
Efficient Implementation of Bilinear Pairings on
ARM Processors

Reza Azarderakhsh

Centre for Applied Cryptographic Research
Department of Combinatorics and Optimization

University of Waterloo
Waterloo, ON, N2L 3G1, Canada
razarder@math.uwaterloo.ca

Joint work with: Gurleen Grewal (U Waterloo), Patrick Longa (Microsoft Research), Shi
Hu (Stanford University), and David Jao (U Waterloo)

SAC 2012
Windsor, ON, Canada

1/22



Outline

1 Introduction

2 Optimal Ate Pairing

3 Representation of Extension Fields

4 Curve Arithmetic

5 Operation Counts

6 Implementations

7 Conclusions

2/22



Introduction

Pairing-based cryptography (PBC) is the use of a pairing
between elements of two cryptographic groups to a third group.
PBC relies on finite fields and is a function of two points on the
elliptic curve groups to construct cryptographic systems.

D. Boneh and M. Franklin (2001)

Applications of PBC:
Identity-based encryption (Boneh-Franklin)
Short signatures (Boneh-Lynn-Shacham)
Identity-based key agreement
Certificateless encryption
Blind signature
...

3/22



Speed Records To Date

Recent High Performance Implementation on Ordinary Curves
on PC: Less than a millisecond for 128-bit security level [1]. (U
Waterloo)

[1] Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys, Julio López: Faster Explicit Formulas for
Computing Pairings over Ordinary Curves. EUROCRYPT 2011: 48-68.

Recent Resource-Constrained Implementation on Ordinary
Curves on a ARM Processor: 55 milliseconds for 128-bit
security level [2]. (Microsoft Research)

[2] Tolga Acar, Kristin Lauter, Michael Naehrig, and Daniel Shumow, “Affine Pairings on ARM”, Pairing-Based Cryptography –
Pairing 2012, Lecture Notes in Computer Science, Springer-Verlag (2012), to appear.

4/22



Elliptic Curves and Pairings

(Hyper)Elliptic curves: A group of points (group law)

Only known mathematical setting where desirable pairings exist.
Attacks on elliptic curves are slower in comparison to the one on
finite fields (for a fixed field size).

Pairings: are a function of two points in the elliptic curves

Very few elliptic curves admit a usable pairing.

5/22



Pairings

Definition
e : G1×G2→GT

G1 is a subgroup of E (Fq) (additively)

G2 is a subgroup of E (Fqk ) (additively)

GT is the multiplicative subgroup of a finite field Fqk

P ∈G1, Q ∈G2, then e(P,Q) ∈GT .
#E (Fq) = q+1− t ≈ q and #E (Fq) = nh (h small and n is a
big prime).
k > 1 is the smallest integer, n|qk −1 and called the embedding
degree.

Symmetric pairing: ηT pairing (supersingular elliptic curves).

Asymmetric pairing: ate pairing, R-ate pairing, and optimal-ate
pairing (general elliptic curves).

Finding pairing friendly curves is important.

6/22



Barreto-Naehring Curves

Barreto and Naehrig describe a family of pairing friendly curves
called BN curves.

BN curves E : y2 = x3 +b (b 6= 0, #E = n and embedding
degree k = 12)

Defined over a prime field Fq where q and n are given by the
polynomials:

q = 36x4 +36x3 +24x2 +6x +1
n = 36x4 +36x3 +18x2 +6x +1,

for some integer x such that both q and n are prime and b ∈ F∗q such
that b+1 is a quadratic residue.

Short signature applications (ideally) require pairing friendly
curves of k > 6 at high security levels, e.g., k ≥ 6 for 80-bit,
k ≥ 12 for 128-bit, and k ≥ 18 for 192-bit security level.

7/22



Optimal Ate Pairing

G1 = E [n]∩ker(Πq− [1]) (the base field)

G2 = E [n]∩ker(Πq− [q]) (the extension field)

Then, points in G1 have coordinates in Fq , and points in G2 have
coordinates in Fqk , e.g., Fq12 .

The Optimal Ate (O-Ate) pairing is defined by

aopt : G2×G1→ µn, (Q,P)→ f6x+2,Q(P) ·h(P)

where h(P) = l[6x+2]Q,qQ(P)l[6x+2]Q+qQ,−q2Q(P), lQ1,Q2(P) is the
line arising in the addition of Q1 and Q2 at point P . Also, f6x+2,Q(P)
is the Miller function.

Computation of Miller function (Miller’s Algorithm)

Computation of the Final Exponentiation (f
qk−1

n )

Arithmetic over BN, Fq , Fq2 , and Fq12 .

8/22



Representation of Extension Fields (1)

Computation of the Miller function and final exponentiation
involves arithmetic over Fq2 and Fq12 respectively.
Efficient implementation of the underlying extension fields is
crucial to achieve fast pairing results.
The IEEE P1363.3 standard recommends using towers to
represent Fqk which is employed in the previous works as

Fact
For approximately 2/3rds of the BN-primes q ≡ 3 mod 8, the
polynomial y6−α , α = 1+

√
−1 is irreducible over

Fq2 = Fq(
√
−1).

