
Side-Channel Attacks on Quantum-Resistant
Supersingular Isogeny Diffie-Hellman

Presenter: Reza Azarderakhsh

CEECS Department and I-Sense, Florida Atlantic University
razarderakhsh@fau.edu

Paper by: Brian Koziel (Texas Instruments) [corresponding author,
kozielbrian@gmail.com], Reza Azarderakhsh (Florida Atlantic University), and David Jao

(University of Waterloo)

SAC 2017
Ottawa, Ontario, Canada



Outline

1 Introduction

2 SIDH Protocol

3 Refined Power Analysis on SIDH

4 Partial-Zero Attack on Three-point Ladder

5 Zero-Point Attack on Three-Point Ladder

6 RPA on Isogeny Computation

7 Takeaways

SAC 2017 Ottawa, Ontario, Canada
2 / 35



Introduction

Supersingular isogeny Diffie-Hellman (SIDH) as a strong
quantum-resistant cryptographic primitive for NIST’s PQC
standardization

Originally presented by Jao and De Feo at PQCrypto 2011
Provides small keys, forward secrecy and a Diffie-Hellman key
exchange
Based on difficulty of computing supersingular isogenies between
two curves

This work proposes three different side-channel attacks on SIDH
that target the representation of zero in an implementation
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Contributions

We investigate zero-value attacks in the application of the
supersingular isogeny Diffie-Hellman
We propose three novel zero-value attacks:

Two zero-value attacks on the three-point Montgomery ladder
commonly used in SIDH implementations
A zero-value attack on the large-degree isogeny computation
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Isogeny-Based Cryptography

Proposed by David Jao and Luca De Feo in 20111

An isogeny is defined as a non-constant rational map
φ : E1→ E2 such that the null point is preserved
Isogeny-based cryptography centers on the difficulty to compute
isogenies between elliptic curves

Supersingular elliptic curves feature a non-commutative
endomorphism ring for which there is no known classical or
quantum subexponential solution

Supersingular isogeny problem→ For the supersingular case, it
is simple to compute the isogeny φ : E → E ′ to find E ′ with φ

and E , but it is extremely difficult to find φ with just E and E ′.

Large-degree isogenies can be efficiently computed by iteratively
performing base degree isogenies with Vélu’s formulas2

[1] Jao, D., De Feo, L.: Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies. PQCrypto
2011: 19-34. (2011).
[2] Vélu, J.: Isogénies Entre Courbes Elliptiques. Comptes Rendus de l’Académie des Sciences Paris Séries A-B 273,
A238-A241 (1971).
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SIDH Overview

Public Parameters:
Smooth Isogeny Prime - p = `

eA
A `

eB
B f ±1, where `A and `B are

small primes, eA and eB are positive integers, and f is a small
cofactor to make the number prime
Starting Supersingular Elliptic Curve, E0/Fp2

Torsion bases {PA,QA} and {PB ,QB} over E0[`
eA
A ] and E0[`

eB
B ],

respectively
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SIDH Overview

Each round is broken into computing a double point
multiplication, R =mP+nQ , where m and n are secret scalars,
and using R as a secret kernel for an isogeny, φ : E → E/〈R〉.

φA : E → E/〈mAPA+nAQA〉= EA for Alice and
φB : E → E/〈mBPB +nBQB〉= EB for Bob

After the first round, Alice sends {EA,φA(PB),φA(QB)} and
Bob sends {EB ,φB(PA),φB(QA)}
After the second round, Alice and Bob have isomorphic curves,
so the j-invariant can be used as a shared secret key.

φ ′A : EB → EB/〈mAφB(PA)+nAφB(QA)〉= EAB for Alice and
φ ′B : EA→ EA/〈mBφA(PB)+nBφA(QB)〉= EBA for Bob
j(EAB) = j(EBA)
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SIDH Protocol
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Side-Channel Analysis

Real-world implementations of cryptosystems must consider the
impact of side-channels
Side-Channel Analysis→Analyze emissions from an
implementation of a cryptosystem

Power, Time, Heat
Faults, Error Messages

Implementation-specific
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SIDH Cryptosystem with Side-Channels
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Side-Channel Analysis Approaches to SIDH

SIDH can be broken down into kernel point generation and
large-degree isogeny computation
Kernel point generation

In SIDH, consists of a double-point multiplication that involves
the secret key as a scalar
Side-channel analysis can reveal bits of the key or expose the
secret kernel

