
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 5, MAY 2021 999

Reliable Architectures for Composite-Field-Oriented Constructions of McEliece
Post-Quantum Cryptography on FPGA

Alvaro Cintas Canto , Student Member, IEEE, Mehran Mozaffari Kermani , Senior Member, IEEE,
and Reza Azarderakhsh , Member, IEEE

Abstract—Code-based cryptography based on binary Goppa codes is
a promising solution for thwarting attacks based on quantum comput-
ers. The McEliece cryptosystem is a code-based public-key cryptosystem
which is believed to be resistant against quantum attacks. In fact, it is suc-
cessfully advanced to the second round of the post-quantum cryptography
standardization competition early 2019. Due to its very large key size, dif-
ferent variants of binary Goppa codes have been proposed. Nevertheless,
research has shown that such codes can be thwarted through the injection
of faults, causing erroneous outputs. In this work, we present counter-
measures for the implementation of different composite field arithmetic
units used in the McEliece cryptosystem. The proposed architectures use
overhead-aware and tailored signatures. We apply these error detection
signatures to the McEliece cryptosystem and perform field-programmable
gate array (FPGA) implementations to show the feasibility of adopting
the proposed schemes. We benchmark the overhead and performance
degradation of the proposed approaches and show their suitability for
constrained embedded systems.

Index Terms—Composite fields, fault detection, McEliece.

I. INTRODUCTION

Quantum computers are presumed to be able to break nearly all
public-key encryption algorithms used today. There are five popular
PQC algorithm classes: 1) code-based; 2) hash-based; 3) isogeny-
based; 4) lattice-based; and 5) multivariate-quadratic-equation-based
cryptosystems. Code-based cryptography, such as the McEliece and
Niederreiter cryptosystems, differs from others by that its security
relies on the hardness of decoding in a linear error-correcting code.
Hash-based cryptography creates signature algorithms based on the
security of a selected cryptographic hash function. The security of
isogeny-based cryptography is based on the hard problem to find
an isogeny between two given supersingular elliptic curves. Lattice-
based cryptography is capable of creating a public-key cryptosystem
based on lattices. Finally, multivariate-quadratic-equation-based cryp-
tography is founded on asymmetric cryptography primitives using
multivariate polynomials over a finite field. The McEliece cryp-
tosystem is successfully advanced to the second round of the
post-quantum cryptography standardization competition early 2019.
Since the McEliece cryptosystem uses public-key encryption, it can
serve in a wide variety of applications, such as digital signatures,
authentication protocols, exchange of a secret key over an insecure
channel, or even digital cash systems such as Bitcoin. Even though

Manuscript received April 26, 2020; revised June 27, 2020; accepted
August 24, 2020. Date of publication August 28, 2020; date of current
version April 21, 2021. This work was supported by the U.S. National
Science Foundation (NSF) under Award SaTC-1801488. This article was
recommended by Associate Editor W. Zhang. (Corresponding author:
Mehran Mozaffari Kermani.)

Alvaro Cintas Canto and Mehran Mozaffari Kermani are with
the Department of Computer Science and Engineering, University of
South Florida, Tampa, FL 33620 USA (e-mail: alvarocintas@usf.edu;
mehran2@usf.edu).

Reza Azarderakhsh is with the Department of Computer and Electrical
Engineering and Computer Science, Florida Atlantic University, Boca Raton,
FL 33431 USA (e-mail: razarderakhsh@fau.edu).

Digital Object Identifier 10.1109/TCAD.2020.3019987

there are different alternatives to Goppa codes, such as LDPC and
MDPC codes, Reed-Solomon codes, or convolutional codes, they are
not as secure as the binary Goppa codes [1]. Since the key size of
the McEliece scheme is very large, other slight variations of binary
Goppa codes, such as quasi-cyclic and quasi-dyadic codes had also
been explored [2], [3]. These alternant codes allow a smaller key
size, but they are more sensitive to fault injection attacks [4]. Having
the architectures of [5] as example, the McEliece cryptosystem uses
Goppa codes in its different arithmetic units. The McEliece cryptosys-
tem is based on linear error-correcting codes; however, it is vulnerable
to fault injection attacks as it has been previously indicated [6].

