
Side-Channel Analysis and Countermeasure Design for
Implementation of Curve448 on Cortex-M4

Mojtaba Bisheh-Niasar
∗

mbishehniasa2019@fau.edu

Florida Atlantic University

Boca Raton, Florida, USA

Mila Anastasova

manastasova2017@fau.edu

Florida Atlantic University

Boca Raton, Florida, USA

Abubakr Abdulgadir

abubakr.abdulgadir@pqsecurity.com

PQSecure Technologies, LLC

Boca Raton, Florida, USA

Hwajeong Seo

hwajeong84@gmail.com

Hansung University

Seoul, South Korea

Reza Azarderakhsh

razarderakhsh@fau.edu

Florida Atlantic University

PQSecure Technologies, LLC

Boca Raton, Florida, USA

ABSTRACT
The highly secure Curve448 cryptographic algorithm has been re-

cently recommended by NIST.While this algorithm provides 224-bit

security over elliptic curve cryptography, its implementation may

still be vulnerable to physical side-channel attacks. In this paper,

we present a speed-optimized implementation on a 32-bit ARM

Cortex-M4 platform achieving more than 40% improvement com-

pared to the best previous work. Our design can perform 43 scalar

multiplications per second on an STM32F4 working at 168 MHz.

At 24 MHz, our proposed implementation takes only 3,740k clock

cycles. On the other hand, the security of Curve448 is thoroughly

evaluated to have a trade-off between performance and required

protection. We apply different effective countermeasures to prevent

a subset of side-channel and fault injection attacks at the cost of

8%-22% overhead.

CCS CONCEPTS
• Security and privacy→ Cryptanalysis and other attacks.

KEYWORDS
Cortex-M4, Curve448, elliptic curve cryptography, hardware secu-

rity, scalar multiplication, side-channel

ACM Reference Format:
Mojtaba Bisheh-Niasar, Mila Anastasova, Abubakr Abdulgadir, Hwajeong

Seo, and Reza Azarderakhsh. 2022. Side-Channel Analysis and Counter-

measure Design for Implementation of Curve448 on Cortex-M4. In Hard-
ware and Architectural Support for Security and Privacy (HASP ’22), Octo-
ber 01, 2022, Chicago, IL, USA. ACM, New York, NY, USA, 8 pages. https:

//doi.org/10.1145/3569562.3569564

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HASP ’22, October 01, 2022, Chicago, IL, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9871-8/22/10. . . $15.00

https://doi.org/10.1145/3569562.3569564

1 INTRODUCTION
Key exchange protocols establish secret keys between two or more

parties through an insecure channel such as the internet. Classical

elliptic curve cryptography (ECC) key exchange protocols such as

Diffie-Hellman rely on the difficulty of solving discrete logarithm

problems. Recently, Curve448 has been recommended by NIST [11]

and IETF [19] to address backdoor issues in other ECC construc-

tions [5], while Safe-Curve policies [6] are considered in its design

procedures. Curve448, designed by Hamburg [17, 22], offers 224-bit

security for applications at a higher security level as a part of the

TLS [25] and OpenSSH protocols.

On the other hand, although classical cryptosystems will be

broken by emerging large-scale quantum computers, we have to

develop hybrid cryptosystems to transition to post-quantum cryp-

tography (PQC) for maintaining accordance with industry or gov-

ernment regulations while PQC updates will be thoroughly applied.

Therefore, classical cryptosystems cannot be eliminated even if

PQC will be developed.

The demand for Internet of Things (IoT) devices in the everyday

world is constantly increasing; thus, the most popular and highly

used ARM-based platform, Cortex-M4, has been a target of sev-

eral research groups working on different projects and topics. The

simple architecture of the reduced instruction set allows highly

optimized energy and power consumption and area efficiency of

the platform, therefore, it is used in most embedded and real-time

systems.

A side-channel analysis attack (SCA) can extract the secret key

by analyzing the information leakage, including timing, power

consumption, and electromagnetic emissions, etc. According to

the types of leakage, SCA can be categorized into timing attack,

simple power analysis (SPA) attack, differential power analysis

attack (DPA), and electromagnetic attack.

Although there are intensive research and many published pa-

pers dealing with Curve25519 [3, 9, 10, 16, 27], Curve448 has not

been thoroughly investigated in the literature. To the best of our

knowledge, there appear to be extremely few Curve448 implemen-

tations. The only Curve448 implementation over Cortex-M4 was

proposed by Seo et al. [31], computing 26 scalar multiplications per

second at 168 MHz. Although this work did consider optimized field

arithmetic, it utilized extended affine and projective coordinates

10

https://orcid.org/0000-0002-1311-8679
https://doi.org/10.1145/3569562.3569564
https://doi.org/10.1145/3569562.3569564
https://doi.org/10.1145/3569562.3569564
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3569562.3569564&domain=pdf&date_stamp=2023-09-21

HASP ’22, October 01, 2022, Chicago, IL, USA Mojtaba Bisheh-Niasar, Mila Anastasova, Abubakr Abdulgadir, Hwajeong Seo, and Reza Azarderakhsh

and only investigated constant-time algorithms. Our proposed ar-

chitecture is both faster and more secure than [31].

This work builds upon [31] in two critical ways: (i) This work em-

ploys a significantly improved field arithmetic with careful memory

management resulting in an 18% speedup in low-level arithmetics.

(ii) This work achieves 40% speedup using efficient restricted-X

coordinates wherein not only does our architecture inherently pro-

vide protection against timing and SPA attacks, but also advanced

security mechanisms can be included with a limited performance

penalty to avoid DPA attacks, which is missing in the literature.

Curve448 implementations and SCA evaluation over the FPGA

platform were proposed in [7, 28, 29]. Additionally, the scalar mul-

tiplication architectures over Ed448, equivalent to Curve448, were

presented on Cortex-M4, AVR, MSP, and FPGA platforms in [2],

[30], and [8], respectively.