Large-degree isogeny
In SIDH, consists of iteratively computing isogenies of a base
degree to perform a isogeny graph walk based on the secret kernel
Side-channel analysis can reveal each isogeny path decision
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Refined Power Analysis

Refined Power Analysis (RPA)→Analyzing power emissions
with an emphasis on computations involving zero

Multiplier and adder circuits involve many digital gates
RPA targets unique power signatures produced from a zero
operand

Zero-point attack bypasses several ECC differential power
analysis attacks to reveal secret keyst1

The representation of zero remains constant, even after simple
ECC transformations

Zero-value attack forces zero conditions in ECC computations to
reveal secret keys2

[1] Goubin, L.: A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems. PKC 2003. 199-211 (2002)
[2] Akishita, T., Takagi, T.: Zero-Value Point Attacks on Elliptic Curve Cryptosystem. ISC 2003. 218-233 (2003)
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RPA on Quadratic Fields

Since supersingular elliptic curves can be defined over Fq = Fp

or Fq = Fp2 , we primarily use arithmetic over Fp2

Let A,B ∈ Fp2 such that A= a1x+a0,B = b1x+b0 and
a1,a0,b1,b0 ∈ Fp . We define an irreducible polynomial over this
finite field of the form x2+αx+β .

Addition→ A+B = (a1+b1)x+(a0+a1)

Multiplication
→ A×B = (a0b1+a1b0−αa1b1)x+(a0b0−βa1b1)

For RPA, we define A to be
Full-zero if a0 = 0, a1 = 0

Partial-zero if a0 6= 0, a1 = 0 or a0 = 0, a1 6= 0

Non-zero if a0 6= 0, a1 6= 0
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Double-Point Multiplication Optimizations

Problem: How to efficiently perform the double-point
multiplication?

Solution: Any secret kernel generator will do, so compute
R = P+mQ1

Problem: Efficient Montgomery coordinate differential
arithmetic cannot immediately be used with the above.
Solution: Utilize three-point differential ladder1

Each step produces [t]Q, [t+1]Q, P+[t]Q

[1] De Feo, L., Jao, D., Plût, J.: Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies.
Journal of Mathematical Cryptology 8(3), 209-247 (Sep. 2014)
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Three-Point Differential Ladder for Montgomery
Coordinates

Three-point differential ladder to compute P+[t]Q .
“dadd(P,Q,(P−Q).x)” represents a differential point addition
of P and Q , where the x-coordinate of P−Q is known.1

Input: Points P and Q on an elliptic curve E , scalar d which is k bits
1: Set A= 0,B = Q,C = P
2: Compute Q−P
3: for i decreasing from |d | downto 1 do
4: Let di be the i-th bit of d
5: if di = 0 then
6: B =dadd(A,B,Q), C =dadd(A,C ,P), A= 2A
7: else
8: A=dadd(A,B,Q), C =dadd(B,C ,Q−P), B = 2B
9: end if
10: end for
Ensure: C = P+[t]Q

[1] Jao, D., De Feo, L., Plût: Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies. Journal
of Mathematical Cryptology 8(3), 209-247 (Sep. 2014).
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Three-point differential ladder to compute P+[t]Q .
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Partial-Zero Attack on Three-Point Ladder

For each step of the ladder,
if di = 0

C = dadd(A,C ,P)

if di = 1

C = dadd(B,C ,Q−P)
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Partial-Zero Attack on Three-Point Ladder

For each step of the ladder,
if di = 0

C = dadd(A,C ,P)

else if di = 1

C = dadd(B,C ,Q−P)

Proposal: Target point differentials P and Q−P

Choose E ,P , Q−P such that Q−P is partial-zero and P is
non-zero
Results in a power difference for di = 0 and di = 1

Used as an oracle for each bit of the private key
Could be mounted against a dynamic key user if there is enough
power contrast
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Partial-Zero Attack Countermeasures

Reject a partial-zero P or a partial-zero Q−P

Randomize representation of P and Q−P to non-zero elements
Random projectivization of differential points

Reduces efficiency of Montgomery ladder by 2 multiplications per
step

Random isomorphism of curve and points
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Zero-Point Attack on Three-Point Ladder

Each step of the three-point ladder produces
[t]Q, [t+1]Q, P+[t]Q

Goal of zero-point attack is to predict each bit of the key as a ’0’
or ’1’ and then validate that assumption with a forced zero point.

