## Side-Channel Attacks on Quantum-Resistant Supersingular Isogeny Diffie-Hellman

#### Presenter: Reza Azarderakhsh

CEECS Department and I-Sense, Florida Atlantic University razarderakhsh@fau.edu

Paper by: Brian Koziel (Texas Instruments) [corresponding author, kozielbrian@gmail.com], Reza Azarderakhsh (Florida Atlantic University), and David Jao (University of Waterloo)

> SAC 2017 Ottawa, Ontario, Canada

#### 1 Introduction

#### 2 SIDH Protocol

- **3** Refined Power Analysis on SIDH
- Partial-Zero Attack on Three-point Ladder
- **5** Zero-Point Attack on Three-Point Ladder
- **6** RPA on Isogeny Computation

#### 7 Takeaways

- Supersingular isogeny Diffie-Hellman (SIDH) as a strong quantum-resistant cryptographic primitive for NIST's PQC standardization
  - Originally presented by Jao and De Feo at PQCrypto 2011
  - Provides small keys, forward secrecy and a Diffie-Hellman key exchange
  - Based on difficulty of computing supersingular isogenies between two curves
- This work proposes three different side-channel attacks on SIDH that target the representation of zero in an implementation

- We investigate zero-value attacks in the application of the supersingular isogeny Diffie-Hellman
- We propose three novel zero-value attacks:
  - Two zero-value attacks on the three-point Montgomery ladder commonly used in SIDH implementations
  - A zero-value attack on the large-degree isogeny computation

#### **Isogeny-Based** Cryptography

- Proposed by David Jao and Luca De Feo in 2011<sup>1</sup>
- An isogeny is defined as a non-constant rational map  $\phi: E_1 \rightarrow E_2$  such that the null point is preserved
- Isogeny-based cryptography centers on the difficulty to compute isogenies between elliptic curves
  - Supersingular elliptic curves feature a non-commutative endomorphism ring for which there is no known classical or quantum subexponential solution
- Supersingular isogeny problem → For the supersingular case, it is simple to compute the isogeny \$\phi\$ : \$E\$ → \$E'\$ to find \$E'\$ with \$\phi\$ and \$E\$, but it is extremely difficult to find \$\phi\$ with just \$E\$ and \$E'\$.
- Large-degree isogenies can be efficiently computed by iteratively performing base degree isogenies with Vélu's formulas<sup>2</sup>

[1] Jao, D., De Feo, L.: Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies. PQCrypto 2011: 19-34. (2011).

[2] Vélu, J.: *Isogénies Entre Courbes Elliptiques*. Comptes Rendus de l'Académie des Sciences Paris Séries A-B 273, A238-A241 (1971).

#### • Public Parameters:

- Smooth Isogeny Prime  $p = \ell_A^{e_A} \ell_B^{e_B} f \pm 1$ , where  $\ell_A$  and  $\ell_B$  are small primes,  $e_A$  and  $e_B$  are positive integers, and f is a small cofactor to make the number prime
- Starting Supersingular Elliptic Curve,  $E_0/\mathbb{F}_{p^2}$
- Torsion bases  $\{P_A, Q_A\}$  and  $\{P_B, Q_B\}$  over  $E_0[\ell_A^{e_A}]$  and  $E_0[\ell_B^{e_B}]$ , respectively

- Each round is broken into computing a double point multiplication, R = mP + nQ, where *m* and *n* are secret scalars, and using *R* as a secret kernel for an isogeny,  $\phi : E \to E/\langle R \rangle$ .
  - $\phi_A : E \to E/\langle m_A P_A + n_A Q_A \rangle = E_A$  for Alice and  $\phi_B : E \to E/\langle m_B P_B + n_B Q_B \rangle = E_B$  for Bob
- After the first round, Alice sends  $\{E_A, \phi_A(P_B), \phi_A(Q_B)\}$  and Bob sends  $\{E_B, \phi_B(P_A), \phi_B(Q_A)\}$
- After the second round, Alice and Bob have isomorphic curves, so the *j*-invariant can be used as a shared secret key.
  - φ'<sub>A</sub>: E<sub>B</sub> → E<sub>B</sub>/⟨m<sub>A</sub>φ<sub>B</sub>(P<sub>A</sub>) + n<sub>A</sub>φ<sub>B</sub>(Q<sub>A</sub>)⟩ = E<sub>AB</sub> for Alice and φ'<sub>B</sub>: E<sub>A</sub> → E<sub>A</sub>/⟨m<sub>B</sub>φ<sub>A</sub>(P<sub>B</sub>) + n<sub>B</sub>φ<sub>A</sub>(Q<sub>B</sub>)⟩ = E<sub>BA</sub> for Bob
    j(E<sub>AB</sub>) = j(E<sub>BA</sub>)

