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Optimized Implementation of SIKE Round 2
on 64-bit ARM Cortex-A Processors

Hwajeong Seo, Pakize Sanal, Amir Jalali, and Reza Azarderakhsh

Abstract— In this work, we present the first highly-
optimized implementation of Supersingular Isogeny
Key Encapsulation (SIKE) submitted to NIST’s second
round of post quantum standardization process, on 64-
bit ARMv8 processors. To the best of our knowledge,
this work is the first optimized implementation of SIKE
round 2 on 64-bit ARM over SIKEp434 and SIKEp610.
The proposed library is explicitly optimized for these
two security levels and provides constant-time imple-
mentation of the SIKE mechanism on ARMv8-powered
embedded devices. We adapt different optimization
techniques to reduce the total number of underlying
arithmetic operations on the field level. In particular,
benchmark results on embedded processors equipped
with ARM Cortex-A55@1.766GHz and ARM Cortex-
A75@2.803GHz show that the entire SIKE round 2 Key
Encapsulation Mechanism (KEM) takes only 98.6 ms
and 85.3ms at NIST’s security level 1, respectively. We
also evaluated the compressed version of NIST’s secu-
rity level 1, which requires 134.7 ms and 113.7 ms for
Cortex-A55 and Cortex-A75, respectively. Considering
SIKE’s extremely small key size in comparison to other
post-quantum cryptography candidates, our result im-
plies that SIKE is one of the promising candidates for
key encapsulation mechanism on embedded devices in
the quantum era.

Index Terms—Post-quantum cryptography, isogeny-
based cryptography, ARM processors, assembly, key
encapsulation mechanism

I. Introduction

I nitiated by the National Institute of Standards and
Technology (NIST), Post-Quantum Cryptography

(PQC) has been elevated to a standardization process to
solicit, evaluate, and standardize one or more quantum-
resistant public-key cryptographic algorithms [25]. To pre-
pare for security concerns caused by quantum computers,
in 2016, NIST called for the cryptographic algorithms
which were assumed to be resistance against high-scale
quantum computers. These proposals provided Key En-
capsulation Mechanism (KEM) or digital signature algo-
rithms from different arithmetic structures, resulting in
different characteristics and parameters. Recently, NIST
announced approved candidates for round 2 which are
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the most promising candidates in terms of security, per-
formance, and compatibility with current cryptography
technology. For the key encapsulation mechanism, only 17
candidates made it through to the second round for being
evaluated and analyzed from different perspectives.
Different PQC candidates are constructed on hard

mathematical problems which are assumed to be impos-
sible to solve even for large-scale quantum computers.
These problems can be categorized into five main cate-
gories: code-based cryptography, lattice-based cryptogra-
phy, hash-based cryptography, multivariate cryptography,
and supersingular isogeny-based cryptography, see, for
instance [9].
Supersingular Isogeny Key Encapsulation (SIKE) mech-

anism is one of the PQC candidates which is constructed
on the hardness of solving isogeny maps between super-
singular elliptic curves. In fact, SIKE is the only can-
didate that offers the quantum-resistance cryptographic
construction over elliptic curves, resulting in well-known
structures in implementation perspective. The proposed
key encapsulation mechanism is derived from the original
Jao-De Feo’s Diffie-Hellman key-exchange and public-key
encryption algorithms [20]. However, constructing crypto-
graphic structures from hardness of supersingular isogeny
graphs was introduced by Charels-Lauter-Goren [8].
The first round SIKE submission offered three differ-

ent security levels known as SIKEp503, SIKEp751, and
SIKEp964. According to the best known quantum attacks
on solving supersingular isogeny problem by that time,
the proposed security levels met NIST’s level 1, 3, and 5
requirements, respectively.
However, recent studies on the cost of solving isogeny

problem on quantum computers by Adj et al. [2] revealed
that the security assumptions for SIKE was too conser-
vative. In fact, a set of realistic models of quantum com-
putation on solving Computational Supersingular Isogeny
(CSSI) problem in [2] suggests that the Oorschot-Wiener
golden collision search is the most powerful attack on the
CSSI problem, resulting in significant improvement on the
SIKE’s classical and quantum security levels.
Accordingly, the second round SIKE [4] offers a new

set of security levels which are more realistic and provide
significant improvement on the key encapsulation perfor-
mance. In particular, decreasing the bit-length of SIKE’s
primes translates to notable performance improvement,
making this scheme suitable for many potential applica-
tions on low-end embedded devices.
In this work, we provide a full report on the highly-
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optimized implementation of SIKE on 64-bit ARM embed-
ded processors over all proposed security levels. In particu-
lar, the reference optimized implementation of SIKE [4] on
64-bit ARM embedded processor only targets two security
levels, i.e., SIKEp503 and SIKEp751. Therefore, in this
work, we address this shortcoming by providing the KEM
full benchmarks on different security levels which provide
a reference for the performance analysis of this scheme for
the second round.

Our proposed library takes advantage of state-of-the-
art engineering techniques as well as low level assembly
optimizations. We studied different approaches for finite
field arithmetic implementation over SIKE’s new primes.
Our benchmark results offer significant improvement in
performance compared to portable implementation, sug-
gesting the possible integration of this scheme on mobile
devices in the future.

II. Background
In this section, we briefly review the SIDH protocol

and the required steps for Alice and Bob to generate
a shared secret. Furthermore, we describe the SIKE, a
post-quantum key encapsulation mechanism from isoge-
nies of supersingular elliptic curves which was submitted
to NIST’s PQC standardization competition. We refer the
readers to [20], [5] for further details.

Let E1 and E2 be elliptic curves over a finite field Fq. An
isogeny φ : E1 → E2 is a non-constant rational map defined
over Fq which is also a group homomorphism form E1(Fq)
to E2(Fq). If such a map exists we say E1 is isogenous to
E2, and two curves E1 and E2 over Fq are isogenous if and
only if #E1(Fq) = #E2(Fq).
An isogeny φ can be expressed in terms of two rational

maps f and g over Fq such that φ((x, y)) = ( f (x), y · g(x)).
We can write f (x) = p(x)/q(x) with polynomials p(x) and
q(x) over Fq that do not have a common factor, and
similarly for g(x). The degree deg(φ) of the isogeny is
defined as max{deg(p(x)), deg(q(x))}.
Given an isogeny φ : E1 → E2 we define the kernel of φ

as follows:

ker(φ) = {P ∈ E1 : φ(P) = O}.