Side-channel attacks, such as differential power analysis (DPA)
for the McEliece cryptosystems have been studied in a number of
previous works, e.g., [7] and [8]. Chen et al. [7] presented a suc-
cessful DPA of a state-of-the-art McEliece implementation based on
quasi-cyclic MDPC codes. Von Maurich and Güneysu [8] success-
fully demonstrate side-channel attacks of the McEliece cryptosystem
implemented on constrained devices. Approaches on countering fault
attacks, such as [9]–[12] have been the center of research atten-
tion for cryptography. In this work, for the first time, based on
the underlying composite fields, error detection schemes are derived
for different Goppa arithmetic units that the McEliece cryptosys-
tem uses, e.g., evaluation, multiplication, squaring, division, square
root, inversion, and greatest common division. These error detection
schemes are based on signatures providing high error coverage. We
note that the term signature here refers to appended bits used for
error detection through error-detecting codes and not the typical sig-
natures commonly used for proof of authenticity in cryptography.
We also benchmark the overhead of the proposed schemes by imple-
menting the arithmetic units used in the McEliece cryptosystem on
field-programmable gate array (FPGA).

II. PRELIMINARIES

The McEliece cryptosystem includes three operations: 1) key gen-
eration, which generates a pair of keys (public key and private key)
needed to keep the message secret; 2) encryption, which creates the
ciphertext using the public key; and 3) decryption, which allows to
obtain the original message using the private key. The key genera-
tion in the McEliece cryptosystem uses the dimension of the code
subspace m, the maximum number of errors that can be corrected t,
the code length n, and code rank k. In this work, the security param-
eters used are m = 13, t = 128, and n = 8192 (k can be calculated
by performing k = n − mt), which are one of the possible secu-
rity parameters submitted to NIST in late 2017 [13]. However, the
proposed approaches are oblivious of the sizes of these three param-
eters. The McEliece cryptosystem produces the pair of keys by first
constructing a basic finite field GF(2m). Since m = 13, this field
contains 8192 elements, i.e., α0, α1, . . . , α8191, where each element
is a vector of 13 bits. Next, a random monic irreducible polynomial
g(x) = xt + gt−1xt−1 + · · · + g1x + g0, with degree t is also gen-
erated, called Goppa polynomial. This monic irreducible polynomial

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:17:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6800-3302
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0002-6921-6868

1000 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 5, MAY 2021

TABLE I
MCELIECE OPERATIONS AND CORRESPONDING PROCESSES

conforms part of the private key, and all its coefficients are elements
of the basic finite field. After producing the Goppa polynomial, a con-
trol matrix H is constructed by multiplying three auxiliary matrices
based on the private key, denoted as X, Y, and Z. The control matrix
is permutated by using a random permutation matrix called P. Then,
it is expanded into a binary form H2 over GF(2), converted into the
systematic form G̃, and transposed into G to obtain its public key.

To get the ciphertext z, a random n-bit error vector e is created. The
error vector e has to contain a total of t bits having the value 1. Then,
z is calculated by performing z = pG⊕e, where p refers to plaintext.
The decryption process is fairly more complex than the encryption
process. First, an error locator polynomial σ(x) is created, which
will reveal all errors of the elements αi. Then, the error vector is
reconstructed to obtain the original plaintext. Since this article focuses
mainly on the key generation, readers interested in other aspects of
the McEliece cryptosystem can refer to [5].

III. PROPOSED FAULT DETECTION SCHEMES

The McEliece cryptosystem is based on three different Galois
fields: 1) the Goppa field GF((2m)t) used by the Goppa polyno-
mial [i.e., GF((213)128) in this article]; 2) GF(213), which is the
field polynomial (we use p(x) = x13 + x4 + x3 + x + 1 as described
by [13]); and 3) the binary field GF(2). The McEliece cryptosys-
tem uses (based on the underlying composite fields) different Goppa
field arithmetic units to perform a number of its operations, e.g.,
evaluation, multiplication, squaring, division, square root, inversion,
and greatest common division. These Goppa field operations work on
polynomials of degree t−1 with coefficients from GF(2m). In Table I,
the McEliece operations and corresponding processes are shown.