#### **SIDH** Protocol



- Real-world implementations of cryptosystems must consider the impact of side-channels
- Side-Channel Analysis → Analyze emissions from an implementation of a cryptosystem
  - Power, Time, Heat
  - Faults, Error Messages
- Implementation-specific

### SIDH Cryptosystem with Side-Channels



## Side-Channel Analysis Approaches to SIDH

- SIDH can be broken down into kernel point generation and large-degree isogeny computation
- Kernel point generation
  - In SIDH, consists of a double-point multiplication that involves the secret key as a scalar
  - Side-channel analysis can reveal bits of the key or expose the secret kernel
- Large-degree isogeny
  - In SIDH, consists of iteratively computing isogenies of a base degree to perform a isogeny graph walk based on the secret kernel
  - Side-channel analysis can reveal each isogeny path decision

#### **Refined Power Analysis**

- Refined Power Analysis (RPA) → Analyzing power emissions with an emphasis on computations involving zero
  - Multiplier and adder circuits involve many digital gates
  - RPA targets unique power signatures produced from a zero operand
- Zero-point attack bypasses several ECC differential power analysis attacks to reveal secret keyst<sup>1</sup>
  - The representation of zero remains constant, even after simple ECC transformations
- Zero-value attack forces zero conditions in ECC computations to reveal secret keys<sup>2</sup>

Goubin, L.: A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems. PKC 2003. 199-211 (2002)
 Akishita, T., Takagi, T.: Zero-Value Point Attacks on Elliptic Curve Cryptosystem. ISC 2003. 218-233 (2003)

#### **RPA on Quadratic Fields**

- Since supersingular elliptic curves can be defined over F<sub>q</sub> = F<sub>p</sub> or F<sub>q</sub> = F<sub>p<sup>2</sup></sub>, we primarily use arithmetic over F<sub>p<sup>2</sup></sub>
- Let  $A, B \in \mathbb{F}_{p^2}$  such that  $A = a_1 x + a_0, B = b_1 x + b_0$  and  $a_1, a_0, b_1, b_0 \in \mathbb{F}_p$ . We define an irreducible polynomial over this finite field of the form  $x^2 + \alpha x + \beta$ .
- Addition  $\to A + B = (a_1 + b_1)x + (a_0 + a_1)$
- Multiplication

$$ightarrow A imes B = (a_0 b_1 + a_1 b_0 - lpha a_1 b_1) x + (a_0 b_0 - eta a_1 b_1)$$

- For RPA, we define *A* to be
  - Full-zero if  $a_0 = 0$ ,  $a_1 = 0$
  - Partial-zero if  $a_0 \neq 0$ ,  $a_1 = 0$  or  $a_0 = 0$ ,  $a_1 \neq 0$
  - Non-zero if  $a_0 \neq 0$ ,  $a_1 \neq 0$

## **Double-Point Multiplication Optimizations**

- Problem: How to efficiently perform the double-point multiplication?
- Solution: Any secret kernel generator will do, so compute  $R = P + mQ^1$
- Problem: Efficient Montgomery coordinate differential arithmetic cannot immediately be used with the above.
- Solution: Utilize three-point differential ladder<sup>1</sup>

• Each step produces [t]Q, [t+1]Q, P+[t]Q

[1] De Feo, L., Jao, D., Plût, J.: *Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies*. Journal of Mathematical Cryptology 8(3), 209-247 (Sep. 2014)

## Three-Point Differential Ladder for Montgomery Coordinates

Three-point differential ladder to compute P + [t]Q.
"dadd(P,Q,(P-Q).x)" represents a differential point addition of P and Q, where the x-coordinate of P - Q is known.<sup>1</sup>