For any finite subgroup H of E(Fq), there is a unique
isogeny φ : E → E ′ such that ker(φ) = H and deg(φ) =
|H |, where |H | denotes the cardinality of H. In this case,
we denote by E/H the curve E ′. Given a subgroup H ⊆
E(Fq), Velu formula can be used to find the isogeny φ and
isogenous curve E/H. An example of isogeny map is given
in Figure 1.

A. SIDH key exchange
In 2011, Jao and De Feo [20] proposed the SIDH, a

quantum resistant key exchange protocol from isogenies
of supersingular elliptic curves. Similar to classical Diffie-
Hellman key exchange, SIDH protocol is constructed over
some public parameters which are agreed upon by com-
munication parties prior to key exchange.
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p = 23 · 32 − 1, E0/Fp2 : y2 = x3 + x, j(E) = 24, ` = 3

Fig. 1: An 9-degree isogeny map from elliptic curve with
j = 24 to elliptic curve with j = 17 (each circle represents the
isomorphism class, the numbers inside of the each circle are the
j-invariants of that isomorphism class, the numbers next to the
arrows denote the degree of the isogeny.)

1) Public parameters: Fix a prime p of the form p =
`eA
A
· `eBB · f ± 1 where `A and `B are small primes, eA and

eB are positive integers, and f is a very small cofactor.
We define a based supersingular elliptic curve E over Fp2

with cardinality #E = (`eA
A
· `eBB · f ∓ 1)2, and base points

{PA,QA} and {PB,QB} from the torsion subgroups E[`eA
A
]

and E[`eBB ] respectively, such that 〈PA,QA〉 = E[`eA
A
] and

〈PB,QB〉 = E[`eBB ].
2) Key exchange protocol: Alice randomly chooses two

integers mA, nA ∈ Z/`
eA
A
Z, not both divisible by `A as

her secret key and computes an isogeny φA : E → EA

using kernel RA := 〈[mA]PA+ [nA]QA〉. Alice also computes
the image points {φA(PB), φA(QB)} ⊂ EA by applying her
secret isogeny φA to the public basis PB and QB. She sends
φA(PB), φA(QB) and EA to Bob as her public key. Bob
also selects random elements mB, nB ∈ Z/`

eB
B Z, not both

divisible by `B and computes a secret isogeny φB : E → EB

from kernel RB := 〈[mB]PB + [nB]QB〉, along with image
points {φB(PA), φB(QA)} ⊂ EB. He sends his public key,
i.e., φB(PA), φB(QA) and EB to Alice.
In the second round of key exchange, Alice uses Bob’s

public key (φB(PA), φB(QA), EB) and computes an isogeny
φ′A : EB → EAB from kernel equal to 〈[mA]φB(PA) +

[nA]φB(QA)〉; Similarly, Bob computes an isogeny φ′B :
EA→ EBA having kernel 〈[mB]φA(PB)+ [nB]φA(QB)〉 using
Alice’s public key. Since the common j-invariant of EAB

and EBA are equal, they use this value to form a secret
shared key. The entire SIDH key exchange protocol is
illustrated in Figure 2.

B. SIKE mechanism
SIKE mechanism is constructed by applying a transfor-

mation of Hofheinz, Hövelmanns, and Kiltz [16] to the su-
persingular isogeny Public Key Encryption (PKE) scheme
described in [20]. It is an actively secure key encapsulation
mechanism (IND-CCA KEM) which addresses the static
key vulnerability of SIDH due to active attacks in [14].
1) Public parameters: Similar to SIDH, SIKE can be

defined over a prime of the form p = `eA
A
·`eBB · f±1. However,
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Public parameters
A prime p = `eA

A
`eB
B

f ± 1,
A supersingular elliptic curve over E over Fp2,

Base points 〈PA,QA〉 = E0[`
eA
A
] and 〈PB,QB〉 = E0[`

eB
B
]

Alice

KeyGen

1. skA : mA, nA ∈ Z/`
eA
A
Z

2. φA : E0 → EA with
ker φA = 〈[mA]PA + [nA]QA〉

3. pkA = [EA, φA(PB), φA(QB)]

Bob

KeyGen

1. skB : mB, nB ∈ Z/`
eB
B
Z

2. φB : E0 → EB with
ker φB = 〈[mB]PB + [nB]QB〉

3. pkB = [EB, φB(PA), φB(QA)]

Shared Key

1. φ′
A

: EB → EAB with
ker φ′

A
= 〈[mA]φB(PA) + [nA]φB(QA)〉

2. K = j(EAB)

Shared Key

1. φ′B : EA→ EBA with
ker φ′B = 〈[mB]φA(PB) + [nB]φA(QB)〉

2. K = j(EBA)

pkA

pkB

Fig. 2: SIDH key exchange protocol.

Public parameters
A prime p = 2eA3eB − 1,

An elliptic curve E0/Fp2 : y2 = x3 + x,
Base points 〈PA,QA〉 = E0[2eA ] and 〈PB,QB〉 = E0[3eB ]

Alice

KeyGen

1. skA ∈R Z/2eAZ
2. φA : E0 → EA with

ker φA = 〈PA + [skA]QA〉

3. pkA = [EA, φA(PB), φA(QB)]

4. s ∈R {0, 1}t

Bob

Encaps

1. message m ∈R {0, 1}t

2. r = H1(m ‖ pkA) mod 3eB

3. φB : E0 → EB with
ker φB = 〈PB + [r]QB〉

4. pkB(r) = [EB, φB(PA), φB(QA)]

5. φ′B : EA→ EBA with
ker φ′B = 〈φA(PB) + [r]φA(QB)〉

6. c = (c0, c1) = (pkB(r),H2( j(EBA)) ⊕ m)

7. Shared Secret: K = H3(m ‖ c)

Decaps

1. φ′
A

: EB → EAB with
ker φ′

A
= 〈φB(PA) + [skA]φB(QA)〉

2. m′ = c1 ⊕ H2( j(EAB))

3. r ′ = H1(m′ ‖ pkA) mod 3eB

4. φ′′B : E0 → EB′ with
ker φ′′B = 〈PB + [r ′]QB〉

5. pkB(r ′) = [(EB′), φ
′′
B(PA), φ

′′
B(QA)]