A. Goppa Division

Polynomial division is required to find the greatest common divi-
sor. It follows the long division method by first, inverting the highest
coefficient of the polynomial divisor. This inverted coefficient is then
multiplied by the highest-degree coefficient of the dividend to obtain
the quotient. Next, the quotient coefficient is multiplied by all the
coefficients of the polynomial divisor and the product is finally sub-
tracted from the dividend polynomial using modulo-2 addition. Since
each coefficient is in GF(213), signatures for inversion, multiplication,
and XORing in the field GF(213) are needed. Reyhani and Hasan [14]
performed error detection over binary extension fields by adding par-
ities which can only detect an odd number of faults and therefore, to
obtain higher error coverage, two other signatures are derived in this
article. The first alternative, called two-part signature, divides the 13
bits into two blocks (from bit 0 to bit 6, and from bit 7 to bit 12),
and the other alternative, called three-part signature, divides the bits
into three blocks (from bit 0 to bit 4, from bit 5 to bit 9, and from
bit 10 to bit 12).

1) Goppa Addition and Goppa Multiplication: Goppa addition and
Goppa multiplication need a total of t GF(2m) additions and t GF(2m)

multiplications, respectively. As it is shown in [14], the multiplica-
tion of any two elements A and B of GF(2m) can be represented as
A · B mod p(x) = ∑m−1

i=0 bi · ((Aαi) mod p(x)) = ∑m−1
i=0 bi · X(i),

where the set of αi’s is the polynomial basis of element A, the
set of bi’s is the B coefficients, p(x) is the field polynomial,
X(i) = α · X(i−1) mod p(x), and X(0) = A. To perform polynomial
basis multiplications over binary extension fields, α, sum, and pass-
thru modules are used. The pass-thru module multiplies a GF(2m)

element by a GF(2) element, the α module multiplies an element
of GF(2m) by α and it reduces the result modulo p(x), and the sum
module adds two elements in GF(2m) using m two-input XOR gates.
The latter one is used for addition of polynomials in GF(213).

In the sum module, the parity bits of the inputs A and B, and the
predicted parities of the output P are divided into two or three blocks,
depending on if two-part signature or three-part signature is used. If
two-part signature is used, the parity bits of A and B are divided into
pA1 and pA2, and pB1 and pB2, respectively. The addition of elements
A and B in GF(2m) produce the predicted parities p̂P1 = pA1 + pB1
and p̂P2 = pA2 + pB2. On the other hand, if three-part signature is
used, the parity bits of A are divided into pA1, pA2, and pA3, and
pB1, pB2, and pB3, obtaining the predicted parities p̂P1 = pA1 + pB1,
p̂P2 = pA2 + pB2, and p̂P3 = pA3 + pB3.

In the pass-thru module, the parity bits of the input A and the
predicted parities of the output P are also divided into two or three
blocks. If two-part signature is used, the parity bits of A are multiplied
by an element b of GF(2) to obtain the predicted parities p̂P1 = b·pA1
and p̂P2 = b · pA2. On the other hand, if three-part signature is used,
the predicted parities of output P are p̂P1 = b · pA1, p̂P2 = b · pA2,
and p̂P3 = b · pA3.

Finally, for the α module, Theorems 1 and 2 are derived for two-
part signature and three-part signature, respectively.

Theorem 1: Let pA1 = ∑[(m−1)/2]
i=0 ai be the first parity for bits

of A, and pA2 = ∑m−1
i=[(m−1)/2]+1 ai be the last parity for bits of A,

where m is assumed to be odd, used for the dimension of the code
subspace, and fi ∈ GF(2) for i = 0, 1, . . . , m−1. Then, the predicted
parities p̂X1 and p̂X2, are p̂X1 = am−1+∑[(m−1)/2]

i=1 (ai−1+am−1 ·fi),
p̂X2 = ∑m−1

i=[(m−1)/2]+1(ai−1 + am−1 · fi), and for m = 13, we get
to the following concise formulations: p̂X1 = pA1 + a6 and p̂X2 =
pA2 + a6 + a12.

Proof: Using the below formulations to calculate the X coordi-
nates [14]

xi =
{

ai−1 + am−1 · fi, 1 ≤ i ≤ m − 1
am−1, i = 0

the predicted parity p̂X can be split as p̂X = am−1 +
∑[(m−1)/2]

i=1 (ai−1 + am−1 · fi)+∑m−1
i=[(m−1)/2]+1(ai−1 + am−1 · fi) =

p̂X1 + p̂X2. Since p(x) = x13 + x4 + x3 + x + 1, one obtains
f13 = f4 = f3 = f1 = f0 = 1, achieving the concise formulations.
This completes the proof.