**Input:** Points *P* and *Q* on an elliptic curve *E*, scalar *d* which is *k* bits 1: Set A = 0, B = Q, C = P

- 2: Compute Q P
- 3: for *i* decreasing from |d| downto 1 do
- 4: Let  $d_i$  be the *i*-th bit of d
- 5: **if**  $d_i = 0$  **then**
- 6: B = dadd(A, B, Q), C = dadd(A, C, P), A = 2A
- 7: **else**
- 8: A = dadd(A, B, Q), C = dadd(B, C, Q P), B = 2B
- 9: **end if**
- 10: **end for**

**Ensure:** C = P + [t]Q

#### SAC 2017 Ottawa, Ontario, Canada

[1] Jao, D., De Feo, L., Plût: *Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies*. Journal 15/35 of Mathematical Cryptology 8(3), 209-247 (Sep. 2014).

## Three-Point Differential Ladder for Montgomery Coordinates

Three-point differential ladder to compute P + [t]Q.
"dadd(P,Q,(P-Q).x)" represents a differential point addition of P and Q, where the x-coordinate of P - Q is known.<sup>1</sup>

**Input:** Points *P* and *Q* on an elliptic curve *E*, scalar *d* which is *k* bits 1: Set A = 0, B = Q, C = P

- 2: Compute Q P
- 3: for *i* decreasing from |d| downto 1 do
- 4: Let  $d_i$  be the *i*-th bit of d
- 5: **if**  $d_i = 0$  **then**
- 6: B = dadd(A, B, Q), C = dadd(A, C, P), A = 2A
- 7: **else**
- 8: A = dadd(A, B, Q), C = dadd(B, C, Q P), B = 2B
- 9: **end if**
- 10: **end for**

**Ensure:** C = P + [t]Q

#### SAC 2017 Ottawa, Ontario, Canada

[1] Jao, D., De Féo, L., Plût: *Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies*. Journal 16/35 of Mathematical Cryptology 8(3), 209-247 (Sep. 2014).

#### Partial-Zero Attack on Three-Point Ladder

- For each step of the ladder,
- if  $d_i = 0$ 
  - C = dadd(A, C, P)
- if  $d_i = 1$

• 
$$C = dadd(B, C, Q - P)$$

#### Partial-Zero Attack on Three-Point Ladder

- For each step of the ladder,
- if  $d_i = 0$ 
  - C = dadd(A, C, P)
- else if  $d_i = 1$ 
  - C = dadd(B, C, Q P)
- Proposal: Target point differentials P and Q P
  - Choose E, P, Q P such that Q P is partial-zero and P is non-zero
  - Results in a power difference for  $d_i = 0$  and  $d_i = 1$
  - Used as an oracle for each bit of the private key
  - Could be mounted against a dynamic key user if there is enough power contrast

#### Partial-Zero Attack Countermeasures

- Reject a partial-zero P or a partial-zero Q P
- Randomize representation of P and Q P to non-zero elements
  - Random projectivization of differential points
    - Reduces efficiency of Montgomery ladder by 2 multiplications per step
  - Random isomorphism of curve and points

#### Zero-Point Attack on Three-Point Ladder

- Each step of the three-point ladder produces
   [t]Q, [t+1]Q, P+[t]Q
- Goal of zero-point attack is to predict each bit of the key as a '0' or '1' and then validate that assumption with a forced zero point.
  - A full-zero point will be used in future computations and identified
- Valid attack on a static key SIDH user
  - Iteratively reveals the bits of the secret key
- Especially dangerous in the context of SIDH, as a malicious party can choose *any* supersingular elliptic curve and points to send as a public key

#### Zero-Point Attack on Three-Point Ladder

- At the end if the *i*th step of the three-point ladder, the following points are computed for a secret key *d* 
  - $[x]Q = (\sum_{j=i+1}^{n-1} d_j 2^{j-i} + d_i).Q$
  - $[x+1]Q = (\sum_{j=i+1}^{n-1} d_j 2^{j-i} + d_i + 1).Q$