This gives the following towering scheme:
Fq2 = Fq[i ]/(i2−β ), where β =−1.
Fq6 = Fq2 [v ]/(v3−ξ ), where ξ = 1+ i .

Fq12 = Fq6 [w ]/(w2−v).

9/22



Representation of Extension Fields (2)

In practice, desirable BN-curves are rare, and it is sometimes
necessary to use primes q ≡ 7 mod 8 (e.g., BN-446 and BN-638)
in order to optimize other aspects such as the Hamming weight
of x . Then, we propose that

Fact
For approximately 2/3rds of the BN-primes q ≡ 7 mod 8, the
polynomial y6−α , α = 1+

√
−2 is irreducible over

Fq2 = Fq(
√
−2).

This gives the following towering scheme:
Fq2 = Fq[i ]/(i2−β ), where β =−2.
Fq6 = Fq2 [v ]/(v3−ξ ), where ξ = 1+ i .

Fq12 = Fq6 [w ]/(w2−v).

10/22



Finite Field Operations and Lazy Reduction

Lazy reduction reduces the number of reductions in the
multiplication over extension fields.

In [1] a Lazy reduction scheme for computation of pairing in
tower fields and curve arithmetic (projective) is proposed.

We extend lazy reduction to field inversion and curve arithmetic
over affine coordinates.

We saved one Fq-reduction in Fq2 -inversion, and 36
Fq-reductions in Fq12 -inversion.

The line function in the Miller loop evaluates to a sparse Fq12

element containing only three of the six basis elements over Fq2 .
Thus, when multiplying the line function output with fi ,Q(P), the
sparseness property is utilized to avoid full Fq12 arithmetic.

This requires 13 fewer additions over Fq2 compared to the one
used in [1].

[1] Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys, Julio López: Faster Explicit Formulas for
Computing Pairings over Ordinary Curves. EUROCRYPT 2011: 48-68.

11/22



Mapping from the Twisted Curve to the Original Curve

BN curves admit a sextic twist.

Previously, the M-type sextic twist has been ignored for pairing
computations, most likely due to the inefficient untwisting map.

In a D-type twist, the pairing is computed on points on the
original curve E . The untwisting map is almost free.

In an M-type twist, we compute the pairing on points on the
twisted curve E ′. The inverse map is almost free.

We demonstrate that by computing the pairing on the twisted
curve, we can bypass the inefficient untwisting.

This allows the pairing to be computed optimally regardless of
the type of twist involved.

Our work indicates that D-type and M-type twists achieve
equivalent performance for point/line evaluation computation.

12/22



Final Exponentiation (1)

Final Exponentiation is the computation of f
qk−1

n .

First q12−1
n is factored into q6−1, q2 +1, and q4−q2+1

n .

q6−1 requires conjugation and inversion, q2 +1 requires
q2-power Frobenius and a multiplication (simple part).
q4−q2+1

n is performed in the cyclotomic subgroup (hard part).

We then perform the following exponentiations as

f 7→ f x 7→ f 2x 7→ f 4x 7→ f 6x 7→ f 6x2 7→ f 12x2 7→ f 12x3

Which requires 3 exponentiations by x , 3 squarings and 1
multiplication in Fq12 .

13/22



Final Exponentiation (2)

We then compute the terms

a = f 12x3
f 6x2

f 6x

b = a(f 2x)−1

which require 3 multiplications. f 2x is in the cyclotomic subgroup, so
the inversion required for computing b is just a conjugation.

The final pairing value is obtained as

af 6x2
fbpap

2
(bf −1)p

3

which costs 6 multiplications and 6 Frobenius operations.

In total, this method requires 3 exponentiations by x , 3
squarings, 10 multiplications, and 3 Frobenius operations.

Note that [1] requires 3 additional multiplications and an
additional squaring, which is slower.

[1] Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys, Julio López: Faster Explicit Formulas for
Computing Pairings over Ordinary Curves. EUROCRYPT 2011: 48-68.

14/22



Curve Arithmetic

We optimize the number of addition operations required for
point doubling, addition, and line function computation in affine
and homogeneous projective coordinates.

Coordinates Cost of PA Cost of PD

Affine ĩ+3m̃+2s̃+8ã+2m ĩ+3m̃+1s̃+7ã+2m

Projective
Jacobian 6m̃+4s̃+13ã+4m 10m̃+3s̃+6ã+4m

Homogeneous 2m̃+7s̃+22ã+4m 11m̃+2s̃+8ã+4m

For PD, homogeneous coordinates are faster.

For PA, Jacobian coordinates are slightly faster (not sufficient).

With cheap inversion, affine coordinates will be faster.

Also leads to a faster dense-sparse multiplication algorithm.

