
Accelerated RISC-V for SIKE
Rami Elkhatib

CEECS Department
Florida Atlantic University

Boca Raton, FL
relkhatib2015@fau.edu

Reza Azarderakhsh

CEECS Department
Florida Atlantic University

Boca Raton, FL
razarderakhsh@fau.edu

Mehran Mozaffari-Kermani

Dept. of CSE.
University of South Florida

Tampa, FL
mehran2@usf.edu

Abstract—Software implementations of cryptographic
algorithms are slow but highly flexible and relatively easy to
implement. On the other hand, hardware implementations are
usually faster but provide little flexibility and require a lot
of time to implement efficiently. In this paper, we develop
a hybrid software-hardware implementation of the third
round of Supersingular Isogeny Key Encapsulation (SIKE), a
post-quantum cryptography algorithm candidate for NIST. We
implement an isogeny field accelerator for the hardware and
integrate it with a RISC-V processor which also acts as the
main control unit for the field accelerator. The main advantage
of this design is the high performance gain from the hardware
implementation and the flexibility and fast development the
software implementation provides. This is the first hybrid
RISC-V and accelerator of SIKE. Furthermore, we provide
one implementation for all NIST security levels of SIKE. Our
design has the best area-time at NIST security levels 3 and 5
out of all hardware and hybrid designs provided in the literature.

Keywords: isogeny-based cryptography, Montgomery
multiplication, post-quantum cryptography, RISC-V, SIKE,
software-hardware co-design.

I. INTRODUCTION

Public key cryptography, such as RSA and ECC, relies on
hard mathematical problems to solve on classical computers.
However, quantum computers have been discovered to be
able to break such cryptosystems using Shor’s algorithm
[1]. To protect against quantum computers, NIST requested
from experts in the industry to propose quantum safe algo-
rithms through the Post-Quantum Cryptography (PQC) call
for proposals [2]. The proposals have been heavily scrutinized
through 3 rounds with the third round currently on going.
There are currently 4 finalists and 5 alternative candidates for
public-key encryption and key-establishment algorithms.

Supersingular Isogeny Key Encapsulation (SIKE) is one of
the alternative candidates and the only candidate proposed
that focuses on the difficulty of solving isogenies of elliptic
curves. Traditional algorithms based on elliptic curves achieve
pre-quantum security such as the implementations found in
[3], [4], while supersingular elliptic curve arithmetic achieves
post-quantum security. The main advantage of isogeny-based
cryptography algorithms over other post-quantum cryptogra-
phy algorithms is the relatively small key size. However,
the smaller key size usually comes at the cost of higher
computational time.

There are many pure hardware and pure software im-
plementations of cryptography algorithms available in the
literature. However, recently software-hardware co-design im-
plementations have been proposed. In [5], Massolino et al.
implement a software-hardware co-design of SIKE by using
their custom-designed processor to control an isogeny-based
hardware accelerator.

In the software side, processors that utilize the RISC-V
architecture seem as an attractive choice because of the open
standards. Furthermore, any improvements to SIKE can easily
be ported to other RISC-based processors such as the ones
found here [6], [7] for ARM Cortex M4. In [8], Banerjee
et al. implement a software-hardware co-design for multiple
Lattice-based cryptography algorithms. The authors utilize
RISC-V processor to control their custom-designed Lattice-
based crypto-accelerator. In [9], Banerjee et al. implement
a software-hardware co-design of SIKE by using RISC-V
processor to control an elliptic curve accelerator. Because the
authors were aiming for area and utilized an elliptic curve
accelerator instead of implementing an accelerator specifically
targeting SIKE primes, the design is two orders of magnitude
slower than state-of-the-art hardware-based SIKE implemen-
tations.

In this paper, we implement a RISC-V based software-
hardware co-design of SIKE. On the hardware side, we
implement an isogeny-based hardware accelerator which is
controlled by a RISC-V processor. All security levels have
been incorporated in one design and the design is aimed at
maximizing area-time trade-off.

Our contributions:

• We improve area usage and operating frequency of Mont-
gomery multiplication for SIKE prime.

• We implement a highly efficient software-hardware co-
design of SIKE with all security levels supported in one
design.

• This is the first implementation of SIKE in RISC-V with
an isogeny-based accelerator aimed at maximizing area-
time trade-off.

• We implement a dedicated instruction controller to effi-
ciently process instructions in the accelerator.

The organization of the paper is as follows. In Section II, we
give an overview of SIKE. In Section III, we propose our low

131

2021 IEEE 28th Symposium on Computer Arithmetic (ARITH)

978-1-6654-2293-2/21/$31.00 ©2021 IEEE
DOI 10.1109/ARITH51176.2021.00035

20
21

 IE
EE

 2
8t

h
Sy

m
po

siu
m

 o
n

Co
m

pu
te

r A
rit

hm
et

ic
 (A

RI
TH

) |
 9

78
-1

-6
65

4-
22

93
-2

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AR
IT

H5
11

76
.2

02
1.