6. If pkB(r ′) = c0 then K = H3(m′ ‖ c)

Else K = H3(s ‖ c)

pkA

c = (c0, c1)

Fig. 3: SIKE mechanism.
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for efficiency reasons, `A = 2, `B = 3, and f = 1 are fixed,
thus the SIKE prime has the form of p = 2eA ·3eB −1. The
starting supersingular elliptic curve E0/Fp2 : y2 = x3 + x
with cardinality equal to (2eA ·3eB )2, along with base points
〈PA,QA〉 = E0[2eA] and 〈PB,QB〉 = E0[3eB ] are defined as
public parameters.
2) Key encapsulation mechanism: The key encapsula-

tion mechanism can be divided into three main operations:
Alice’s key generation, Bob’s key encapsulation, and Al-
ice’s key decapsulation. We describe each operation in the
following. Figure 3 presents the entire key encapsulation
mechanism in a nutshell.

a) Key generation.: Alice randomly chooses an in-
teger skA ∈ Z/2eAZ and by applying an isogeny φA :
E0 → EA with kernel RA := 〈PA + [skA]QA〉 to the
base points {PB,QB}, computes her public key pkA =

[EA, φA(PB), φA(QB)]. Moreover, she generates a t-bit1 ran-
dom sequence s ∈R {0, 1}t .

b) Encapsulation.: Bob generates an t-bit random
message m ∈R {0, 1}t , concatenates it with Alice’s public
key pkA and computes an (eB log2 3)-bit hash value r using
cSHAKE256 hash function H1, taking m ‖ pkA as the
input. Using r, he applies a secret isogeny φB : E0 → EB

to the base points {PA,QA} and forms his public key
pkB(r) = [EB, φB(PA), φB(QA)]. Bob also computes the
common j-invariant of curve EBA by applying another
isogeny φ′B : EA→ EBA using Alice’s public key. Bob forms
a ciphertext c = (c0, c1), such that:

c = (c0, c1) = (pkB(r),H2( j(EBA)) ⊕ m),

where H2 is a cSHAKE256 hash with a custom length
output and a defined initialization parameter. Finally, Bob
computes the shared secret as K = H3(m ‖ c) and sends c
to Alice.

c) Decapsulation.: Upon receipt of c, Alice computes
the common j-invariant of EAB by applying her secret
isogeny to EB. She computes m′ = c1 ⊕ H2( j(EAB)) and
r ′ = H1(m ‖ pkA). Finally, she validates Bob’s public
key by computing pkB(r ′) and comparing it with c0. She
generates the same shared secret K = H3(m′ ‖ c) if the
public key is valid, otherwise she outputs a random value
K = H3(s ‖ c) to be resistant against active attacks.

C. Key Compression
Compared to other PQC candidates, SIKE provides

the smallest public key size which makes this scheme a
suitable candidate for the applications with limited band-
width/memory. Furthermore, the standard representation
of SIKE’s public keys can be further compressed using the
key-compression technique proposed in the SIKE round
2 proposal with a slight but not negligible overhead in
overall performance. First key compression is proposed by
Azarderakhsh et al. in [6] and then it is improved in [11]
for SIDH. Recently a compressed key for SIKE is appeared
in SIKE round 2 in [4]. The key compression efficiency
on SIKE has been improved by dual isogenies method.

1The value of t is defined by the implementation parameters.

TABLE I: Comparison of public key size between standard
and compressed versions.

NIST Security Level Prime Public Key Size (in bytes)
Standard Compressed

Level I SIKEp434 330 196
Level II SIKEp503 378 224
Level III SIKEp610 462 273
Level V SIKEp751 564 331

In particular, recent optimization in pairing computations
and basis generation, in addition to fast and compact
x-only formulas for dual isogenies of degree 2 and 3
in [22], improved the SIKE’s key compression overhead
significantly compared to the previous works, while the
public-key and ciphertext size are reduced by 59%.
SIKE’s key compression feature offers a flexibility in pro-

tocol design for key encapsulation mechanism in different
environments: the required bandwidth can be shrunk down
almost in half if the performance is not a bottleneck.
Recall from SIDH key exchange that Alice’s public key

is {EA, φA(PB), φA(QB)} and similarly Bob’s public key
is {EA, φA(PB), φA(QB)}. We can shortly represent those
public keys {E, φ(P), φ(Q)}. That is, the public key consists
of an elliptic curve over Fp2 and two points over Fp2 on
this curve. However, as the public keys are similar in SIKE
mechanism, they are encoded by x-coordinates of three
points (see [4] for details):

{Xφ(P), Xφ(Q), Xφ(P−Q)}

of size 6 log p in total. Note that this encoding can be
deterministically converted to original public key.
It is further improved by Azarderakhsh et al. [6], by

sending in the form

{ j(E) ∈ Fp2 and a1, a2, b1, b2 ∈ Z3n },

so that φ(P) = a1R1 + a2R2 and φ(Q) = b1R1 + b2R2 for
some pre-shared canonical basis 〈R1, R2〉 = 3n. In that case,
it reduces 4 log p total key size bits but 10 times slower
compression/decompression. Moreover, Costello et al. [11]
reduces the total key size 3.5 log p bits but 2.4 times slower
compression/decompression by sending in the form

{ j(E) ∈ Fp2 and α, β, γ ∈ Z3n },

so that α = b1a−1
1 , β = a2a−1

1 , γ = b2a−1
1 . This compres-

sion methods are also given in Figure 4. Together with
the works of Zanon et al. [26] and Naehrig-Renes [22],
compression/decompression running time is reduced sig-
nificantly. The running times for actual operation required
for key compression can be seen in Table 2 of [22]. In this
paper, we used the latest library SIDHv3.2 which includes
the latest improvement by [22].