• 
$$P + [x]Q = P + (\sum_{j=i+1}^{n-1} d_j 2^{j-i} + d_i).Q$$

- Based on our guess d<sub>i</sub>, we target a point that will be produced in the (i+1) step
  - if  $d_i = 0$ , then we will always produce  $(\sum_{j=i+1}^{n-1} d_j 2^{j-i} + 1) Q$
  - if  $d_i = 1$ , then we will always produce  $(\sum_{j=i+1}^{n-1} d_j 2^{j-i} + 3) Q$

#### Zero-Point Attack on Three-Point Ladder

- This attack abuses a point *P*<sub>0</sub> that has either the *x* or *y*-coordinate of 0
  - For Montgomery curves, only point  $P_0 = (0,0)$
- An attacker can force the zero-point condition by solving  $P_0 = (\sum_{j=i+1}^{n-1} d_j 2^{j-i} + 1) \cdot P_1$  for  $d_i = 0$  or  $P_0 = (\sum_{j=i+1}^{n-1} d_j 2^{j-i} + 3) \cdot P_1$  for  $d_i = 1$
- Countermeasures are similar to zero-point countermeasures for ECC<sup>1</sup>:
  - Dynamic keys
  - Initial random isogeny (degree that is not  $\ell_A$  or  $\ell_B$ )
  - Private key representation randomization
  - Point blinding

[1] Smart, N.P.: An Analysis of Goubin's Refinned Power Analysis Attack. CHES 2003. 281-290 (2003)

• Consider the iterative isogenies that are performed based on the secret kernel

•  $\phi_0 
ightarrow \phi_1 
ightarrow \phi_2 
ightarrow \cdots 
ightarrow \phi_{e-1}$ 

- If these isogeny decisions are continuously discovered, then the supersingular isogeny problem becomes *easier*
- Under a specified finite field  $\mathbb{F}_q = \mathbb{F}_{p^2}$ , there are approximately p/12 supersingular curves up to isomorphism
- We can visualize a graph of all isomorphism classes of a specified degree, l, as a complete graph where each node represents a unique isomorphism class and the edges represent an l-isogeny
  - Each node is connected with  $\ell + 1$  neighbors

# Supersingular Isogeny Graph



## Attacking Isogeny Computation with RPA

- Attack targets a static SIDH user
- Similar to the zero-point attack, we can guess which node will be traversed and verify with a forced zero value
  - Vélu's formulas are deterministic, so an attacker will know which curve will be obtained with each isogeny computation
- We target isogeny decision i and the calculation of the (i+1) isogeny will confirm or deny.
  - Start out at isogeny decision 0 and iteratively build the path up to isogeny decision e 2, for a large-degree isogeny of degree  $\ell^e$
  - Isogeny decision e 1 will not be used, but can easily be brute-forced ( $\ell$  possibilities)











![](_page_30_Figure_1.jpeg)

## Using RPA on Isogeny Walks

- Two types of RPA attacks on isogeny computations: zero-value coefficient or point attacks
- Zero-value isogeny coefficient attack
  - Force an isogeny to compute a curve with a full-zero coefficient (A = 0 or B = 0 for an elliptic curve)
  - Can be mounted against the second round of static-key SIDH
- Zero-value isogeny point attack
  - Force an isogeny to compute on a point with a zero-value (x = 0 or y = 0)
  - Can target torsion basis points in first round of SIDH or intermediate kernel point in either round
  - For SIDH, it is unlikely that a static-key user will accept any public parameters, but this may be possible for other isogeny-based cryptography schemes

- Zero-value attack on large-degree isogeny requires knowledge of the nearby isogenous curves
- Countermeasure  $\rightarrow$  Randomize the resulting isogenous curve
  - Dynamic keys
  - Random curve isomorphism
  - Initial isogeny of degree  $\ell_r \neq \ell_A, \ell_B$

- Illustrated approaches to using zero-values on SIDH
- Proposed three RPA attacks on SIDH
  - Partial-zero attack on three-point differential ladder
  - Zero point attack on three-point differential ladder
  - Zero-value isogeny coefficient/point attack on large-degree isogeny computation
- These illustrate additional concerns for SIDH implementations, particularly ones using static keys
- Further analysis and demonstrations of such attacks are underway

# **Thank You!**