00
03

5

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 23,2024 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

Table I. SIKE prime for each NIST security level [10]

Security
Prime Form

Level

NIST level 1 p434 = 22163137 − 1

NIST level 2 p503 = 22503159 − 1

NIST level 3 p610 = 23053192 − 1

NIST level 5 p751 = 23723239 − 1

level efficient arithmetic operations. In Section IV, we propose
our optimized architecture. In Section V, we implement our
design on FPGA and present our results. In Section VI, we
give our final thoughts and discuss future work.

II. PRELIMINARIES

In this section, we provide a brief overview of SIKE
protocol relevant to this paper. For a detailed overview of the
SIKE protocol, we point the readers to [10]. SIKE supports
a chosen-ciphertext attack (CCA) secure key encapsulation
mechanism (KEM) and a chosen-plaintext attack (CPA) secure
public key encryption (PKE) [10]. We will focus on KEM in
this paper as it is the one implemented by most researchers in
the literature and PKE can easily be implemented from KEM
with some minor modification.

KEM allows two parties, usually named Alice and Bob for
convenience, to securely exchange a shared secret. There are
three main steps in KEM. In key generation, the secret key and
public key are generated by Bob. Key generation is usually
not important as it can be performed ahead of time. In key
encapsulation, Alice retrieves Bob’s public key and generates
the cipher-text, which is sent to Bob, and the shared secret,
which is stored locally. In key decapsulation, Bob uses his
secret key and Alice’s cipher-text to generate his shared secret,
which is the same shared secret Alice generates.

There are two main independent operations in SIKE. The
first operation is the hash-based operation. The only hash-
ing operation used in SIKE is shake256, which is a NIST
standardized hashing algorithm [11]. The main function in
shake256 is the Keccak function [12] which is relatively cheap
in comparison to the second operation.

The second operation, which is the main operation, is the
isogeny-based operation. In SIKE, the isogeny operation works
on elliptic curves defined over Fp2 [10]. The Fp2 can be further
broken down to Fp operations. Here, p is a a constant prime
number of special form 2eA · 3eB − 1. The size of the prime
determines the security level of the protocol. Table I shows
the prime used for different NIST security levels. In Section
III, we are going to propose an efficient Fp architecture.

III. PROPOSED EFFICIENT LOW LEVEL ARITHMETIC
OPERATIONS.

In this section, we discuss low level arithmetic proposed for
the isogeny accelerator. The isogeny accelerator requires two
low-level units to perform all isogeny operations. These units
are modular adder unit and the modular multiplier unit.

Table II. Steps for different operations performed by the
modular addition unit

Operation Step 1 Step 2 Output

mod add r1 = a + b r2 = r1 − 2p a + b mod 2p

mod subtract r1 = a − b r2 = r1 + 2p a − b mod 2p

mod correct r1 = a + 0 r2 = r1 − p a mod p

A. Modular Addition

The modular adder unit performs modular addition, modular
subtraction and modular correction in two steps and each
step utilizes the carry compact adder (CCA) proposed in
[13], which is used for SIKE in [14], [15] and ECC over
Curve25519 in [16]. The steps for each operation is shown
in Table II. For modular addition and modular subtraction, the
result is chosen from r1and r2 such that it is between 0 and 2p
where p is the security level’s prime. For modular correction,
which is only performed at the end of the isogeny operation,
the result is chosen from r1and r2 such that it is between 0
and p.

The unit is implemented for 752 bits which support the
highest security level and all the lower security levels, and
the design is modified to support a variable modulus as a
variable modulus allows support for any security level. At
the beginning of an isogeny operation, the modulus 2p is
loaded once and all modular addition and modular subtraction
operations can be performed. At the end of that isogeny
operation, the modulus p is loaded and modular correction
can be performed to correct the final result from mod (2p)
to mod p. Furthermore, since bits 1 to 215 (inclusive) are
all 1s for any modulus chosen from any security level, the
unit is designed with these bits of the modulus always set
to 1. The main reason the two moduli p and 2p are loaded
separately instead of deriving one from the other in hardware
is to reduce the area for an operation that has minimal impact
on performance. Another approach is to perform the correction
from an external unit such as the RISC-V processor which will
be used to control the isogeny accelerator.

In the architecture of the design, two fully pipelined
adder/subtractor based on CCA are designed corresponding
to each step of the unit. The optimal parameters for CCA can
only be tested using trial and error when using an FPGA [13].
The optimal parameters H (for hierarchy level) and L (related
to number of bits excluded from the hierarchy at each level)
we obtained are H = 1 and L = 5 for the first CCA and
H = 1 and L = 15 for the second CCA.