III. Target Architecture
ARMv8 Cortex-A, or simply ARMv8, is the latest

generation of ARM architectures targeted at the “ap-
plication” profile. It includes the typical 32-bit architec-
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A B
E, {xφ(P), xφ(Q)}

Total key size: 6 log p bits
[Original [20]]

A B
j(E) ∈ Fp2 and a1, a2, b1, b2 ∈ Z3n

Total key size: 4 log p bits
Slower ×10

[Azarderakhsh et al. [6]]

A B
j(E) ∈ Fp2 and α, β, γ ∈ Z3n

Total key size: ≈ 3.5 log p bits
Slower ×2.4

[Costello et al. [11]]

Fig. 4: Key compression.

ture, called “AArch32”, and advanced 64-bit architec-
ture named “AArch64” with its associated instruction
set “A64” [3]. AArch32 preserves backwards compatibility
with ARMv7 and supports the so-called “A32” and “T2”
instructions sets, which correspond to the traditional 32-
bit and Thumb instruction sets, respectively. AArch64
comes equipped with 31 general purpose 64-bit registers
(i.e. X0∼X30) and one zero register (i.e. XZR), and an in-
struction set supporting 32-bit and 64-bit operations. The
significant register expansion means that with AArch64
the maximum register capacity is expanded to 1,984 bits
(i.e. 31 × 64, a 4x increase with respect to ARMv7.).

ARMv8 processors started to dominate the smartphone
market soon after their first release in 2011, and nowadays
they are widely used in various high-end smartphones
(e.g. Apple iPhone, Huawei Mate and Samsung Galaxy
series). Since this architecture is used primarily in em-
bedded systems and smartphones, efficient and compact
implementations are of special interest.

ARMv8 processor supports powerful 64-bit wise un-
signed integer multiplication instructions. Our implemen-
tation of modular multiplication uses the AArch64 archi-
tecture and makes extensive use of the following multiply
instructions:
• MUL (unsigned multiplication, low part):

MUL X0, X1, X2 computes X0 ← (X1 × X2) mod 264.
• UMULH (unsigned multiplication, high part):

UMULH X0, X1, X2 computes X0 ← (X1 × X2)/264.
The two instructions above are required to compute a

full 64-bit multiplication of the form 128-bit← 64×64-bit,
namely, the MUL instruction computes the lower 64-bit half
of the product, while UMULH computes the higher 64-bit
half.

For addition and subtraction operations, ADDS and SUBS
instructions ensure 64-bit wise results, respectively. De-
tailed descriptions are as follows:
• ADDS (unsigned addition):

ADDS X0, X1, X2 computes {CARRY,X0} ← (X1 + X2).
• SUB (unsigned subtraction):

SUBS X0, X1, X2 computes {BORROW,X0} ← (X1 − X2).

IV. Optimized Field Arithmetic Implementation

There are a number of works in the literature that study
the ARMv8 instructions to implement multi-precision
multiplication or the full Montgomery multiplication for
“SIDH friendly” modulus [19], [18], [24]. In [18], Jalali et
al. implemented 751-bit and 964-bit finite field multiplica-
tion. They utilized the Comba method (i.e. column-wise
multiplication) for both cases [10]. In particular, they used
2-level Karatsuba for 964-bit finite field multiplication,
which shows 23.9% performance enhancements than con-
ventional Comba method. In [24], Seo et al. optimized the
503-bit finite field multiplication for SIKEp503. They also
used the Comba method with 2-level Karatsuba method to
enhance the performance of multiplication. Furthermore,
they optimized the MAC (Multiplication ACcumulation)
routines to avoid pipeline stalls. In [17], Jalali et al.
presented the optimized Montgomery multiplication by
mixing AArch64 and ASIMD instructions. This approach
shows the better performance than Comba method, when
the operand size is long enough, such as SIKEp751 and
SIKEp964.
Recently, two novel SIKE protocols (i.e. SIKEp434 and

SIKEp610) for NIST Post Quantum Cryptography compe-
tition round 2 were suggested, which meet NIST security
level 1 and 3, respectively [4]. However, previous works
do not show the optimized results for both protocols. In
this paper, we show the first practical implementations
of SIKEp434 and SIKEp610 protocols on 64-bit ARMv8-
A processors. In order to achieve high performance, the
arithmetic for SIKEp434 and SIKEp610 is optimized to
utilize the ARMv8-A ability fully. Furthermore, we also
include the performance of compressed SIKEp434 and
compressed SIKEp610. To describe the multi-precision
arithmetic, we used following notations. Let A and B be
operands of length m bits each. Each operand is written
as A = (A[n − 1], ..., A[1], A[0]) and B = (B[n − 1], ..., B[1],
B[0]), where n = dm/we is the number of words to represent
operands, m is operand length, and w is the computer
word size (i.e. 64-bit). The addition result (C = A + B)
is represented as C = (C[n − 1], ...,C[1],C[0]). For the
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multiplication (C = A × B), the result is represented as
C = (C[2n − 1], ...,C[1],C[0]).

A. Finite field addition and subtraction
Finite field addition and subtraction operations firstly

need to perform addition and subtraction operations, re-
spectively (See Section 2.2.1 of [15] for details). After-
ward, intermediate results are reduced through the reduc-
tion routine, when the carry or borrow bit is detected. In
order to avoid the timing attack, the reduction routine is
performed without conditional statements (i.e. constant
timing). To achieve this property, we used the masked
modular reduction approach, which always perform reg-
ular routines, regardless of the carry or borrow bit (See
Section 4.4 of [23] for details). When the carry or borrow
bit is detected, the mask value in word is set to 264 − 1.
Otherwise, the mask value is set to 0. With the mask value,
the modulus is determined, whether it is modulus value or
0.

For the 434-bit addition or subtraction operation, we
utilized 14 general purpose registers to store the operands
(i.e. 2×d434/64e) since each operand requires 7 registers. In
particular, two words of 434-bit modulus are 264 − 1 (i.e.
0xFFFFFFFFFFFFFFFF). We only set one word to 264 − 1
and use this twice for computations, which reduces one
operand setting overheads. For 610-bit addition or sub-
traction operation, we utilized 20 general purpose registers
to retain all operands (i.e. 2×d610/64e) since each operand
requires 10 registers. Similarly, three words of 610-bit
modulus are set to 264−1 (i.e. 0xFFFFFFFFFFFFFFFF). This
word is used three times with only one memory access,
which reduces two operand setting overheads.