Given the complexities of the Curve448 with extended field

size on resource constraint devices, a study on designing speed-

optimized implementation is well deserved; however, the secure

implementation challenges are intensified due to information leak-

ages. Note that the protected scheme should be resistant against

timing, SPA, and DPA attacks.

Contributions. In this work, we report speed record results

for the implementation of Curve448 improving 40% of the total

time compared to the best previous work, targeting the resource-

restricted Cortex-M4. Our contributions are: (i) We propose an

optimized low-level field arithmetics based on continuous alter-

nation between addition/subtraction to reduce memory access for

the carry/borrow catcher technique. The newly proposed design

permits to development of two arithmetic operations working on

long integers in parallel show 18% performance improvement. (ii)

We also utilize the Refined-Operand Caching method achieved by a

Cortex-M4 DSP instruction and register optimization techniques to

reduce the memory access instructions. We also employ the inter-

leaved reduction technique into the multi-precision multiplication

providing 18% speedup. (iii) Our modular operation cleverly ex-

ploits the special form of the prime numbers used in Curve448 to

reduce the number of memory accesses along with completely mod-

ifying the implementation. (iv) Additionally, several side-channel

and fault injection (FI) countermeasures are implemented and eval-

uated to protect the scheme from the most relevant attacks. We

provide performance results and side-channel countermeasures for

our implementation providing a trade-off between performance

and required protection.

The rest of this paper is organized as follows: In Sec. 2, some

relevant mathematical background are reviewed. In Sec. 3, the pro-

posed implementation is investigated. In Sec. 4, the results and

comparison with other works are discussed. We evaluate SCA coun-

termeausres in Sec. 5. Eventually, we conclude this paper in Sec.

6.

2 PRELIMINARIES
In this section, the mathematical background of Curve448 will be

briefly introduced.

2.1 Curve448 Arithmetic
A Montgomery curve 𝐸 is expressed over 𝐺𝐹 (𝑝) is defined by:

𝐸 : 𝑦2 ≡ 𝑥3 + 𝐴 · 𝑥2 + 𝑥 mod 𝑝 , where 𝑝 = 2
448 − 2224 − 1 and

𝐴 = 156326. This curve is birationally equivalent to an untwisted

Algorithm 1 The Montgomery ladder based scalar multiplication

over Curve448

Input: 𝑘 , P = (𝑥𝑝 , 𝑦𝑝)
Require: the 𝑥-coordinate of Q = 𝑘 · P
Initial step: P1 = (𝑋1, 𝑍1) = (1, 0), P2 = (𝑋2, 𝑍2) = (𝑥𝑝 , 1)

1: for 𝑖 from 447 downto 0 do
2: if 𝑘𝑖 = 0 then
3: (P1,P2) = 𝑙𝑎𝑑𝑑𝑒𝑟𝑠𝑡𝑒𝑝 (𝑥𝑝 ,P1,P2)
4: else
5: (P2,P1) = 𝑙𝑎𝑑𝑑𝑒𝑟𝑠𝑡𝑒𝑝 (𝑥𝑝 ,P2,P1)
6: end if
7: end for
8: return 𝑥𝑞 = 𝑋1/𝑍1

Edwards curve called Edwards448 [19]. scalar multiplication can be

efficiently performed using the Double-and-Add algorithm. How-

ever, this algorithm is vulnerable if the point doubling and point

addition can be visually distinguished in the power measurements

of a scalar multiplication [13]. The Double-and-always-Add algo-

rithm is used to prevent timing and SPA attacks.

Group operation over the Montgomery curves can be accelerated

and also protected using the Montgomery ladder [23] using differ-

ential addition formulas presented in projective coordinates. This

algorithm provides fast and constant-time execution of PA and PD.

A point P = (𝑥,𝑦) from affine is presented in projective coordinates

such that (𝑥,𝑦) = (𝑋/𝑍,𝑌/𝑍). Given two points P1 = (𝑋1, 𝑍1) and
P2 = (𝑋2, 𝑍2), and the difference P1 − P2 = (𝑋3, 𝑍3), a single step
of the Montgomery ladder computes two points P𝑃𝐷 = 2 · P1 and
P𝑃𝐴 = P1 + P2 such that:

𝑋𝑃𝐷 =(𝑋1 − 𝑍1)2 · (𝑋1 + 𝑍1)2 (1)

𝑍𝑃𝐷 =4𝑋1𝑍1 · (𝑋 2

1
+ 𝑑𝑋1𝑍1 + 𝑍 2

1
) (2)

𝑋𝑃𝐴 =𝑍3 ((𝑋1 − 𝑍1) · (𝑋2 + 𝑍2) + (𝑋1 + 𝑍1) · (𝑋2 − 𝑍2)) (3)

𝑍𝑃𝐴 =𝑋3 ((𝑋1 − 𝑍1) · (𝑋2 + 𝑍2) − (𝑋1 + 𝑍1) · (𝑋2 − 𝑍2)) (4)

Algorithm 1 shows the point multiplication based on Mont-

gomery ladder step. After performing 448 steps of the Montgomery

ladder, amodular inversion is required tomap the result from projec-

tive to affine coordinates. By Fermat’s Little Theorem, 𝑎−1 ≡ 𝑎𝑝−2
mod 𝑝 will be computed by consecutive operations, including 447

squaring and 15 multiplications.

2.2 Side-Channel Protection
Implementations of scalar multiplication are known to be vul-

nerable to side-channel analysis, e.g., [3, 15, 29]. SCA protection

should be considered at both algorithmic and implementation lev-

els.Performing inherently resistant algorithms, e.g., Montgomery

Ladder or Fermat’s little theorem, achieves constant-time imple-

mentation and secret-independent implementation. The authors in

[13] introduced several countermeasures to scalar multiplication to

prevent DPA vulnerability, including point randomization, scalar

blinding.