B. Modular Multiplication

In many cryptographic protocols such as RSA, DH, ECC
and SIKE, modular multiplication is an expensive operation
heavily studied by cryptographers. Many modular multipliers
have been proposed for SIKE . Montgomery multiplication
[17] is the most common method for modular multiplication
used in SIKE. However, recently, new methods have been pro-
posed such as the HFFM algorithm [18] which shows potential
to be better than Montgomery multiplication. In this paper,

132

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 23,2024 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Proposed Montgomery Multiplication

Input : m = 2eA · 3eB − 1 < 2K−2, R = 2K , w, s,
K = w · s, sA = b2eA/wc, a, b < 2m− 1

Output: MontMult(a, b)
1 T ← 0
2 for i← 0 to s− 1 do
3 for j ← 0 to s− 1 do
4 U [j]← a[i] · b[j]
5 (C, S)← T [0] + U [0]
6 q ← S
7 for j ← sA to s− 1 do
8 U [j]← U [j] + q ·m[j]

9 U [sA]← U [sA] + q
10 for j ← 0 to s− 1 do
11 (C, S)← T [j] + U [j] + C
12 T [j − 1]← S

13 (C, S)← C
14 T [s− 1]← S

15 return T

Mul

First Acc

Red

First Red

Acc

Final Acc

×

×

×
red block

×

×

×

mul block

×

×

×

+

+

+

acc block

+

+

+

+

+

+

+

start

rst

rst

rst

rst

rst

rst

Figure 1. Architecture of multiplier core.

0

1

Mult
Core

0

1

en

en

even

0

1

en

en

0

1

en

en

start1start2

odd

shift registers

even

start
read1 read2

en

en

en

en

en

en

Figure 2. Dual multiplier IO for the multiplier core.

we improve the Montgomery multiplication proposed in [15]
to consume less DSPs and operate at higher frequency while
keeping the same number of interleave and multiplication
cycles.

Algorithm 1 gives a breakdown of how the proposed archi-
tecture works while Fig. 1 shows the proposed architecture
which is a systolic array architecture with each element
working on w bits of the result. The architecture can be broken
down into three major blocks; multiplication block, reduction
block and accumulation block.

The multiplication block computes the product of the inputs
a and b in s elements with b loaded in parallel and a loaded
serially every two cycles. Each element in the multiplication
block performs one iteration of Line 4 in Algorithm 1.

Similar to the multiplication block, the reduction block
computes the product of a quotient q obtained from the accu-
mulation block and the modulus m with m loaded in parallel
and q loaded serially. Each element in the reduction block is
added to its corresponding element in the multiplication block
to perform one iteration of Line 8 in Algorithm 1. Since the
first eA bits of the modulus are 1, the first sA = beA/wc
blocks are skipped and q is added to the first element of
the reduction block as shown in Line 9 of Algorithm 1.
Furthermore, q is delayed such that the first reduction element
aligns with the sA’th multiplication element when the addition
is performed.

Finally, each element in the accumulation block performs a

133

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 23,2024 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

Table III. DSP cost of Montgomery multiplier for w = 17

Reference SIKEp434 SIKEp503 SIKEp610 SIKEp751

Elkhatib et al. [15] 65 75 90 113

This work 40 46 55 69

sum and propagates the least significant w bits S backwards
and the remaining bits C forward along the systolic array.
The sum is between S, C and the sum of the corresponding
multiplication and reduction element. Since S is propagated
backwards in the systolic array, it needs to be reset at the
beginning of each multiplication. The first accumulation block,
corresponding to Lines 5-6 of Algorithm 1, computes the
quotient q for the reduction block and the first C for the
accumulation block. The remaining elements perform Lines
11-12 of Algorithm 1 with the final C loaded to S of the
same element similar to Lines 13-14. The first word of the
final product is obtained from S of the second element after
2s cycles and the following words are obtained from the
following elements in the following cycles until a total of 3s
cycles are passed.

Unlike [15], the accumulation block is split from the mul-
tiplication block with each element of the multiplication and
reduction blocks mapped to 1 DSP. Thus, the number of DSPs
is reduced from 3s− sA − 1 to 2s− sA. Table III shows the
number of DSPs reduced between our design and the design
in [15] for w = 17. In addition, the adders not belonging to
the accumulation block in Fig. 1 are mapped into the adder
part of the DSP. Furthermore, the critical path is reduced to
one DSP which improves the frequency from 294 MHz to 401
MHz for the device. The accumulation block is mapped into
the fabric of the FPGA. To support all security levels, we set
s = 45 andsA = 12 with w = 17. Therefore, the architecture
occupies a total of 78 DSPs.