B. Multiplication
In previous works, they used the Comba method (i.e.

column-wise method) to improve the multi-precision mul-
tiplication. The Comba method performs the partial prod-
ucts in column-wise, which ensures small number of regis-
ters for maintaining the intermediate results. In Figure 5,
the part of Multiplication ACculmuation (MAC) routine
in column-wise method for 64-bit ARMv8 processors is de-
scribed. The example performs the three partial products
(A[i] × B[ j], A[i + 1] × B[ j − 1], and A[i + 2] × B[ j − 2])
and accumulates them to intermediate results. In each
MAC routine, two multiplication (MUL_LOW and MUL_HIGH)
and three addition operations (ACC0, ACC1, and ACC2) are
required. For one word multiplication, we need three ad-
dition operations. For that reason, n-word multiplication
requires 3 × n2 addition operations.
In this work, we target the relatively shorter modulus

(i.e. 434-bit) than previous works (i.e. 751-bit or 964-
bit). We decide to use the row-wise multiplication, which
requires 2n + 2 registers (n + 1 for operands and n + 1
for intermediate results), where n, m, and w are dm/we,
operand length, and word size, respectively. Under the
64-bit processor setting, the n is set to 7 for 434-bit
(d434/64e). Considering that ARMv8 supports 31 64-bit

L(A[i] x B[j])

H(A[i] x B[j])

ACC0

ACC1

ACC2

L(A[i+1] x B[j-1])

H(A[i+1] x B[j-1])

ACC0

ACC1

ACC2

L(A[i+2] x B[j-2])

H(A[i+2] x B[j-2])

ACC0

ACC1

ACC2

Destination offset

C
om

p
u
tation

ord
er

Fig. 5: Part of column-wise multiplication for ARMv8,
where L, H, and ACC represent lower multiplication,
higher multiplication, and accumulation, respectively.

TABLE II: Comparison of multiplication methods, in
terms of the number of addition operations depending on
the number of word.

Method 3 4 5 6 7
Operand Scanning 24 40 60 84 112
Product Scanning 27 48 75 108 147

registers, the required number of registers for 434-bit can
be retained in registers. In Figure 6, the part of MAC
routine in row-wise method for 64-bit ARMv8 processors
is described. The example performs three partial products
(A[i] × B[ j], A[i] × B[ j + 1], and A[i] × B[ j + 2]) and
accumulates them to intermediate results. The number
of addition for three partial products in Figure 6 are 8
(i.e. 2 × (n + 1) where n is 3.). For the n-word multi-
plication, it requires 2 × n × (n + 1) addition operations.
The comparison of multiplication methods in terms of the
number of addition operations depending on the number
of word are given in Table II. Compared with the column-
wise method (i.e. product-scanning), the row-wise method
(i.e. operand-scanning) requires less number of addition
operations for accumulation routines. For the 7-word case
(i.e. 434-bit), the row-wise method reduces the number
of addition operations by 35 times than the column-wise
method. The multiplication is performed in original row-
wise multiplication rather than row-wise multiplication
with Karatsuba method. The Karatsuba method is also
working for 7-word case but it generates a number of
sub-routines to perform the computation and store the
intermediate results, which requires additional operations
and memory accesses [21].
For the 610-bit multiplication, the operands A =
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Fig. 6: Part of row-wise multiplication for ARMv8, where
L, H, and ACC represent lower multiplication, higher
multiplication, and accumulation, respectively.

(A[9], . . . , A[0]) and B = (B[9], . . . , B[0]) need 20 64-bit
registers. Except operands, we also need registers for
intermediate results and temporal storage. Due to limited
number of registers, we only maintain half number of
operands in registers and load remaining operands on
demand.

Karatsuba’s method reduces a multiplication of two m-
bit operands to three m

2 -bit multiplications with some
addition or subtraction operations. There are two ap-
proaches to perform Karatsuba multiplication, including
additive Karatsuba and subtractive Karatsuba. Taking
the multiplication of n-word operand A and B as an
example, operands are represented as A = AH · 2

n
2 + AL

and B = BH · 2
n
2 + BL. The multiplication P = A · B can

be computed according to the following equation by using
additive Karatsuba’s method:

AH ·BH ·2n+[(AH+AL)(BH+BL)−AH ·BH−AL ·BL]·2
n
2 +AL ·BL

(1)
or subtractive Karatsuba’s method:

AH ·BH ·2n+[AH ·BH+AL ·BL−|AH−AL |·|BH−BL |]·2
n
2 +AL ·BL

(2)
For the 610-bit multiplication, 1-level subtractive Karat-
suba multiplication is used, which consists of 3 320-bit
multiplication operations with some addition or subtrac-
tion operations.

In the beginning, we compute the lower 320-bit
multiplication RL ← A[4 ∼ 0] · B[4 ∼ 0]) using the
row-wise method that requires 25 MUL, 25 UMULH and
52 addition instructions for accumulating the partial
products. Second, we compute the higher 310-bit
multiplication RH ← A[9 ∼ 5] · B[9 ∼ 5], similarly.
Third, we compute the subtractions and absolute values
|A[4 ∼ 0] − A[9 ∼ 5]| and |B[4 ∼ 0] − B[9 ∼ 5]|
and proceed to the last 310-bit multiplication
RM ← |A[4 ∼ 0] − A[9 ∼ 5]| · |B[4 ∼ 0] − B[9 ∼ 5]|. Finally,
we obtain the result by performing the accumulation
step RH · 2610 + (RL + RH − RM ) · 2310 + RL. Since the
multiplication uses all available registers, 12 callee-

saved registers (X19 ∼ X30) are stored into the stack. The
multiplication is also designed to reduce the pipeline stalls.
The multiplication and addition/subtraction operations
use different instruction group. They can hide each others
costs. Based on the above observation, we engineer a
multi-precision multiplication to hide the addition costs
into the multiplication. At the lowest level, we implement
multi-precision multiplication using the row-wise method
based on the following multiplication/addition instruction
sequence:

...
MUL X7, X6, X2
ADCS X18, X18, X13
MUL X8, X6, X3
ADCS X19, X19, X14
MUL X9, X6, X4
ADCS X20, X20, X15
MUL X10, X6, X5
ADCS X21, X21, X16
...

We ensure that the destination of MUL instruction is not
used for the source of following ADCS instructions. This
approach avoids the pipeline stalls. Second, MUL and ADCS
instructions are performed one by one to hide the each
cost.