The point P = (𝑥𝑝 , 𝑦𝑝) can be projected using a random value

_ ∈ Z
2
448 \ {0} such that P𝑟 = (_ · 𝑥𝑝 , _). Although the point is

11

Side-Channel Analysis and Countermeasure Design for Implementation of Curve448 on Cortex-M4 HASP ’22, October 01, 2022, Chicago, IL, USA

100 102 104 106 108

Sample No.

4

5

6

7

8

t-v
al

ue

Figure 1: TVLA threshold as a function of the number of
samples per trace. The value is calculated based on [14] as-
suming a statistical confidence level < 0.00001 and a large
degree of freedom.

randomized, the same point Q = 𝑘 · P𝑟 corresponding to a constant
scalar will be computed, i.e., 𝑥𝑝 = 𝑋

𝑍
= _𝑋

_𝑍
.

The scalar blinding can be achieved by adding a multiple of

group order #𝐸 such that 𝑘𝑟 = 𝑘 + 𝑟 × #𝐸 where 𝑟 is a random value.

However, the same point Q = 𝑘𝑟 · P corresponding to a constant

base point will be computed, as proven as 𝑘𝑟 · P = (𝑘 +𝑟 ×#𝐸) · P =

𝑘 · P + 𝑟 · O = 𝑘 · P.

2.3 TVLA
Test vector leakage assessment (TVLA), introduced in [4], provides

a robust test using a 𝑡-test to evaluate the differences between

sets of acquisitions to determine if one set of measurement can be

distinguished from the other. This technique can detect different

types of leakages, providing a clear indication of leakage or lack

thereof [34].

Given two sets of traces with 𝑛1 and 𝑛2 samples, we compute

the corresponding sample means, 𝑥1 and 𝑥2, and respective sample

standard deviations, 𝜎1 and 𝜎2. A 𝑡-statistic using Welch’s 𝑡-test

can be computed such that:

𝛼 =
𝑥1 − 𝑥2√︂
𝜎2

1

𝑛1

+ 𝜎2

1

𝑛2

(5)

In practice, observing 𝛼 greater than a specific threshold indi-

cates the presence of leakage. The confidence threshold in [34] was

set to 4.5, leading to many false positives, particularly when the cap-

tured trace is significantly extended. To avoid the false positives, the

authors in [3] computed the confidence threshold for Curve25519

scalar multiplication using the threshold formula proposed in [14]

and [24] equal to 7. Fig. 1 depicts the confident threshold for differ-

ent captured trace length based on [14].

3 PROPOSED ALGORITHM AND
ARCHITECTURE

3.1 Cortex-M4 Microarchitecture
We use the NIST recommended STM32F407-VG platform to imple-

ment our proposed protected Curve448 architecture. The Cortex-M4

architecture offers 16 general purpose register (GPR) set, including

reserved registers for the Stack Pointer (SP), Link Register (LR), and

Program Counter (PC). Although LR is a special register, its value

can be manipulated when previously stored in the memory.

The 3-stage pipeline architecture of the platform allows a through-

put of one RISC instruction per cycle. However, the load/store

instructions may take up to 2 clock cycles when not properly sched-

uled. The consecutive memory accesses ensure pipelined execution

of the instructions. The simplicity of the instruction set of the tar-

get platform makes the ARMv7-M architecture suitable for the

execution of complex problems efficiently.

The powerful Multiply ACcumulate (MAC) instructions perform

one multiplication storing the result in two different 32-bit registers,

ensuring the entire result of 64-bit value. Possibly another two 32-

bit additions can be executed where the value of the destination

registers is added to the result.

3.2 Field Arithmetic
In the implementation design of the hand-coded assembly subrou-

tines, we use the previously described instruction to speed up the

low level field arithmetic operations.

Themodular additionmakes use of the powerful ADD{S}, ADC{S},
SUB{S}, and SBC{S} to propagate the carry/borrow among the

words of the operands. In addition, we implement a carry/borrow

catcher technique, which allows to develop two arithmetic oper-

ations working on long integers in parallel. In our proposed im-

plementation, 𝐴 + 𝐵 − 𝑃 is performed on blocks of the operands,

where we implement 𝐴[0 − 3] + 𝐵 [0 − 3] − 𝑃 [0 − 3] and store the

carry/borrow results of the last addition/subtraction in registers to

later propagate to the following blocks. The carry/borrow catcher

technique allows to significantly reduce the number of memory

accessing instructions, thus reducing the latency of operations.

We utilized the Refined-Operand Caching method with a width

of 4 for optimal 448-bit wise multi-precision multiplication, which

is achieved by powerful UMAAL instruction and register optimization

techniques. The UMAAL instruction performs the MAC operation

without overflow conditions. For this reason, no additional carry

catcher registers are required. The beginning of multiplication is

performed with the UMULL instruction. This instruction can initial-

ize destination registers and avoid the register initialization step

efficiently. The order of instructions was also optimized to reduce

the number of pipeline stalls by removing the interdependency

between registers since memory access and instructions can be

performed in a parallel way.

Figure 2 shows detailed descriptions of 448-bit wisemulti-precision

multiplication. Let 𝐴 and 𝐵 be operands of length 448 bits each.

Each operand is written as 𝐴 = (𝐴[13], ..., 𝐴[1], 𝐴[0]) and 𝐵 =

(𝐵 [13], ..., 𝐵 [1], 𝐵 [0]). The 896-bit result𝐶 = 𝐴 ·𝐵 is represented as

𝐶 = (𝐶 [27], ..., 𝐶 [1], 𝐶 [0]). In the rhombus form, the lowest indices

(𝑖 , 𝑗 = 0) of the product appear at the rightmost corner, whereas

the highest indices (𝑖 , 𝑗 = 13) appear at the leftmost corner. A black

arrow over a point indicates the processing of a partial product.