If we breakdown the elements in the block to an even
set and an odd set, the architecture operates on the partial
result of only one set at any given cycle. To fully utilize
all the elements, the unused elements at any given cycle
can operate on a second pair of inputs effectively achiev-
ing two parallel multipliers. Fig. 2 shows how the inputs
and outputs are connected to our Montgomery multiplier to
support two parallel multipliers T1 =MontMult(a1,b1) and
T2 =MontMult(a2,b2). Input a is loaded serially alternating
between input a1 and a2 while input b is loaded in parallel with
b1 loaded to one set and b2 loaded to the other set. To support
interleaving, each word of input b is loaded as soon as the
corresponding element requires it. The modulus m is loaded
with the security level’s prime prior to any multiplication. The
outputs T1 and T2 are obtained from T of the multiplier as
soon as they are available.

IV. ACCELERATED RISC-V

In this section, we discuss the RISC-V accelerator archi-
tecture for SIKE as shown in Fig. 3(a). The architecture is
composed of a CPU which uses a 32-bit dedicated RAM for
the software’s instruction and data addresses. The CPU also

allocates additional addresses for an APB interface by utilizing
an APB bridge. The APB protocol is a royalty free protocol to
connect low-bandwidth peripherals by ARM. In our setup, the
CPU acts as the master and controls all peripherals which act
as slaves. The peripherals used are GPIO and UART for IO
operations and coprocessor for isogeny operations. The APB
bridge uses an APB decoder to send the data to the correct
peripheral. All the components excluding the coprocessor act
as the main RISC-V chip and is based on Murax, which is a
publicly available open source system on chip for VexRiscv
CPU, an implementation of RISC-V CPU. The chosen CPU
architecture implements rv32i instruction set which support
basic integer operations excluding multiplication and division.
The coprocessor, which is discussed in Section IV-A, is an
isogeny accelerator with an APB-coprocessor bridge used to
translate APB instructions to instructions the coprocessor can
understand as shown in Fig. 3(b).

A. Coprocessor Architecture

At its core, the coprocessor is made up of an ALU unit and
a RAM unit. The ALU, which is shown in Fig. 3(c), is made
up of a modular adder as discussed in Section III-A and a dual
Montgomery multiplier acting as two parallel Montgomery
multipliers as discussed in section III-B. The two multipliers
and the adder each have unique pair of operands. One operand
of all three pairs reads data from one port of the RAM unit
while the other operand reads data from the other port of the
RAM unit. The adder output from the adder unit is written to
one port of the RAM unit. The multiplier output is selected
from one of the multipliers and written to the other port of
the RAM unit. Since each multiplier starts at a different cycle,
they never need to write data into the RAM in the same cycle.

The adder unit is continuously processing its operands with
one bit used to select modular addition or modular subtraction.
If no addition operation is required, the result is discarded and
not written to the RAM unit. For the multiplication unit, three
bits are used for each multiplier to load data from the RAM
unit, start the multiplier, and start reading the result of the
multiplier into the output register, respectively. Finally, one
bit is used to select the output register to be written into the
RAM unit.

The RAM unit is a 256× 752 true dual-port RAM used to
store all isogeny constants and computations. The RAM unit
uses 9 bits to control each port with 8 bits to select the address
and 1 bit to enable writing. To minimize the critical path, the
data is available to be read from this RAM unit 2 cycles after
the address is set.

An instruction controller, discussed in Section IV-B, is used
to control the ALU and RAM units when the accelerator
is performing the instructions received from the CPU. The
instruction controller receives 26-bit instructions from an in-
struction memory which in turn receives it from the CPU. The
instruction is composed of three 8-bit addresses, one for each
operand’s address and one for the destination address, and 2
bits for addition, subtraction, multiplication, or end opcode.
The instruction memory is a 64 × 26 simple dual port RAM

134

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 23,2024 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

Coprocessor

RISC-V processor chip

RAM

CPU Other
peripherals

sl
av

e

master slave

IO

Buffer

Modulus

Instruction Memory

Instruction Controller

Main
Controller

RAM ALUAPB-Coprocessor
Bridge

Write buffer

Read Buffer

Instruction

Command

Instruction
Memory

Buffer

write RAM
read RAM
load prime
load level

0x00

0x04

0x08

0x0C

Dual Montgomery
Multiplier

Modular
Adder

0

1

sel

sub

T0

T1

en

en

en

en

prod

sum

start1 start2 read1 read2

load1

load2

APB
Bridge

(a)

APB
Decoder

(b)

(c)

Figure 3. (a) RISC-V accelerator architecture. (b) Coprocessor-APB bridge. (c) ALU architecture.

used to buffer instructions to avoid any bottlenecks caused
by the difference between the rate at which instructions are
received from the CPU and the rate at which instructions are
processed by the ALU unit. The instruction memory operates
as a first-in first-out (FIFO) unit with a main controller control-
ling writing instructions into the memory while the instruction
controller independently controlling reading instructions from
the memory. The addresses in the instruction memory are
divided in two 32-address sets. After one set is completely
filled or an end instruction is received, the main controller
instructs the instruction controller to begin processing the
instructions in the set. When one set is completely filled
while the other set is still being processed, the main controller
instructs the CPU to halt until the set being processed is
completed.