A full-zero point will be used in future computations and
identified

Valid attack on a static key SIDH user
Iteratively reveals the bits of the secret key

Especially dangerous in the context of SIDH, as a malicious
party can choose any supersingular elliptic curve and points to
send as a public key
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Zero-Point Attack on Three-Point Ladder

At the end if the i th step of the three-point ladder, the following
points are computed for a secret key d

[x ]Q = (∑n−1
j=i+1

dj2
j−i +di ).Q

[x+1]Q = (∑n−1
j=i+1

dj2
j−i +di +1).Q

P+[x ]Q = P+(∑n−1
j=i+1

dj2
j−i +di ).Q

Based on our guess di , we target a point that will be produced in
the (i +1) step

if di = 0, then we will always produce (∑n−1
j=i+1

dj2
j−i +1).Q

if di = 1, then we will always produce (∑n−1
j=i+1

dj2
j−i +3).Q
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Zero-Point Attack on Three-Point Ladder

This attack abuses a point P0 that has either the x or
y -coordinate of 0

For Montgomery curves, only point P0 = (0,0)

An attacker can force the zero-point condition by solving
P0 = (∑n−1

j=i+1
dj2

j−i +1).P1 for di = 0 or
P0 = (∑n−1

j=i+1
dj2

j−i +3).P1 for di = 1

Countermeasures are similar to zero-point countermeasures for
ECC1:

Dynamic keys
Initial random isogeny (degree that is not `A or `B )
Private key representation randomization
Point blinding

[1] Smart, N.P.: An Analysis of Goubin’s Refinned Power Analysis Attack. CHES 2003. 281-290 (2003)
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Isogeny Computation

Consider the iterative isogenies that are performed based on the
secret kernel

φ0→ φ1→ φ2→ ·· · → φe−1

If these isogeny decisions are continuously discovered, then the
supersingular isogeny problem becomes easier

Under a specified finite field Fq = Fp2 , there are approximately
p/12 supersingular curves up to isomorphism
We can visualize a graph of all isomorphism classes of a
specified degree, `, as a complete graph where each node
represents a unique isomorphism class and the edges represent
an `-isogeny

Each node is connected with `+1 neighbors
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Supersingular Isogeny Graph
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Attacking Isogeny Computation with RPA

Attack targets a static SIDH user
Similar to the zero-point attack, we can guess which node will be
traversed and verify with a forced zero value

Vélu’s formulas are deterministic, so an attacker will know which
curve will be obtained with each isogeny computation

We target isogeny decision i and the calculation of the (i +1)
isogeny will confirm or deny.

Start out at isogeny decision 0 and iteratively build the path up to
isogeny decision e−2, for a large-degree isogeny of degree `e

Isogeny decision e−1 will not be used, but can easily be
brute-forced (` possibilities)
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Attacking Iterative Isogeny Walks
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Attacking Iterative Isogeny Walks
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Using RPA on Isogeny Walks

Two types of RPA attacks on isogeny computations: zero-value
coefficient or point attacks
Zero-value isogeny coefficient attack

Force an isogeny to compute a curve with a full-zero coefficient
(A= 0 or B = 0 for an elliptic curve)
Can be mounted against the second round of static-key SIDH

Zero-value isogeny point attack
Force an isogeny to compute on a point with a zero-value (x = 0

or y = 0)
Can target torsion basis points in first round of SIDH or
intermediate kernel point in either round
For SIDH, it is unlikely that a static-key user will accept any
public parameters, but this may be possible for other
isogeny-based cryptography schemes
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RPA on SIDH Countermeasures

Zero-value attack on large-degree isogeny requires knowledge of
the nearby isogenous curves
Countermeasure→ Randomize the resulting isogenous curve

Dynamic keys
Random curve isomorphism
Initial isogeny of degree `r 6= `A, `B
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Conclusions

Illustrated approaches to using zero-values on SIDH
Proposed three RPA attacks on SIDH

Partial-zero attack on three-point differential ladder
Zero point attack on three-point differential ladder
Zero-value isogeny coefficient/point attack on large-degree
isogeny computation

These illustrate additional concerns for SIDH implementations,
particularly ones using static keys

Further analysis and demonstrations of such attacks are
underway
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Thank You!
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