require an inversion for each isogeny
computation1

Projective formulas that require an inversion at the end of the
round2

[1] De Feo, L., Jao, D., Plut, J.: Towards Quantum-resistant Cryptosystems from Supersingular Elliptic Curve Isogenies.
Journal of Mathematical Cryptography, 2014, 8(3):209-247.
[2] Costello, C., Longa, P., Naehrig, M.: Efficient Algorithms for Supersingular Isogeny Diffie-Hellman. CRYPTO 2016:
572-601

CANS 2016 Milan, Italy
8 / 27

SIDH-Friendly Primes

Smooth Isogeny Prime - p = `eAA `eBB · f ±1, where `A and `B are
small primes, eA and eB are positive integers, and f is a small
cofactor to make the number prime

Fast known point multiplications and isogeny formulas for
`A = 2 and `B = 3

Security of a large-degree isogeny is 3
√
`e

Quantum claw finding problem

CANS 2016 Milan, Italy
9 / 27

SIDH-Friendly Primes

Find several different primes at each security level for a variety
of optimizations

Such as redundant radix representations, lazy reduction, etc.
Prime search criteria:

Security: The relative security of SIDH over a prime is based on
min(`aA, `

b
B).

Size: These primes should feature a size slightly less than a power
of 2 to allow for some speed optimizations such as lazy reduction
and carry cancelling, while still featuring a high quantum security.
Speed: These primes efficiently use space to reduce the number
of operations per field arithmetic, but also have nice properties for
the field arithmetic. Notably, all primes of the form
p = 2

a`bB · f −1 will have the Montgomery friendly property
because the least significant half of the prime will have all bits set
to ’1’.

CANS 2016 Milan, Italy
10 / 27

Proposed SIDH-Friendly Primes

Security Prime
p = `eAA `eBB · f ±1 min(`eAA , `eBB)

Classical Quantum

Level Size (bits) Security Security

p512

499 2
251

3
155

5−1 3
155 123 82

503 2
250

3
159−1 2

250 125 83

510 2
252

3
159

37−1 2
252 126 84

p768

751 2
372

3
239−1 2

372 186 124

758 2
378

3
237

17−1 3
237 188 125

766 2
382

3
238

79−1 3
238 189 126

p1024

980 2
493

3
307−1 3

307 243 162

1004 2
499

3
315

49−1 2
499 249 166

1008 2
501

3
316

41−1 3
316 250 167

1019 2
508

3
319

35−1 3
319 253 168

CANS 2016 Milan, Italy
11 / 27

ARMv7 Finite-Field Arithmetic

Since supersingular curves can be defined over Fp2 , all
finite-field operations are over Fp2

Optimize at Fp and join operations to get Fp2

With choice of `A = 2, −1 is not a quadratic residue and x2+1

is an efficient modulus

The following arithmetic utilizes a non-redundant scheme for
registers

CANS 2016 Milan, Italy
12 / 27

Finite-Field Addition

A+B = C , where A,B,C ∈ Fp

If C ≥ p, then C = C −p

Use ldmia and stmia instructions to load multiple registers at a
time and iteratively add with carry
For conditional subtraction, perform a masked subtraction

C = C −{0 if C < p, p if C ≥ p}

CANS 2016 Milan, Italy
13 / 27

Finite-Field Multiplication

A×B = C , where A,B,C ∈ Fp

Requires a reduction from 2m bits to m bits, so Montgomery
reduction was used
Perform separated multiply and reduce with Cascade Operand
Scanning (COS) method1

Utilizes ARM-NEON vector unit
Efficiently performs many 32×256 bit multiplications by
utilizing a transpose of inputs to minimize data dependencies and
expands to 512×512 bits
With choice of primes, we reduce the complexity from k2+k to
k2 single-precision multiplications, where k is the number of
words in the field

CANS 2016 Milan, Italy
14 / 27

Finite-Field Multiplication

A7 A6 A5 A4 A3 A2 A1 A0

Transpose

B0

Multiplication
and Carry

Carry Chains
B0

A4 x B0

×
Step 1:

Step 2:

Step 3:

Step 4:

Quad Register 1 Quad Register 0

A4 x B0 A0 x B0

A5 x B0 A1 x B0

A6 x B0 A2 x B0

A7 x B0 A3 x B0

A1 x B0

CANS 2016 Milan, Italy
15 / 27

Finite-Field Multiplication and Squaring

Base multiplier performs 512-bit multiplications

Karatsuba’s method is used to perform 1024-bit multiplications
Squaring is similar to multiplication, but partial products can be
reused

Approximately 75% of the cycles for a multiplication

CANS 2016 Milan, Italy
16 / 27

Finite-Field Inversion

Finds some A−1 such that A ·A−1 = 1, where A,A−1 ∈ Fp

Fermat’s little theorem performs A−1 = Ap−2

Complexity O(log3n)
Extended Euclidean Algorithm (EEA) or Kaliski Montgomery
Inverse

EEA finds ax+by = gcd(a,b) to perform inverse
Complexity O(log2n)

Choice of EEA for fast inversions with affine formulas
Timing attack countermeasure: Multiplying value to be inverted
before and after by a random value
GNU Multiprecision Library (GMP) implements heavily
optimized inversion

CANS 2016 Milan, Italy
17 / 27

Extension Field Arithmetic

Let A= (A0,A1), B = (B0,B1) ∈ Fp2 .The results of operations
in Fp2 are C = (C0,C1)

A+B = (A0+B0,A1+B1)
A−B = (A0−B0,A1−B1)

A×B =
(A0B0−A1B1,(A0+A1),
(B0+B1)−A0B1−A1B0)

A2 = ((A0+A1)(A0−A1),2A0A1)
A−1 = (A0(A

2

0
+A2

1
)−1,−A1(A

2

0
+A2

1
)−1)

CANS 2016 Milan, Italy
18 / 27

Affine or Projective Isogenies

Here we compare the relative costs of affine and projective
isogenies
Let I ,M, and S refer to inversion, multiplication, and squaring in
Fp , respectively. A tilde above the letter indicates that the
operation is in Fp2 .

Table: Affine isogeny formulas vs. projective isogenies formulas

Computation Affine Cost Projective Cost

Point Mult-by-3 7M̃+4S̃ 8M̃+5S̃

Iso-3 Computation 1Ĩ +5M̃+1S̃ 3M̃+3S̃

Iso-3 Evaluation 4M̃+2S̃ 6M̃+2S̃

Point Mult-by-4 6M̃+ S̃ 8M̃+4S̃

Iso-4 Computation 1Ĩ +3M̃ 5S̃

Iso-4 Evaluation 6M̃+4S̃ 9M̃+1S̃

CANS 2016 Milan, Italy
19 / 27

Affine or Projective Isogenies

Table: Comparison of break-even inversion/multiplication ratios for
large-degree isogenies at different security levels. When the inversion over
multiplication ratio is at the break-even point, affine isogenies require
approximately the same cost as projective isogenies. Ratios smaller than
these numbers are faster with affine formulas.

Prime Alice R1 Iso Bob R1 Iso Alice R2 Iso Bob R2 Iso

p512 Ĩ = 20.87M̃ Ĩ = 19.26M̃ Ĩ = 17.87M̃ Ĩ = 13.26M̃

p768 Ĩ = 22.73M̃ Ĩ = 20.48M̃ Ĩ = 19.73M̃ Ĩ = 14.48M̃

p1024 Ĩ = 23.41M̃ Ĩ = 21.15M̃ Ĩ = 20.41M̃ Ĩ = 15.15M̃

p512 I = 52.62M I = 47.78M I = 43.62M I = 29.78M

p768 I = 58.20M I = 51.44M I = 49.20M I = 33.46M

p1024 I = 60.23M I = 53.46M I = 51.23M I = 35.46M

CANS 2016 Milan, Italy
20 / 27

Affine or Projective Isogenies

I/M ratio for ARM processors is generally much smaller than
PC’s
From the last slide, the breakeven points for p512 ranges from
29.78 to 52.62

Thus, improvements in speed can be achieved from affine isogeny
formulas

Table: Comparison of I/M ratios for various computer architectures based
on GMP library

Architecture Device
I/M ratio

p512 p768 p1024

ARMv7 Cortex-A8 Beagle Board Black 7.0 6.4 6.1
ARMv7 Cortex-A15 Jetson TK1 7.1 6.1 5.9
ARMv8 Cortex-A53 Linaro HiKey 8.2 7.3 6.5