A 768-bit buffer is used to transfer data between the CPU
and the coprocessor’s RAM unit, as well as, to load a modulus
into the modulus register. To transfer data from the CPU to the
coprocessor, 32-bits are shifted into the buffer per transaction
until all 768 bits are transferred with most significant bits set
to 0 for unused bits. Once all bits are transferred, a command
is issued to the main controller to load the data into a specific
address of the RAM unit. To transfer data from the coprocessor
back to the CPU, the reverse process is performed. A command
is first issued into the main controller to load data from a
specific address of the RAM unit into the buffer. Then, 32-
bits are shifted from the buffer into the CPU per transaction
until all required bits are transferred. In addition, the data in the
buffer can be loaded into the modulus register by issuing a load
modulus command to the main controller after the modulus is
loaded into the buffer.

B. Instruction Controller

As stated in IV-A, the instruction controller (IC) is respon-
sible for reading the instructions loaded into the instruction

memory and controlling the RAM and ALU to perform the
instruction. The IC operates in 2 fetch stages before decoding
the instructions. On reset, the IC is in an inactive state. When
a start signal from the main controller of the coprocessor
is received, it goes into fetch 1 state where only fetch 1 is
operating. In fetch 1 operation, the program counter, used
to get the address in instruction memory, is incremented to
fetch the next instruction while the current instruction in the
instruction memory is being loaded into the first register. The
IC then goes into fetch 2 state where both fetch 1 and fetch
2 are operating. In fetch 2 operation, the instruction from the
first register is transferred into the second register. After fetch
2 state, the IC goes into an active state where, in addition to
the previous two operations, the decode operation is running.
In the decode operation, the instruction in the second register
can begin to be processed by the IC.

The first step in the decode operation is for the IC to send
the operand addresses to the RAM unit, the data of which
is available after 2 cycles. In the case of an add or subtract
opcode, the subtract bit is sent to the adder unit, and, 2 cycles
later, the adder write port of the RAM unit is enabled to write
the result. In case of a multiplication opcode, the IC loads the
data into a register for the current multiplier which alternate
after every multiplication instruction at the decode stage. Then,
the IC instructs the multiplier to start the instruction with one
multiplier waiting for an odd cycle and the other waiting for
an even cycle. The IC waits using a stage 1 counter for the
interleave cycles of the multiplier less 6 which account to
2 ram cycles, 1 load cycle, 1 start cycle, and 2 additional
cycles. Once the cycles are completed, the first stage of the
multiplier is done. A read signal is sent to the multiplier 6
cycles later to begin collecting the partial results. The IC then
goes into a stage 2 counter which waits until one cycle before
the multiplier finishes collecting all the partial results. After
1 cycle, the IC sends the select signal to the multiplier and

135

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 23,2024 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

enables the multiplier write port of the RAM unit. Stage 1
and stage 2 counters are variable counters with the number
of cycles transmitted by the CPU before any computation is
performed to support a variable number of digits.

The destination address of the instruction goes through a
similar process to the opcode process before being transmitted
into the RAM unit during a write cycle. First, the destination
address gets loaded into new registers for 2 cycles correspond-
ing to the RAM stages. The last register, in turn, gets loaded
into two new registers over another 2 cycles corresponding to
the adder stages, the last of which is transmitted to the write
port’s address of the RAM unit. In case of a multiplication,
the destination address obtained at the end of the second
RAM stage is loaded into one of two registers depending on
which multiplier is loaded and this corresponds to the first
multiplier stage. After the stage 1 counter of a multiplier is
done, the destination address is transferred to a second register
corresponding to the second multiplier stage. Finally, when the
multiplier is ready to write the results back to the RAM unit,
the destination address is selected from one of the two second
multiplier stage registers. The set of all destination addresses
excluding the destination address at the second add stage are
additionally checked if they are active. We are going to call
this set, henceforth, the running destination address set.

There are three cases that will cause the IC unit to temporar-
ily halt the fetching and decoding operations but not operations
that passed the decode stage. The first case is during a write
operation since the RAM unit cannot perform read and write
in the same cycle. In the write operation case, the IC stops all
fetch and decode operations for one cycle.

The second case is during a memory lock state where one
of the operands of an instruction is the output of a previous
instruction that hasn’t completed yet. When an instruction is
in the decode stage, the operands (or source) addresses are
checked against active addresses in the running destination
address set. If either of the source addresses is found in the
list, then the IC goes into a memory lock state. To unlock the
memory lock state, the source address that caused the locked
state needs to match the destination address written back to
the RAM.