15/22



Operation Counts

Cost of the computation of O-Ate pairings using various
coordinates

Curve Operation Cost

Proj. ML 1841m̃u +457s̃u +1371r̃ +9516ã+284m+3a

BN-254 Affine ML 70ĩ+1658m̃u +134s̃u +942r̃ +8292ã+540m+132a

FE 386m̃u +1164s̃u +943r̃ +4ĩ+7989ã+30m+15a

Proj. ML 3151m̃u +793s̃u +2345r̃ +18595ã+472m+117a

BN-446 Affine ML 118ĩ+2872m̃u +230s̃u +1610r̃ +15612ã+920m+230a

FE 386m̃u +2034s̃u +1519r̃ +4ĩ+13374ã+30m+345a

Proj. ML 4548m̃u +1140s̃u +3557r̃ +27198ã+676m+166a

BN-638 Affine ML 169ĩ+4143m̃u +330s̃u +2324r̃ +22574ã+1340m+333a

FE 436m̃u +2880s̃u +2143r̃ +4ĩ+18528ã+30m+489a

16/22



ARM Platforms

A Marvell Kirkwood 6281 ARMv5 CPU processor (Feroceon
88FR131) @ 1.2 GHz.

An iPad 2 (Apple A5) using an ARMv7 Cortex-A9 MPCore
processor @ 1.0 GHz.

A Samsung Galaxy Nexus TI OMAP 4460 ARM Cortex-A9 @
1.2 GHz.

17/22



Implementations

The proposed method for O-Ate pairing is implemented for
different security levels.

Platform-independent C code (BN-254, BN-446, and BN-638. )

runs unmodified on all the mentioned ARM platforms

Hand-optimized Assembly (BN-254)

Loop unrolling (to avoid conditional branches and reorder the
instructions)
Instruction re-ordering (to minimize the number of pipeline stalls)
Register allocation (to eliminate the need to access memory)
Multiple stores (to minimize the memory access instructions)

18/22



Implementation Results

Feroceon at 1.2 GHz [This work] Galaxy (ARM v7) Cortex-A9 at 1.2 GHz [This work]

Field Operation Timing [µs] Operation Timing [µs]

Size ML FE O-A(a) O-A(p) ML FE O-A(a) O-A(p)

254 (asm) 9,722 6,176 16,076 15,898 6,147 3,758 10,573 9,905

254 (C) 11,877 7,550 19,427 19,509 6,859 4,382 11,839 11,241

446 (C) 42,857 23,137 65,994 65,958 25,792 13,752 39,886 39,544

638 (C) 98,044 51,351 149,395 153,713 65,698 33,658 99,356 99,466

iPad 2 1.0 GHz [This work] Tegra 2 (ARM v7) Cortex-A9 at 1.0 GHz [2]

Field Operation Timing [µs] Operation Timing [µs]

Size ML FE O-A(a) O-A(p) ML FE O-A(a) O-A(p)

254 (C) 8,338 5,483 14,604 13,821 26,320 24,690 51,010 55,190

446 (C) 32,087 17,180 49,365 49,267 97,530 86,750 184,280 195,560

638 (C) 79,056 40,572 119,628 123,410 236,480 413,370 649,850 768,060

[2] Tolga Acar, Kristin Lauter, Michael Naehrig, and Daniel Shumow, “Affine Pairings on ARM”, Pairing-Based Cryptography –
Pairing 2012, Lecture Notes in Computer Science, Springer-Verlag (2012), to appear.

19/22



Comparison

I/M ratio is lower in larger base fields on all platforms.

In [1], affine coordinates is always faster than projective.

It is true when I/M ratio is < 9.
Faster results for projective coordinates for BN-254 and BN-446.

In [1], TFE goes up at the higher security levels.

TML > TFE in all platforms for all security levels.

Curve
I/M Ratio

Feroceon iPad2 Galaxy Nexus Tegra 2 [2]

BN-254 10.0 10.5 11.3 10.6

BN-446 9.1 9.3 9.8 8.9

BN-638 7.7 7.8 7.9 6.8

[2] Tolga Acar, Kristin Lauter, Michael Naehrig, and Daniel Shumow, “Affine Pairings on ARM”, Pairing-Based Cryptography –
Pairing 2012, Lecture Notes in Computer Science, Springer-Verlag (2012), to appear.

20/22



Conclusions

Efficiently implemented the O-Ate pairing on BN curves for
different security levels.

Extended the concept of lazy reduction to inversion in extension
fields and optimized the sparse multiplication algorithm in the
degree 12 extension.

Efficiently performed final exponentiation and reduced its
computation time.

Homogeneous projective coordinates are unambiguously faster
than affine coordinates for O-Ate pairings at the 128-bit security
level when higher levels of optimization are used.

Our timing results are over three times faster than the previous
fastest results.

21/22



Thank You!

22/22


	Introduction
	Optimal Ate Pairing
	Representation of Extension Fields
	Curve Arithmetic
	Operation Counts 
	Implementations
	Conclusions