Haswell x86-64 i7-4790k 14.9 14.7 13.8

CANS 2016 Milan, Italy
21 / 27

ARMv7 Results

Benchmarked using BeagleBoard Black (Cortex-A8 @ 1.0 GHz)
and Jetson TK1 (Cortex-A15 @ 2.3 GHz)

GMP version 6.1.0

Works with any valid parameters file

p512 = 2
250

3
159−1

p768 = 2
372

3
239−1

p1024 = 2
501

3
316

41−1

CANS 2016 Milan, Italy
22 / 27

BeagleBoard Black Results

Table: Timing results of key exchange on Beagle Board Black ARMv7
device for different security levels

Beagle Board Black (ARM v7) Cortex-A8 at 1.0 GHz using C

Field Fp [cc] Key Exch. [cc×10
3]

Size A S M mod I Alice Bob

p512 115 1866 2295 3429 40100 483,968 514,786

p768 142 3652 4779 6325 71500 1,406,381 1,525,215

p1024 168 5925 8202 10150 111900 3,135,526 3,367,448

Beagle Board Black (ARM v7) Cortex-A8 at 1.0 GHz using ASM and NEON

Field Fp [cc] Key Exch. [cc×10
3]

Size A S M mod I Alice Bob

p512 70 718 953 962 40100 216,503 229,206

p1024 120 2714 3723 3956 111900 1,597,504 1,708,383

CANS 2016 Milan, Italy
23 / 27

Jetson TK1 Results

Table: Timing results of key exchange on NVIDIA Jetson TK-1 ARMv7
device for different security levels

Jetson TK-1 Board (ARM v7) Cortex-A15 at 2.3 GHz using C

Field Fp [cc] Key Exch. [cc×10
3]

Size A S M mod I Alice Bob

p512 83 926 1152 2271 24302 285,026 302,332

p768 99 1679 2403 4024 39100 783,303 848,461

p1024 117 2955 4144 6053 59800 1,728,183 1,851,782

Jetson TK-1 Board (ARM v7) Cortex-A15 at 2.3 GHz using ASM and NEON

Field Fp [cc] Key Exch. [cc×10
3]

Size A S M mod I Alice Bob

p512 39 516 640 732 24302 148,003 154,657

p1024 73 1856 2464 2961 59800 1,118,644 1,140,626

CANS 2016 Milan, Italy
24 / 27

Comparison of Results

Table: Comparison of affine and projective isogeny implementations on
ARM Cortex-A15 embedded processors. Our work and Costello et al.’s was
done on a Jetson TK1 and Azarderakhsh et al.’s was performed on an
Arndale ARM Cortex-A15. Costello et al’s implementation only supports
generic arithmetic for ARM.

Work

Field Iso. Timings [cc×10
6]

Size Eq.
Alice R1 Bob R1 Alice R2 Bob R2 Total

[bits]

Costello et al. 751 Proj. 1,794 2,120 1,665 2,001 7,580

Azarderakhsh 521

Affine

N/A N/A N/A N/A 1,069

et al.
771 N/A N/A N/A N/A 3,009

1035 N/A N/A N/A N/A 6,477

This work

503

Affine

83 87 66 68 302

751 437 474 346 375 1,632

1008 603 657 516 484 2,259
CANS 2016 Milan, Italy

25 / 27

Conclusions

Efficient implementation of SIDH on ARMv7 platforms

Proposed several fast SIDH-friendly primes

Hand-optimized finite-field arithmetic→ up to 3 times faster
than GMP

Analysis of the efficiency of affine and projective isogeny
formulas→ ARMv7 can benefit from affine

Implementations on BeagleBoard Black and Jetson TK1→
currently fastest known implementations for ARMv7

Push for robust and high-performance implementations for
standardization of SIDH by NIST

CANS 2016 Milan, Italy
26 / 27

Thank You!

CANS 2016 Milan, Italy
27 / 27

	Introduction
	SIDH Protocol
	Proposed Choice of SIDH-Friendly Primes
	ARMv7 Finite-Field Arithmetic
	Affine or Projective Isogenies
	Results
	Conclusions