The lowermost points represent the results𝐶 [𝑖] from the rightmost

corner (𝑖 = 0) to the leftmost corner (𝑖 = 27). The order of com-

putation is from 1○ to 4○. Since the size of caching width is 4, i.e.,

128-bit, the computation is performed in 4 steps, i.e., 448/128=3.5.

3.3 Group Operations
To implement scalar multiplication of Curve448, we employ both

Double-and-always-Add or Montgomery ladder algorithms which

12

HASP ’22, October 01, 2022, Chicago, IL, USA Mojtaba Bisheh-Niasar, Mila Anastasova, Abubakr Abdulgadir, Hwajeong Seo, and Reza Azarderakhsh

A[0]B[0]

A[0]B[13]

A[13]B[13]

C[0]C[13]C[26]

1

A[13]B[0]

2

3

4

.

Figure 2: 448-bit wise multi-precision multiplication.

results in constant-time implementation. The design of these algo-

rithms is important, where about 90% of the time for scalar multi-

plication is spent.

The Double-and-always-Add algorithm requires performing one

point doubling and one point addition operation. We utilized ex-

tended projective coordinates and extended affine coordinates to

perform point addition, while the result will be presented in ex-

tended projective coordinates. Additionally, point doubling can

be executed in extended projective coordinates. Hence, the point

addition and doubling require 7M + 6A and 3M + 4S + 6A, where
M, S, and A are a multiplication, a squaring, and an addition cost,

respectively.

Our implementation uses the Montgomery ladder in homoge-

neous projective coordinates to perform a variable-base scalar mul-

tiplication. With respect to Algorithm 1, Algorithm 2 presents the

proposed computation in one step of Montgomery ladder requiring

only two additional field operands 𝑡0 and 𝑡1. Themodular multiplica-

tion of _ with𝑋2 is used for randomization. Therefore, a differential

point addition and point doubling formula can be performed at the

cost of 5M + 4S + 1k + 8A, where k is a cost of multiplication with a

constant. Hence, the Montgomery ladder provides more efficient

implementation.

3.4 Memory Management
The target platform features 1MB of flash memory and another

192KB of RAM [32]. To eliminate the slow 16KB of SRAM, we have

modified the linker file, where we have specified only the first

112KB as an SRAM.

4 EXPERIMENTAL RESULTS AND
COMPARISON

The implementations are benchmarked on STM32F407-VG Discov-

ery board equipped with 32-bit ARM Cortex-M4 microcontrollers

clocked at 24MHz and 168MHz. The higher frequency is more suit-

able for real-world application, while 24MHz requires fewer cycles

due to the speed of the memory controller. The arithmetic imple-

mentations are implemented in the ARM assembly, and the libraries

are compiled by GCC with optimization flags set to -O3.

4.1 Scalar Multiplication
As shown in [18], the measured cycle counts on the same Cortex-

M4 can be different based on the clock frequency set on the chip.

Hence, we report the latency requirements in two different operat-

ing frequencies. Different clock frequencies set may cause stalls on

Algorithm 2 Montgomery ladder step in randomized projective

coordinates over Curve448.

Input: 𝑥𝑃 , _ ∈ Z2448 \ {0}, P1 = (𝑋1, 𝑍1) , and P2 = (𝑋2, 𝑍2)
Initial Step: (𝑋3, 𝑍3) = (_ · 𝑥𝑝 , _)
Require: P𝑃𝐷 = 2 · P1, P𝑃𝐴 = P1 + P2
1: 𝑡0 ← 𝑋1 + 𝑍1

2: 𝑍1 ← 𝑋1 − 𝑍1

3: 𝑋1 ← 𝑋2 + 𝑍2

4: 𝑋2 ← 𝑋2 − 𝑍2

5: 𝑋2 ← 𝑋2 × 𝑡0
6: 𝑋1 ← 𝑋1 × 𝑍1

7: 𝑡1 ← 𝑋1 +𝑋2

8: 𝑍2 ← 𝑋2 − 𝑋1

9: 𝑋2 ← 𝑡1 × 𝑡1
10: 𝑋2 ← 𝑋2 × 𝑍3

11: 𝑍2 ← 𝑍2 × 𝑍2

12: 𝑍2 ← 𝑍2 × 𝑋3

13: 𝑡1 ← 𝑡0 × 𝑡0
14: 𝑍1 ← 𝑍1 × 𝑍1

15: 𝑡0 ← 𝑡1 − 𝑍1

16: 𝑋1 ← 𝑡1 × 𝑍1

17: 𝑍1 ← 𝑡0 × 39081

18: 𝑍1 ← 𝑍1 + 𝑡1
19: 𝑍1 ← 𝑍1 × 𝑡0
20: return P𝑃𝐷 = (𝑋1, 𝑍1), P𝑃𝐴 = (𝑋2, 𝑍2)

the controller if the memory is slower. For instance, the proposed

multiplier employing the memory operations uses 3% more cycles

when the controller is set to a 7× higher frequency.

We implement the scalar multiplication over Curve448 using

two different algorithms, i.e., Double-and-always-Add and Mont-

gomery ladder. Table 1 summarizes the number of clock cycles and

latency requirements for the proposed implementation in our un-

protected scheme. Both these algorithms are constant-time, while

the Montgomery ladder is faster, taking 3.7 × 106 cycles, and more

secure compared to Double-and-always-Add. Our results show 29%

performance improvement by using the Montgomery ladder over

the 𝑋 -coordinate at the cost of a 40% memory utilization penalty.

Compared to the previous work [31], our proposed implementation

results in 1.6× speedup computing almost 43 scalar multiplications

per second at 168 MHz.