C. Reduction

In this section, we adapt techniques described in pre-
vious sections to implement modular multiplication for
SIKE. Specifically, we target parameter sets based on
SIKEp434 and SIKEp610 [4].
Multi-precision modular multiplication is the most ex-

pensive operation for the implementation of SIKE [20],
[12]. In particular, Montgomery multiplication for SIKE
can be efficiently exploited and further simplified by taking
advantage of so-called “Montgomery-friendly” modulus.
The advantage of using Montgomery multiplication for
“SIDH-friendly” primes was recently confirmed by Bos
and Friedberger [7], who studied and compared different
approaches, including Barrett reduction. Recent works by
Seo et al also utilized the Montgomery multiplication for
SIKEp503 protocols [24].
Based on the observation above, we choose the Mont-

gomery multiplication to implement SIDH-friendly mod-
ular arithmetic for SIKEp434 and SIKEp610 protocols.
The approach reduces almost half of partial products since
the lower part of modulus is set to 0. To reduce memory
accesses, we keep as many results as possible in registers.
Since Montgomery multiplication performs partial prod-
ucts with modulus and quotient (The quotient is interme-
diate results multiplied by constant m′), we maintained
all quotients in registers and used them, directly. The
technique reduces the 2×(n+1) number of memory accesses
for n + 1 load and n + 1 store operations, where n-word
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Algorithm 1 Calculation of the Montgomery multiplica-
tion
Require: An odd m-bit modulus M, Montgomery radix

R = 2m, an operand T where operands (A and B in
the range [0,m−1]), and pre-computed constant M ′ =
−M−1 mod R

Ensure: Montgomery product Z = MonMul(A, B, R) =
(A × B) · R−1 mod M

1: T ← A · B
2: Q← T · M ′ mod R
3: Z ← (T +Q · M)/R
4: return Z

computation. For instance, 16 and 22 memory accesses for
SIKEp434 and SIKEp610 are optimized.
1) Interleaved Montgomery Multiplication: The Algo-

rithm 1 describes Montgomery multiplication. The Mont-
gomery multiplication firstly performs the operand multi-
plication. Second, the quotient (Q) is generated by mul-
tiplying the intermediate result (T) and modulus inverse
constant (M ′) Third, the quotient (Q) is multiplied by the
modulus (M) and the result is added to the intermediate
result (T).
The separated Montgomery multiplication performs the

multiplication (Step 1) and reduction (Step 2 and Step 3)
in separated way. The alternative way to implement the
Montgomery multiplication is interleaved way. The part of
multiplication is performed and the intermediate result is
directly reduced. Compared with the separated approach,
this method optimizes the number of memory accesses for
intermediate result loading and storing. Total 2n memory
accesses are optimized (n for memory loading and n for
memory storing). We utilized the interleaved Montgomery
multiplication for SIKEp434, since all operands and in-
termediate results are well retained in general purpose
registers. ARMv8 processors support 31 general purpose
registers and we utilized 30 registers. In particular, 4, 1,
7, 10, and 8 registers are allocated for modulus, operand
A, operand B, intermediate result, and temporal storage,
respectively. The part of interleaved Montgomery multipli-
cation for SIKEp434 is given in Figure 7. The first word
of operand A is multiplied by all operand B (B[0] ∼ B[6])
and the intermediate result is accumulated. Second, the
first word of quotient Q is multiplied by modulus and the
intermediate result is accumulated. With this approach,
we can optimize the memory access to the intermediate
result.

For SIKEp610 implementation, we used the separated
Montgomery multiplication since the required number of
registers is over available registers, which introduces a
number of memory accesses.
2) Shifted Modulus: The execution timing of modular

reduction is relied on the number of partial products. For
this reason, reducing the number of partial products can
lead to the performance enhancements. The general form
of modulus for SIKEp610 is as follows.

Normal representation
M[4] 0x6E02000000000000
M[5] 0xB1784DE8AA5AB02E
M[6] 0x9AE7BF45048FF9AB
M[7] 0xB255B2FA10C4252A
M[8] 0x819010C251E7D88C
M[9] 0x000000027BF6A768

This requires 6 registers to retain all modulus. The
number of required registers can be optimized with the
shifted representation. The least significant word of mod-
ulus (M[4]) only utilize the 15-bit out of 64-bit and the
most significant word of modulus (M[9]) has 30-bit empty
space. We shifted the modulus by 16-bit to the left and
the representation is re-written as follows.

Shifted representation
M[4] 0x4DE8AA5AB02E6E02
M[5] 0xBF45048FF9ABB178
M[6] 0xB2FA10C4252A9AE7
M[7] 0x10C251E7D88CB255
M[8] 0x00027BF6A7688190

The shifted representation only requires 5 registers for
SIKEp610 modulus. This optimized the number of partial
products by 10 (60 → 50). The shifted computation
utilizes the shifted representation. The result is obtained in
two steps. First, the ordinary multiplication is performed.
Second, the intermediate result is shifted. For SIKEp610,
we shifted 16-bit to the left and the result should be
reordered after computations. The reorder computation is
described as follows.

...
LSL X7, X22,#48
ORR X7, X7, X21, LSR#16
...

The higher word (X22) is shifted to the left by 48-
bit and the lower word (X21) is shifted to the right by
16-bit. To optimize the shift and addition operation, we
utilized the barrel-shifter module, which can perform the
shift operation on the second operand without additional
costs.
For the SIKEp434 case, the modulus (p + 1) is divided

into 4-word. The shifted modulus needs to ensure that the
summation of remaining bits of the least significant word
and the most significant word is over 64-bit. However, the
SIKEp434 case only has 39-bit (14-bit from the most sig-
nificant word and 25-bit from the least significant word).
The following is the modulus of SIKEp434.

M[3] 0xFDC1767AE3000000
M[4] 0x7BC65C783158AEA3
M[5] 0x6CFC5FD681C52056
M[6] 0x0002341F27177344
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Fig. 7: Part of interleaved Montgomery multiplication for SIKEp434, where L, H, and ACC represent lower
multiplication, higher multiplication, and accumulation, respectively.

V. Performance Result

In this section, we evaluate the performance of proposed
implementations for 64-bit ARMv8-A processors. All our
finite field arithmetic implementations were written in
assembly language and complied with optimization level
-O3.

We implemented the multi-precision multiplication algo-
rithm described in Section IV-B and Montgomery reduc-
tion in Section IV-C. We integrated our implementation

of the Montgomery multiplication for ARMv8-A into the
SIKE round 2 library [4].