The third case is during multiplication lock state where
both multipliers are unavailable which happens when both
multipliers are processing data in the interleave stage. When an
instruction at the decode stage is a multiplication instruction
and it is ready to go through, the multiplier usage counter
is incremented indicating a multiplier is locked. On the other
hand, when the first stage counter for any multiplier is done,
the multiplier usage counter is decremented indicating a multi-
plier is released. If the multiplier usage counter is greater than
or equal to 2, which indicates both multipliers are unavailable,
then any additional multiplication instructions at the decode
stage will cause a multiplication lock state. Completing first
stage counters for either multipliers unlocks the multiplication
lock state.

During the active state of the IC unit, if an end instruction
is passed at the decode stage, the IC unit will go into the

Table IV. Breakdown of Isogeny operations cost for SIKEp434

Function #CC Status

3 Pt Ladder 824 Feasible
Pt Quad 930 Optimized
Get 4-Iso 247 Optimized
Eval 4-Iso 619 Optimized
Pt Triple 927 Feasible
Get 3-Iso 375 Optimized
Eval 3-Iso 513 Optimized

Fp Inv 42,849 Feasible

inactive state if the other set of instructions in the instruction
memory is not ready yet. Otherwise, the IC unit will go into
fetch 1 state to begin the other set of instructions. If fetch 1
operation reaches the end of the set, the IC unit will go into
two temporary states final 1 and final 2 to check if an end
instruction is encountered in the last 2 instructions that the
decode operation hasn’t processed yet.

C. Software

The software code is implemented based on Microsoft’s
software implementation of SIKE with some modification.
First, all major isogeny functions, also found in Table IV, are
broken into Fp instructions which can then be replaced with
the coprocessor’s equivalent instructions. A scheduler based on
[19] is used to minimize the cycle count and ran for 1 hour
per function. Table IV shows the cost of the isogeny functions
for the lowest security level with a status indicating whether
an optimal cycle count was found.

The keccak function, which is used for hashing, is imple-
mented in assembly using [20]. It takes 23k cycles to complete
one permutation which increases the cycle count by around 8%
for the lowest security level and less for higher security levels.
We consider this increase an acceptable increase in comparison
to implementing the keccak function in hardware.

The software is compiled using RISC-V GNU compiler
toolchain with rv32i architecture and level 3 optimization
chosen. Each security level is compiled separately. The size
of the program code including data storage is less than 48KB
for all security levels. Therefore, the RAM unit of the RISC-V
processor chip of our architecture is also set to 48 KB. The
code of one security level is then loaded into the RAM unit
and the SIKE code can then run inside the chip.

V. FPGA IMPLEMENTATION

In this section, we discuss FPGA implementation of the
design described in section IV. The architecture is written in
Verilog and SystemVerilog with the RISC-V processor chip
generated in Verilog using SpinalHDL. The architecture is
implemented in Xilinx Virtex-7 xc7vx690tffg1157-3 similar
to the one used in most other SIKE implementations found in
the literature. All results obtained are post-place and route.

Table V shows a detailed area result of the design. The total
area of the chip is 4,611 slices (15,246 flip-flops and 11,212
LUTs), 78 DSPs and 34.5 BRAMs. The RISC-V processor

136

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 23,2024 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

Table V. Detailed area result of RISC-V accelerator chip in
Virtex-7 FPGA

Component # FFs # LUTs # Slices # DSPs # BRAMs

RISC-V processor chip 1322 1321 555 0 13

Coprocessor 13922 9888 4087 78 21.5

- adder 2274 3082 1374 0 0

- mult 9378 2026 2730 78 0

Total 15,246 11,212 4,611 78 34.5

chip occupies 12% of the slice area and 38% of the BRAM
area while the coprocessor occupies 88% of the slice area and
62% of the BRAM area. Most of the area of the coprocessor
comes from the multiplier which occupies 66% of the slice
area and uses all the DSPs required for the design. The
remaining area of the coprocessor comes from the adder and
occupies around 33% of the slice area.

Table VI shows the timing results of the design. The
operating frequency of the design is 243.6 MHz with the adder
being the bottleneck of the design. For security level 1, the
key generation (keygen) takes 1.22 million clock cycles, the
key encapsulation (keyencap) takes 2.26 million clock cycles,
and the key decapsulation (keydecap) takes 2.41 million clock
cycles. Since the keygen is usually pre-generated, it is not
counted towards the total latency of the SIKE protocol. The
total time, which is the clock cycles of the keyencap and
keydecap divided by the frequency, is 19.2 ms. The total time
is 25.1 ms for security level 2, 38.7 ms for security level 3,
and 55.0 ms for security level 5.