Compared to other platforms, Curve448 scalar multiplication

on Cortex-M4 shows more than 20× and 27× speedup in terms of

cycle counts compared to 16-bit MSP430 and 8-bit AVR ATmega

processors reported in [30], respectively.

Table 2 compares some pre and post-quantum schemes on embed-

ded processors to the proposed design over the same architecture

(i.e., ARMv7-M). A more technology-independent comparison is the

required cycle. An operating frequency in a limited range is mostly

considered to reduce the required power. Thus, our Curve448 imple-

mentation improves 5.2× and 8.9× required cycle counts compared

to Secp384r1 [33] and Secp521r1 [33], respectively. However, our

implementation requires 4.3× and 3.9× more cycles compared to

Curve25519 [16] and Secp256r1 [20].

Curve448 can provide 224-bit security compared to the Curve25519

and Secp256r1 with 128-bit security. Therefore, higher security lev-

els come with a performance penalty, and industry usually resists

13

Side-Channel Analysis and Countermeasure Design for Implementation of Curve448 on Cortex-M4 HASP ’22, October 01, 2022, Chicago, IL, USA

Table 1: Cortex-M4 implementation results. Our Design I and
II are based on Double-and-always-Add, and Montgomery
ladder algorithms, respectively.

Algorithm Freq. Latency Time Throughput Memory
[MHz] [CC×103] [ms] [Op/Sec] [B]

Seo et al. [31]
24

6,218 259.1 3.9 -

Our Design I 5,269 219.5 4.6 564

Our Design II 3,740 155.8 6.4 788

Seo et al. [31]
168

6,286 37.4 26.7 -

Our Design I 5,532 32.9 30.4 564

Our Design II 3,917 23.3 42.9 788

Table 2: Implementation results on Embedded Processors

Algorithm pre/post Cortex Freq. Latency Time Throughput
quantum [MHz] [CC×103] [ms] [Op/Sec]

Curve25519 [16] pre M4 48 907 18.9 52.9

Secp256r1 [20] pre M4 64 994 15.5 64.3

FourQ [21] pre M4 168 511 3.0 328.8

Secp384r1 [33] pre M3 100 20,200 202 4.9

Secp521r1 [33] pre M3 100 35,100 351 2.8

SIKEp434 KeyGen [1] post M4 24 68,260 2,844 0.3

Curve448 [This Work] pre M4 168 3,917 23.3 42.9

them. On the other hand, although we are confident with the secu-

rity of ECC, there is always the possibility that algorithmic improve-

ments reduce the required computation to break ECC. Therefore,

moving to a higher security level will help keep a margin against

unknown attack improvements. Hence, we propose an implemen-

tation for a level of security that can still be feasible subject to the

performance requirement of the target application, such as high-

end servers of constrained devices (particularly, compared to other

implementations in this level, e.g., Secp384r1, Secp521r1.).

4.2 SCA-Protected Performance Results
Table 3 lists the performance results for the different SCA counter-

measures. While implementing the Montgomery ladder algorithm

accelerates computation over Curve448, it would also be a straight-

forward countermeasure against timing, SPA, and sign change fault

attacks [15]. Taking advantage of the Curve448 specification, some

countermeasures, such as a point validity check, is not required.

Base point randomization requires 11 multiplication operations

per Montgomery ladder step, while the unprotected scheme needs

10 modular multiplication operations. Hence, as one can see, base

point randomization increases 8% latency due to extending the

Montgomery ladder step cycles. Additionally, the required memory

for implementing this countermeasure will be increased to 796 B.

Scalar blinding is an effective countermeasure to avoid DPA,

cross-correlation, safe-error, and differential fault analysis attacks.

However, it can be defeated by advanced online template attacks [3]

and carry-based attacks [15]. Although the scalar blinding counter-

measure performs a similar Montgomery ladder step in an unpro-

tected scheme, the number of iterations will be extended. Perform-

ing 512 iterations of the Montgomery ladder step corresponding

to 64-bit randomization of scalar results in 13% latency extension,

while the memory usage will be unchanged.

Stand-alone scalar blinding can be broken by the methods de-

scribed in [26]. Further, stand-alone base point randomization can

be broken by refined power analysis. Hence, our fourth profile

Table 3: Protected Cortex-M4 implementation results in
terms of latency and dynamic memory requirements

Countermeasure Freq. Latency Time Throughput Memory
[MHz] [CC×103] [ms] [Op/Sec] [B]

Unprotected

24

3,740 155.8 6.4 788

Point Randomization 4,043 168.4 5.9 796

Scalar Blinding 4,226 176.1 5.7 788

Both Countermeasures 4,572 190.5 5.2 796

Unprotected

168

3,917 23.3 42.9 788

Point Randomization 4,222 25.1 39.8 796

Scalar Blinding 4,417 26.3 38.0 788

Both Countermeasures 4,789 28.5 35.1 796

combines all countermeasures in order to investigate their interac-

tion. The latency in terms of clock cycles per operation is increased

significantly due to the extended size of the secret scalar (512 bits in-

stead of 448 bits). In addition, since we have to include an additional

multiplication by 𝑍3, the latency is increased as well. Therefore,

the required time is increased by 22% for performing a scalar multi-

plication.

Although a software implementation cannot be protected against

arbitrarily powerful fault attackers [3], we implement a flow-counter

countermeasure to improve protection against FI loop-abort attacks

with negligible latency overhead. Hence, an incremental counter is

implemented to detect changes in the execution flow. The attack

can be detected at the end of scalar multiplication if the stored value

in the counter would not be matched with the expected value.