Table III summarizes results of different software imple-
mentations of the SIKEp434 and SIKEp610 arithmetic on
ARMv8-A processor: a 1.536GHz ARM Cortex-A53 pro-
cessor. Since this is first work for SIKEp434 and SIKEp610
on ARMv8-A based processors, we compare results with
the SIKE round 2 reference code [13]. The unoptimized
reference implementation is written in C using the SIKE
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TABLE III: Comparison of implementations of the SIKEp434 and SIKEp610 arithmetic on ARMv8 RMv8 Cortex-
A55@1.766GHz and Cortex-A75@2.803GHz based processor. Timings are reported in terms of clock cycles.

Implementation Language Processor Protocol
Timings [cc] (Performance Improvement)

Fp add Fp sub Fp mul Fp inv

SIKE (SIDH-v3.2) [13] C
Cortex-A55

SIKEp434

171 127 2976 1572510
This work ASM 74 (56%) 67 (47%) 602 (79%) 340425 (78%)
SIKE (SIDH-v3.2) [13] C

Cortex-A75
272 202 4723 2495892

This work ASM 34 (87%) 28 (86%) 561 (88%) 309359 (87%)

SIKE (SIDH-v3.2) [13] C
Cortex-A55

SIKEp610

249 182 6093 4469981
This work ASM 122 (51%) 111 (39%) 1287 (78%) 955305 (78%)
SIKE (SIDH-v3.2) [13] C

Cortex-A75
224 154 5673 4156698

This work ASM 50 (77%) 42 (72%) 1046 (81%) 777992 (81%)

TABLE IV: Comparison of implementations of the SIKE protocols on ARMv8 Cortex-A55@1.766GHz and Cortex-
A75@2.803GHz based processors. Timings are reported in terms of milliseconds and clock cycles. m: mixed approach.

Processor Protocol Implementation Language
Timings [milliseconds] Timings [cc × 106]

KeyGen Encaps Decaps Total KeyGen Encaps Decaps Total

C
or
te
x-
A
55

St
an

da
rd

SIKEp434
SIKE (SIDH-v3.2) [13] C 62.2 101.7 108.5 210.2 109.8 179.5 191.6 371.2
This work ASM 15.4 25.3 27.0 52.4 27.2 44.8 47.7 92.5

SIKEp503

SIKE (SIDH-v3.2) [13] C 95.5 157.2 167.4 324.6 168.6 277.6 295.7 573.2
SIKE (SIDH-v3.2) [13] ASM 21.9 35.3 38.0 73.4 38.6 62.4 67.2 129.6
Jalali et al. [17] ASM 27.6 45.1 48.2 93.4 48.7 79.7 85.2 164.9
Jalali et al. [17]m ASM 39.6 64.8 69.2 134.0 69.9 114.4 122.3 236.7

SIKEp610
SIKE (SIDH-v3.2) [13] C 181.4 333.7 335.6 669.3 320.4 589.2 592.7 1181.9
This work ASM 43.5 79.9 80.7 160.6 76.8 141.2 142.4 283.6

SIKEp751

SIKE (SIDH-v3.2) [13] C 328.3 532.2 571.7 1103.9 579.8 939.9 1009.7 1949.6
SIKE (SIDH-v3.2) [13] ASM 74.4 118.3 128.5 246.8 131.3 208.9 226.9 435.8
Jalali et al. [17] ASM 85.3 137.9 148.5 286.3 150.6 243.5 262.2 505.6
Jalali et al. [17]m ASM 102.9 165.7 178.8 344.5 181.7 292.7 315.7 608.3

C
om

pr
es
se
d

SIKEp434
SIKE (SIDH-v3.2) [13], [22] C 102.6 159.0 152.0 311.0 181.2 280.8 268.5 549.3
This work [22] ASM 25.2 39.3 37.0 76.3 44.5 69.3 65.3 134.7

SIKEp503
SIKE (SIDH-v3.2) [13], [22] C 156.6 242.3 228.1 470.4 276.5 427.9 402.8 830.8
SIKE (SIDH-v3.2) [13], [22] ASM 35.9 56.3 52.8 109.1 63.4 99.4 93.3 192.7

SIKEp610
SIKE (SIDH-v3.2) [13], [22] C 314.4 461.8 451.5 913.3 555.2 815.6 797.3 1612.9
This work [22] ASM 74.0 110.1 108.2 218.4 130.7 194.5 191.1 385.6

SIKEp751
SIKE (SIDH-v3.2) [13], [22] C 528.9 834.2 780.9 1615.1 934.0 1473.1 1379.1 2852.2
SIKE (SIDH-v3.2) [13], [22] ASM 117.2 190.6 178.2 368.8 207.0 336.6 314.7 651.3

C
or
te
x-
A
75

St
an

da
rd

SIKEp434
SIKE (SIDH-v3.2) [13] C 36.4 59.6 63.6 123.2 102.1 167.1 178.3 345.4
This work ASM 8.1 13.4 14.3 27.6 22.8 37.5 40.0 77.5

SIKEp503

SIKE (SIDH-v3.2) [13] C 56.4 92.9 98.7 191.6 158.0 260.3 276.8 537.1
SIKE (SIDH-v3.2) [13] ASM 9.6 15.8 16.9 32.7 27.0 44.3 47.3 91.6
Jalali et al. [17] ASM 11.6 19.1 20.3 39.4 32.5 53.5 57.0 110.5
Jalali et al. [17]m ASM 14.2 23.2 24.8 48.1 39.8 65.2 69.6 134.8

SIKEp610
SIKE (SIDH-v3.2) [13] C 106.6 196.3 197.4 393.7 298.8 550.3 553.2 1103.5
This work ASM 21.0 38.8 39.0 77.8 58.9 108.7 109.3 218.0

SIKEp751

SIKE (SIDH-v3.2) [13] C 193.3 313.6 336.7 650.4 541.7 879.1 943.9 1823.0
SIKE (SIDH-v3.2) [13] ASM 32.3 52.3 56.3 108.6 90.6 146.5 157.8 304.3
Jalali et al. [17] ASM 38.6 62.6 67.3 130.0 108.3 175.6 188.8 364.4
Jalali et al. [17]m ASM 38.7 62.5 67.3 129.9 108.4 175.2 188.8 364.0

C
om

pr
es
se
d

SIKEp434
SIKE (SIDH-v3.2) [13], [22] C 59.5 93.2 87.6 180.8 166.7 261.2 245.5 506.8
This work [22] ASM 13.3 20.7 19.8 40.6 37.3 58.1 55.6 113.7