Table VII compares our results with the results of other
SIKE hardware and mixed software-hardware designs. We
used 1 DSP = 1 Bram = 100 Slices for area-time trade-off as
was used in [14]. Our design is more than 2× slower than the
fast hardware implementations used in [19], [15]. However,
we use 3× less multipliers and we support all security levels
in one design. This means that at the highest security level, we
use around 4× less area in comparison to the state-of-the-art
[15]. Our area-time trade-off is better than all other designs
available in the literature at security level 3 and 5 with security
level 5 almost having 2× improvement in area-time trade-off.
For security level 1 and 2, our design has a slightly worse
area-time trade-off than state-of-the-art.

The authors in [5] implemented two software-hardware
designs for SIKE with a custom-made CPU. Their fast imple-
mentation is worse than our designs in all parameters with our
design having effectively 2× better area-time trade-off. Their
slow implementation occupies less area in comparison to our
implementation. However, their performance is significantly
lower and it has as significantly worse area-time trade-off.

VI. CONCLUSION

In this paper, we implemented a software-hardware co-
design for SIKE targeting all security levels in on design.
We also improved the Montgomery multiplier architecture
proposed in [15]. We presented FPGA implementations of our
design and showed that we have a highly efficient area-time

Table VI. Timing results of RISC-V accelerator chip in Virtex-
7 FPGA

Security Freq. #CC (×106) Total time

Level [MHz] K E D E+D [ms]

1

243.6

1.22 2.26 2.41 4.68 19.2

2 1.64 2.95 3.17 6.11 25.1

3 2.39 4.66 4.77 9.43 38.7

5 3.72 6.46 6.95 13.41 55.0

Table VII. Comparison of area and timing results in Virtex-7
FPGA

Reference Slices DSPs BRAMs Time AT (×10−3)

SIKEp434
Koziel et al. [14] 8,121 240 26.5 11.3 393

Elkhatib et al. [15] 5,527 195 32.0 8.8 248

Massolino et al. [5] (S) 3,415 57 21.0 50.4 565

Massolino et al. [5] (F) 7,408 162 38.0 24.3 666

This work 4,611 78 34.5 19.2 305

SIKEp503
Koziel et al. [21]∗ 10,298 192 27.0 33.7 1,085

Koziel et al. [22]∗ 8,918 192 40.0 20.9 671

Koziel et al. [23]∗ 7,491 192 43.5 16.5 512

Koziel et al. [14] 8,907 264 33.5 14.1 545

Elkhatib et al. [15] 6,163 225 34.0 11.8 378

Massolino et al. [5] (S) 3,415 57 21.0 59.5 667

Massolino et al. [5] (F) 7,408 162 38.0 28.7 787

This work 4,611 78 34.5 25.1 398

SIKEp610
Koziel et al. [14] 10,675 312 39.5 21.6 990

Elkhatib et al. [15] 7,461 270 38.5 19.1 732

Massolino et al. [5] (S) 3,415 57 21.0 107.2 1,202

Massolino et al. [5] (F) 7,408 162 38.0 51.8 1,420

This work 4,611 78 34.5 38.7 614

SIKEp751
SIKE Team [24] 16,756 376 56.5 33.4 2,004

Koziel et al. [14] 15,834 512 43.5 27.8 1,984

Farzam et al. [19]** 15,336 512 45.0 24.1 1,712

Elkhatib et al. [15] 11,136 452 41.5 25.5 1,542

Massolino et al. [5] (S) 3,415 57 21.0 179.6 2,014

Massolino et al. [5] (F) 7,408 162 38.0 60.8 1,666

This work 4,611 78 34.5 55.0 872
∗ SIDH

∗∗ SIKE Round 1 Parameters

trade-off. Our design shows potential for software-hardware
co-design to be competitive with pure hardware designs. Our
future work will involve exploring a RISC-V coprocessor
design with separate security levels and with more multipliers
to have a more fair comparison with hardware-only designs.

VII. ACKNOWLEDGMENT

The authors would like to thank the reviewers for their com-
ments. The authors would also like to thank Utsav Banerjee
for his constructive comments. This work is supported in parts
by DoD-N001741910031.

137

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 23,2024 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] P. W. Shor, “Algorithms for Quantum Computation: Discrete Logarithms
and Factoring,” in 35th Annual Symposium on Foundations of Computer
Science (FOCS 1994), pp. 124–134, 1994.

[2] The National Institute of Standards and Technology
(NIST), “Post-quantum cryptography standardization,” 2017–
2018. https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization.

[3] M. Bisheh Niasar, R. Azarderakhsh, and M. M. Kermani, “Efficient hard-
ware implementations for elliptic curve cryptography over curve448,” in
Progress in Cryptology – INDOCRYPT 2020 (K. Bhargavan, E. Oswald,
and M. Prabhakaran, eds.), (Cham), pp. 228–247, Springer International
Publishing, 2020.

[4] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani, “Area-
time efficient hardware architecture for signature based on ed448,” IEEE
Transactions on Circuits and Systems II: Express Briefs, pp. 1–1, 2021.