5 SCA EVALUATION
Curve448 private key can be ephemeral or static. In the ephemeral

case, the secret scalar is used only for one operation, allowing the

attacker to collect one side-channel trace. The trace can then be used

to recover the shared secret. In the static case, the secret scalar can

be reused an arbitrary number of times. This allows the attacker to

collect several side-channel traces and target the static key. Hence,

the static use case requires more robust protection compared to the

ephemeral setting. As will be shown, our protected implementation

eliminates scalar-dependent leakage in the case of the static key,

which is favorable to the attacker. However, to reduce the protection

cost, either base point randomization or scalar blinding with a fewer

length of randomization can be used for ephemeral implementation.

To evaluate scalar-dependent leakage, we adopt a procedure sim-

ilar to [29] to evaluate the countermeasures incrementally. Specifi-

cally, we define four different leakage detection profiles to evaluate

our main countermeasures gradually. The first profile provides a

reference since all countermeasures are disabled. This profile al-

lows us to confirm the validity of our test setup and serves as a

baseline for the leakage assessment. The second and third profiles

investigate the point randomization and scalar blinding counter-

measures individually. Eventually, the fourth profile evaluates our

fully protected implementation with both countermeasures enabled

in combination. Hence, our leakage detection experiments are listed

as follows:

• The unprotected implementation, without any countermea-

sures except constant-time operations, including field arith-

metic and Montgomery ladder.

14

HASP ’22, October 01, 2022, Chicago, IL, USA Mojtaba Bisheh-Niasar, Mila Anastasova, Abubakr Abdulgadir, Hwajeong Seo, and Reza Azarderakhsh

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Sample No. 1e7

30

20

10

0

10

20

30

t-v
al

ue

0 20000 40000 60000 80000 100000
Sample No.

30

20

10

0

10

20

30

t-v
al

ue

Figure 3: Overall and the part of leakage detection test on
the unprotected implementation using 10,000 traces: (Up)
𝑡-test values for scalar multiplication using the Montgomery
ladder, (Down) Magnified 𝑡-test values for 100,000 samples.

• The protected implementation with base point randomiza-

tion countermeasure enabled.

• The protected implementation with scalar blinding counter-

measure enabled.

• The protected implementation with both base point random-

ization and scalar blinding countermeasures enabled.

According to Fig. 1, the TVLA threshold for all our experiments

is computed greater than 7; thus, we assume that peaks above 7

indicate leakage.

5.1 Side-channel analysis setup
Our experimental setup for power trace collection comprises the

following components:

(1) An ARM Cortex-M4-based target board (NewAE CW308T-

STM32F). The target is mounted on a NewAE CW308 UFO

board [12] used to connect the target to the Chipwhisperer

Lite board.

(2) The NewAE Chipwhisperer Lite board [12]. This board is

used to communicate with the target board and is connected

to the control PC.

(3) A control PC that sends test vectors one at a time to the

control board and collects power traces from the oscilloscope.

(4) A USB3-based oscilloscope (Picoscope 3000). This oscillo-

scope has a bandwidth of 200 MHz and an 8-bit sample

resolution.

We run the target Cortex-M4 at 25 MHz in all our experiments.

The power traces are collected in AC through a passive probe

connected to the CW308 UFO at a sampling rate of 125 MS/s. The

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Sample No. 1e7

30

20

10

0

10

20

30

t-v
al

ue

Figure 4: Protected implementation by point randomization
after applying TVLA with a pool of 10,000 measurements.

0.0 0.5 1.0 1.5 2.0 2.5
Sample No. 1e7

8

6

4

2

0

2

4

6

8

t-v
al

ue

Figure 5: Protected implementation by scalar blinding after
applying TVLA with a pool of 10,000 measurements.

control PC is simply connected to the ChipWhisperer Lite with a

USB to micro-USB cable. The power trace is measured using the

onboard shunt resistor located in the CW305 board. A trigger signal

is asserted at the start of the scalar multiplication to instruct the

oscilloscope to start collecting data to ensure trace alignment.

In all our leakage detection profiles, we evaluate scalar-dependent

leakage and collect 10,000 traces using a non-specific fixed-vs-

random TVLA. Specifically, we randomly interleave between feed-

ing the target board with a fixed scalar and a randomly generated

scalar.

We utilized the setup described above to perform the leakage

assessment experiments. Profile 1, i.e., the unprotected implemen-

tation, is a constant-time implementation that makes it resistant to

timing attacks and is not leaking any information about the scalar

through timing. However, it can still leak the scalar through power

consumption. Evaluating this implementation confirms the setup’s

ability to detect leakage and serves as a baseline for the tests.

Fig. 3 depicts the results of the 𝑡-tests for the unprotected im-

plementation. In the case of the unprotected implementation, the

highest peak is reaching 22, showing a significant information leak-

age for our unprotected baseline implementation. Fig. 3 (Down)

magnifies 100,000 samples of the measured 𝑡-values. According to

this figure, we can see that the information leaks periodically in

each step of the Montgomery ladder.

With the same measurement setup, we then evaluate the leak-

age with enabling base point randomization and scalar blinding

15

Side-Channel Analysis and Countermeasure Design for Implementation of Curve448 on Cortex-M4 HASP ’22, October 01, 2022, Chicago, IL, USA

0.0 0.5 1.0 1.5 2.0 2.5
Sample No. 1e7

8

6

4

2

0

2

4

6

8

t-v
al

ue

0 20000 40000 60000 80000 100000
Sample No.

8

6

4

2

0

2

4

6

8

t-v
al

ue

Figure 6: Overall and the part of leakage detection test on
protected scalar multiplication by both base point random-
ization and scalar blinding after applying TVLA with a pool
of 10,000measurements: (Up) 𝑡-test values for scalarmultipli-
cation, (Down) Magnified 𝑡-test values for 100,000 samples.
countermeasures individually. The second leakage detection profile

investigates the individual security gain by base point random-

ization without scalar blinding countermeasures. The results are

shown in Fig. 4. Although the observed leakage is reduced compared

with the unprotected implementation, the leakage is significant.