SIKEp503
SIKE (SIDH-v3.2) [13], [22] C 91.9 142.7 137.3 280.0 257.7 400.1 384.7 784.8
SIKE (SIDH-v3.2) [13], [22] ASM 16.2 24.8 23.4 48.2 45.4 69.6 65.6 135.2

SIKEp610
SIKE (SIDH-v3.2) [13], [22] C 182.2 269.8 265.2 535.0 510.7 756.2 743.4 1499.5
This work [22] ASM 36.1 53.1 52.1 105.2 101.1 148.8 146.1 294.9

SIKEp751
SIKE (SIDH-v3.2) [13], [22] C 309.1 489.9 468.1 957.9 866.4 1373.1 1312.0 2685.1
SIKE (SIDH-v3.2) [13], [22] ASM 51.6 82.9 77.4 160.3 144.6 232.4 216.9 449.3
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round 2 library [4]. In this case, proposed arithmetic imple-
mentations show much higher performance than reference
work. Finite field addition for SIKEp434 and SIKEp610
shows performance enhancements by 2.67x/8.77x and
2.39x/4.66x on Cortex-A55/Cortex-A75, respectively. Fi-
nite field subtraction for SIKEp434 and SIKEp610
shows performance enhancements by 2.28x/8.08x and
1.93x/3.94x on Cortex-A55/Cortex-A75, respectively. Fi-
nite field multiplication for SIKEp434 and SIKEp610
shows performance enhancements by 5.01x/8.41x and
4.76x/5.45x on Cortex-A55/Cortex-A75, respectively. Fi-
nite field inversion for SIKEp434 and SIKEp610 shows per-
formance enhancements by 4.66x/8.07x and 4.70x/5.36x
on Cortex-A55/Cortex-A75, respectively.

As described above, performance enhancements are ob-
served in both ARMv8 processors but Cortex-A75 shows
the better performance improvements than Cortex-A55.
This difference comes from their different computer ar-
chitectures. Cortex-A55 supports 2-wide decode in-order
superscalar pipeline while Cortex-A75 supports 3-wide
decode out-of-order superscalar pipeline. The assembly
code is optimized further through out-of-order super-
scalar pipeline of Cortex-A75. Between SIKEp434 and
SIKEp610, SIKEp434 is optimized further than SIKEp610
since the implementation of SIKEp434 can take advantage
of the optimal register usage due to the short operand.

Table IV summarizes results of different software im-
plementations of the SIKEp434 and SIKEp610 proto-
cols on ARMv8 Cortex-A55 and Cortex-A75 processors.
For standard SIKE protocols, proposed implementations
of SIKEp434 and SIKEp610 outperform previous works
by 3.76x/4.04x and 3.98x/4.57x for Cortex-A55/Cortex-
A75 processors, respectively. Considering that target
processors are working at 1.766GHZ and 2.803GHz,
SIKEp434 and SIKEp610 require only 0.055/0.030 and
0.168/0.086 seconds for Cortex-A55/Cortex-A75 proces-
sors, respectively. Compared with other SIKE protocols,
the SIKEp434 shows the highest performance and the
SIKEp751 shows the lowest performance. We also eval-
uated the key compressed SIKE protocols. For com-
pressed SIKE protocols, proposed implementations of
SIKEp434 and SIKEp610 outperform previous works by
4.07x/4.45x and 4.18x/5.08x for Cortex-A55/Cortex-A75
processors, respectively. Key compressed SIKEp434 and
SIKEp610 require only 0.076/0.040 and 0.218/0.105 sec-
onds for Cortex-A55@1.766GHz/Cortex-A75@2.803GHz
processors, respectively. Compressed versions require more
timing than standard SIKE protocols but the execution
timing is reasonably fast enough for real world applica-
tions.

The performance comparison is given in Figure 8 and 9
for Cortex-A55 and Cortex-A75, respectively. The fastest
performance of standard version is obtained from pro-
posed implementation of SIKEp434. For the compressed
version, proposed SIKEp434 implementation also achieved
the fastest performance.

Overall, the proposed assembly implementation
achieved significant performance improvements. The

assembly implementation has several advantages over
C based implementation. First, the customized register
utilization is available. By carefully designing variable
assignments, many variables are kept in registers, which
reduces the number of memory accesses. Second, the
assembly implementation can handle status registers.
This avoids a number of carry handling routines in C
language. Third, C implementation is mainly relied on
compiler’s capability. If the compiler selects inefficient
instructions, this leads to slow performance.

VI. Conclusion
This paper presented high-speed implementation of

SIKE round 2 on high-end 64-bit ARMv8 Cortex-A55
and Cortex-A75 processors. A combination of several
optimization methods yields very efficient modular mul-
tiplications for SIKEp434 and SIKEp610 protocols that
are shown, for example, to be approximately 5.01x/8.41x
and 4.76x/5.45x faster than the normal modular mul-
tiplication implementations for “SIDH-friendly” modu-
lus on a 64-bit ARMv8 Cortex-A55/Cortex-A75 proces-
sors. The optimized implementations which push further
the performance of post-quantum supersingular isogeny-
based protocols, are 3.98x/4.57 faster than the previ-
ous implementations of SIKEp610, targeting the Cortex-
A55/Cortex-A75 processors. Furthermore, we integrated
our fast modular arithmetic implementations, compact
prime SIKEp434, and optimal strategy for isogeny compu-
tations into Microsoft’s SIDH library. A 128-bit full key-
exchange execution over optimal prime SIKEp434 is per-
formed in about 0.055/0.030 seconds on a ARMv8 Cortex-
A55@1.766GHz/Cortex-A75@2.803GHz processors, which
show the practicality of isogeny based post-quantum
cryptography over mobile devices. The key compressed
versions are also evaluated and SIKEp434 is performed
in about 0.076/0.040 seconds on a ARMv8 Cortex-
A55@1.766GHz/Cortex-A75@2.803GHz processors.
Inspired by recent IETF draft [1] on SIKE integration

into Amazon’s AWS services, supporting hybrid post-
quantum KEM on one of the largest cloud providers in
industry, this work improves the overall performance of the
key encapsulation mechanism significantly and provides
guidelines for industry practitioners to enhance SIKE’s
performance on the high-performance ARM Cortex-A pro-
cessors which are used vastly in the new generation of
cellphones.
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