[5] P. M. C. Massolino, P. Longa, J. Renes, and L. Batina, “A compact and
scalable hardware/software co-design of sike,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, pp. 245–271, 2020.

[6] H. Seo, M. Anastasova, A. Jalali, and R. Azarderakhsh, “Supersingular
isogeny key encapsulation (sike)round 2 on arm cortex-m4,” IEEE
Transactions on Computers, pp. 1–1, 2020.

[7] M. Anastasova, R. Azarderakhsh, and M. M. Kermani, “Fast strategies
for the implementation of sike round 3 on arm cortex-m4.” Cryptology
ePrint Archive, Report 2021/115, 2021. https://eprint.iacr.org/2021/115.

[8] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sapphire: A
configurable crypto-processor for post-quantum lattice-based protocols,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2019, pp. 17–61, Aug. 2019.

[9] U. Banerjee, S. Das, and A. P. Chandrakasan, “Accelerating post-
quantum cryptography using an energy-efficient tls crypto-processor,” in
2020 IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 1–5, 2020.

[10] R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess,
A. Jalali, D. Jao, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig,
G. Pereira, J. Renes, V. Soukharev, and D. Urbanik, “Supersingular
Isogeny Key Encapsulation.” Submission to the NIST Post-Quantum
Standardization Project, 2020.

[11] M. Dworkin, “Sha-3 standard: Permutation-based hash and extendable-
output functions,” 2015-08-04 2015.

[12] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, and R. V. Keer,
“Keccak Implementation Overview,” May 2012.

[13] T. B. Preuxer, M. Zabel, and R. G. Spallek, “Accelerating Computations
on FPGA Carry Chains by Operand Compaction,” in 2011 IEEE 20th
Symposium on Computer Arithmetic, pp. 95–102, July 2011.

[14] B. Koziel, A. Ackie, R. El Khatib, R. Azarderakhsh, and M. M. Kermani,
“Sike’d up: Fast hardware architectures for supersingular isogeny key
encapsulation,” IEEE Transactions on Circuits and Systems I: Regular
Papers, pp. 1–13, 2020.

[15] R. Elkhatib, R. Azarderakhsh, and M. Mozaffari-Kermani, “Highly
optimized montgomery multiplier for sike primes on fpga,” in 2020
IEEE 27th Symposium on Computer Arithmetic (ARITH), pp. 64–71,
2020.

[16] M. B. Niasar, R. El Khatib, R. Azarderakhsh, and M. Mozaffari-
Kermani, “Fast, small, and area-time efficient architectures for key-
exchange on curve25519,” in 2020 IEEE 27th Symposium on Computer
Arithmetic (ARITH), pp. 72–79, 2020.

[17] P. L. Montgomery, “Modular Multiplication without Trial Division,”
Mathematics of Computation, vol. 44, no. 170, pp. 519–521, 1985.

[18] W. Liu, Z. Ni, J. Ni, C. Rafferty, and M. O’Neill, “High performance
modular multiplication for sidh,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 10, pp. 3118–
3122, 2020.

[19] M.-H. Farzam, S. Bayat-Sarmadi, and H. Mosanaei-Boorani, “Imple-
mentation of supersingular isogeny-based diffie-hellman and key encap-
sulationusing an efficient scheduling,” IEEE Transactions on Circuits
and Systems I: Regular Papers, 2020.

[20] K. Stoffelen, “Efficient cryptography on the risc-v architecture.” Cryp-
tology ePrint Archive, Report 2019/794, 2019. https://eprint.iacr.org/
2019/794.

[21] B. Koziel, R. Azarderakhsh, M. Mozaffari-Kermani, and D. Jao, “Post-
Quantum Cryptography on FPGA Based on Isogenies on Elliptic

Curves,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 64, pp. 86–99, Jan 2017.

[22] B. Koziel, R. Azarderakhsh, and M. Mozaffari-Kermani, “Fast Hardware
Architectures for Supersingular Isogeny Diffie-Hellman Key Exchange
on FPGA,” in Progress in Cryptology – INDOCRYPT 2016: 17th
International Conference on Cryptology in India, pp. 191–206, 2016.

[23] B. Koziel, R. Azarderakhsh, and M. Mozaffari-Kermani, “A High-
Performance and Scalable Hardware Architecture for Isogeny-Based
Cryptography,” IEEE Transactions on Computers, vol. 67, pp. 1594–
1609, Nov 2018.

[24] R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess,
A. Jalali, D. Jao, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig,
G. Pereira, J. Renes, V. Soukharev, and D. Urbanik, “Supersingular
Isogeny Key Encapsulation.” Submission to the NIST Post-Quantum
Standardization Project, 2019.

138

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 23,2024 at 22:37:12 UTC from IEEE Xplore. Restrictions apply.