This is expected since the countermeasure randomizes the point

only, and scalar-dependent leakage is not prevented.

To evaluate the effectiveness of scalar blinding countermeasure,

we show the 𝑡-test result in Fig. 5. Again, we capture 10,000 power

traces, while each scalar is blinded externally using a 64-bit random

value. As one can see, this countermeasure avoids any detectable

scalar-dependent leakage.

Fig. 6 demonstrates the fourth evaluation profile combining all

techniques in order to analyze and evaluate the interaction of both

countermeasures. As we expect, first-order side-channel informa-

tion leakage for Curve448 scalar multiplication cannot be observed.

Fig. 6 (Down) magnifies 100,000 samples of the measured 𝑡-values

showing no side-channel leakage compared to periodical leaking

on unprotected implementation.

6 CONCLUSION
We present a secure implementation of Curve448 targeting a 224-

bit security level for the 32-bit ARM Cortex-M4 architecture that

performs the scalar multiplication computation in about 23 mil-

liseconds at 168 MHz. We use randomized projective coordinates

for the base point and scalar blinding countermeasures, reducing

the speed by approximately 8% and 13%, respectively. However, we

note that combining these techniques increases 22% total latency.

Our leakage assessment with 10,000 power measurements shows

that our implementation does not leak side-channel information

while the scalar blinding and point randomization countermeasures

are enabled.

ACKNOWLEDGMENTS
The authors would like to thank the comments by reviewers. This

work is supported in parts by NSF 1801341 and 2101085.

REFERENCES
[1] Mila Anastasova, Mojtaba Bisheh-Niasar, Reza Azarderakhsh, and Mehran Mozaf-

fari Kermani. 2021. Compressed SIKE Round 3 on ARM Cortex-M4. In Se-
cureComm 2021, September 6-9, 2021, Proceedings, Part II, Vol. 399. Springer, 441–
457.

[2] Mila Anastasova, Mojtaba Bisheh-Niasar, Hwajeong Seo, Reza Azarderakhsh, and

Mehran Mozaffari Kermani. 2022. Efficient and Side-Channel Resistant Design

of High-Security Ed448 on ARM Cortex-M4. In IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2022, McLean, VA, USA, June 27-30,
2022. IEEE, 93–96.

[3] Lejla Batina, Lukasz Chmielewski, Björn Haase, Niels Samwel, and Peter Schwabe.

2021. SCA-secure ECC in software - mission impossible? IACR Cryptol. ePrint
Arch. (2021), 1003.

[4] Georg T. Becker, Jim Cooper, Elizabeth K. DeMulder, Gilbert Goodwill, Joshua

Jaffe, Gary Kenworthy, T. Kouzminov, Andrew J. Leiserson, Mark E. Marson,

Pankaj Rohatgi, and Sami Saab. 2013. Test Vector Leakage Assessment (TVLA)

methodology in practice.

[5] Daniel J. Bernstein and Tanja Lange. 2011. Security dangers of the NIST curves.

[6] D. J. Bernstein and T. Lange. 2016. SafeCurves: choosing safe curves for elliptic-

curve cryptography. url: https://safecurves.cr.yp.to/..

[7] Mojtaba Bisheh Niasar, Reza Azarderakhsh, and Mehran Mozaffari Kermani.

2020. Efficient Hardware Implementations for Elliptic Curve Cryptography over

Curve448. In 21st International Conference on Cryptology, Indocrypt 2020, India,
December 13-16, 2020.

[8] Mojtaba Bisheh-Niasar, Reza Azarderakhsh, and Mehran Mozaffari-Kermani.

2021. Area-Time Efficient Hardware Architecture for Signature Based on Ed448.

IEEE Trans. Circuits Syst. II Express Briefs 68, 8 (2021), 2942–2946.
[9] Mojtaba Bisheh-Niasar, Reza Azarderakhsh, and Mehran Mozaffari-Kermani.

2021. Cryptographic Accelerators for Digital Signature Based on Ed25519. IEEE
Trans. Very Large Scale Integr. Syst. 29, 7 (2021), 1297–1305.

[10] Mojtaba Bisheh Niasar, Rami El Khatib, Reza Azarderakhsh, and Mehran Mozaf-

fari Kermani. 2020. Fast, Small, and Area-Time Efficient Architectures for Key-

Exchange onCurve25519. In 27th IEEE Symposium on Computer Arithmetic, ARITH
2020, Portland, OR, USA, June 7-10, 2020. 72–79.

[11] Lily Chen, Dustin Moody, Andrew Regenscheid, and Karen Randall. 2019. Recom-

mendations for Discrete Logarithm-Based Cryptography: Elliptic Curve Domain

Parameters. Computer Security, Draft NIST Special Publication, National Institute
of Standards and Technology 800-186 (2019).

[12] New Technology Inc.: CHIPWHISPERER. 2021. url: https://www.newae.com/

chipwhisperer.

[13] Jean-Sébastien Coron. 1999, Worcester, MA, USA. Resistance against Differential

Power Analysis for Elliptic Curve Cryptosystems. In Cryptographic Hardware and
Embedded Systems, CHES’99, Çetin Kaya Koç and Christof Paar (Eds.). 292–302.

[14] A. Adam Ding, Liwei Zhang, François Durvaux, François-Xavier Standaert, and

Yunsi Fei. 2017. Towards Sound and Optimal Leakage Detection Procedure. In

Smart Card Research and Advanced Applications - 16th International Conference,
CARDIS 2017, Lugano, Switzerland, November 13-15, 2017, Revised Selected Papers
(Lecture Notes in Computer Science, Vol. 10728). Springer, 105–122.

[15] Junfeng Fan, Xu Guo, Elke De Mulder, Patrick Schaumont, Bart Preneel, and

Ingrid Verbauwhede. 2010. State-of-the-art of Secure ECC Implementations: A

Survey on Known Side-channel Attacks and Countermeasures. In HOST2010,
13-14 June 2010, California, USA. 76–87.

[16] Hayato Fujii and Diego F. Aranha. 2017. Curve25519 for the Cortex-M4 and

Beyond. In Progress in Cryptology - LATINCRYPT 2017, Havana, Cuba, September
20-22, 2017, Tanja Lange and Orr Dunkelman (Eds.), Vol. 11368. Springer, 109–127.

[17] Mike Hamburg. 2015. Ed448-Goldilocks, a new elliptic curve. IACR Cryptology
ePrint Archive 2015 (2015), 625.

[18] B Hasse. 2017. Memory bandwidth influence makes Cortex M4 benchmarking

difficult. CHES2017 rump session (2017).

[19] A. Langley, M. Hamburg, and S. Turner. 2016. Elliptic Curves for Security.

[20] Emill Lenngren. 2021. P256-Cortex-M4. url: https://github.com/Emill/P256-

Cortex-M4.

[21] Zhe Liu, Patrick Longa, Geovandro C. C. F. Pereira, Oscar Reparaz, and Hwajeong

Seo. 2017. FourQ on embedded devices with strong countermeasures against

side-channel attacks. IACR Cryptol. ePrint Arch. (2017), 434.

16

https://safecurves.cr.yp.to/.
https://www.newae.com/chipwhisperer
https://www.newae.com/chipwhisperer
https://github.com/Emill/P256-Cortex-M4
https://github.com/Emill/P256-Cortex-M4

HASP ’22, October 01, 2022, Chicago, IL, USA Mojtaba Bisheh-Niasar, Mila Anastasova, Abubakr Abdulgadir, Hwajeong Seo, and Reza Azarderakhsh

[22] Mike Hamburg. 2015. Ed448-Goldilocks, A new high-strength curve and

implementation. url: https://csrc.nist.gov/csrc/media/events/workshop-on-

elliptic-curve-cryptography-standards/documents/presentations/session7-

hamburg-michael.pdf.

[23] Peter L. Montgomery. 1987. Speeding the Pollard and Elliptic Curve Methods of

Factorization. Math. Comp. 48 (1987), 243–264.
[24] Louiza Papachristodoulou, Apostolos P. Fournaris, Kostas Papagiannopoulos,

and Lejla Batina. 2019. Practical Evaluation of Protected Residue Number System

Scalar Multiplication. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 1 (2019),
259–282.

[25] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.

RFC 8446. https://doi.org/10.17487/RFC8446

[26] Thomas Roche, Laurent Imbert, and Victor Lomné. 2019. Side-channel attacks

on blinded scalar multiplications revisited. In International Conference on Smart
Card Research and Advanced Applications. Springer.

[27] Pascal Sasdrich and Tim Güneysu. 2015. Implementing Curve25519 for Side-

Channel-Protected Elliptic Curve Cryptography. ACM Transactions on Reconfig-
urable Technology and Systems 9, 1 (2015), 3:1–3:15.

[28] Pascal Sasdrich and Tim Güneysu. 2017. Cryptography for Next Generation TLS:

Implementing the RFC 7748 Elliptic Curve448 Cryptosystem in Hardware. In

Proceedings of the 54th Annual Design Automation Conference, DAC 2017, Austin,
TX, USA, June 18-22, 2017. 16:1–16:6.

[29] Pascal Sasdrich and Tim Guneysu. 2018. Exploring RFC 7748 for Hardware

Implementation: Curve25519 and Curve448 with Side-Channel Protection. J.
Hardware and Systems Security 2, 4 (2018), 297–313.

[30] Hwajeong Seo. 2019. Compact implementations of Curve Ed448 on low-end IoT

platforms. ETRI Journal 41, 6 (2019), 863–872.
[31] Hwajeong Seo and Reza Azarderakhsh. 2020. Curve448 on 32-Bit ARM Cortex-

M4. In Information Security and Cryptology - ICISC 2020 - 23rd International
Conference, Seoul, South Korea, December 2-4, 2020, Proceedings (Lecture Notes in
Computer Science, Vol. 12593), Deukjo Hong (Ed.). Springer, 125–139.

[32] ST. 2020. STM32F405xx STM32F407xx Datasheet - production data.

[33] Hannes Tschofenig and Manuel Pegourie-Gonnard. 2015. Performance of State-

of-the-Art Cryptography on ARM-based Microprocessors.

[34] Michael Tunstall and Gilbert Goodwill. 2016. Applying TVLA to Public Key

Cryptographic Algorithms. IACR Cryptol. ePrint Arch. (2016), 513.

17

https://csrc.nist.gov/csrc/media/events/workshop-on-elliptic-curve-cryptography-standards/documents/presentations/session7-hamburg-michael.pdf
https://csrc.nist.gov/csrc/media/events/workshop-on-elliptic-curve-cryptography-standards/documents/presentations/session7-hamburg-michael.pdf
https://csrc.nist.gov/csrc/media/events/workshop-on-elliptic-curve-cryptography-standards/documents/presentations/session7-hamburg-michael.pdf
https://doi.org/10.17487/RFC8446

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Curve448 Arithmetic
	2.2 Side-Channel Protection
	2.3 TVLA

	3 Proposed Algorithm and Architecture
	3.1 Cortex-M4 Microarchitecture
	3.2 Field Arithmetic
	3.3 Group Operations
	3.4 Memory Management

	4 Experimental Results and Comparison
	4.1 Scalar Multiplication
	4.2 SCA-Protected Performance Results

	5 SCA Evaluation
	5.1 Side-channel analysis setup

	6 Conclusion
	Acknowledgments
	References