Theorem 2: Let pA1 = ∑�[(m−1)/3]�
i=0 ai be the first parity for

bits of A, pA2 = ∑2(�[(m−1)/3]�)+1
i=�[(m−1)/3]�+1 ai be the second parity for

bits of A, and pA3 = ∑m−1
i=2(�[(m−1)/3]�+1)

ai be the last parity
for bits of A. Then, the predicted parities of output X, referred to
as p̂X1, p̂X2, and p̂X3, are p̂X1 = am−1 + ∑�[(m−1)/3]�

i=1 (ai−1 +
am−1 · fi), p̂X2 = ∑2(�[(m−1)/3]�)+1

i=�[(m−1)/3]�+1 (ai−1 + am−1 · fi), p̂X3 =
∑m−1

i=2(�[(m−1)/3]�+1)
(ai−1 +am−1 · fi), and for the case study of m =

13, we get to the following concise formulations: p̂X1 = pA1 + a4,
p̂X2 = pA2 + a4 + a9, and p̂X3 = pA3 + a9 + a12.

Proof: The predicted parity p̂X can be split as p̂X = am−1 +
∑�[(m−1)/3]�

i=1 (ai−1 + am−1 · fi) + ∑2(�[(m−1)/3]�)+1
i=�[(m−1)/3]�+1 (ai−1 + am−1 ·

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:17:05 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 5, MAY 2021 1001

Fig. 1. Goppa multiplication unit with the proposed scheme.

fi) + ∑m−1
i=2(�[(m−1)/3]�+1)

(ai−1 + am−1 · fi) = p̂X1 + p̂X2 + p̂X3.

Similar to the proof of previous theorem, the concise formulations
are derived. This completes the proof.

Fig. 1 illustrates the architecture of the Goppa multiplication unit
with our proposed fault detection schemes. It follows a shift-and-add
approach with a chain of 127 GF(213) multiplications, and there-
fore, a total of 127 signatures are needed. These signatures are
shown as Pi for i = 0, 1, . . . , 127, and they can be implemented
as normal, two-part, or three-part signatures (depicted by dark-grey,
shaded blocks). ai, bi, and gi are coefficients of the field GF(213).
Ri is the intermediate result of the 127 multiplications, expressed as
Ri = ∑127

j=0 ri,jxj, where ri,j = biaj mod p(x). The multiplication
in Fig. 1 is essentially a schoolbook multiplication. First, ai is mul-
tiplied with bi, obtaining Ri. If i �= 0, Ri is shifted 13 bits using
the left shift register (shown as LSR in Fig. 1). Then, Ri is reduced
depending on the value of ri,127: If ri,127 = 0, there is no reduction;
if ri,127 = 1, Ri is XOR-ed with g; and if ri,127 > 1, Ri is XOR-ed
with ri,127 ·g. Finally, the reduced result is XOR-ed with the previous
result Ri−1. If a faulty output is detected in any of the 127 GF(213)

multiplication modules, Error_Flag is asserted.
2) Goppa Inversion: To perform Goppa inversion, t GF(2m) inver-

sions are needed. The polynomial variant of Fermat’s little theorem
(FLT) is used. FLT achieves higher performance, allowing to calcu-
late the inverse GF(213) using 12 squarings and 11 multiplications.
Theorems 3 and 4 are derived for signatures of squaring.

Theorem 3: Let pA1 = ∑[(m−1)/2]
i=0 ai be the first parity for bits

of A, and pA2 = ∑m−1
i=[(m−1)/2]+1 ai be the last parity for bits of A.

Then, the predicted parities of output ν (instead of X to avoid con-
fusion), referred to as p̂ν1 and p̂ν2, are p̂ν1 = am−1 · fm−1 + am−2 +
am−1 + (am−1 · fm−1 +am−2) · f1 +∑[(m−1)/2]

i=2 (am−1 · fi−1 + (am−1 ·
fm−1 + am−2) · fi + ai−2), p̂ν2 = ∑m−1

i=[(m−1)/2]+1(am−1 · fi−1 +
(am−1 · fm−1 + am−2) · fi + ai−2), and for the case study of m = 13,
we get to the following concise formulations: p̂ν1 = pA1 + a5 + a6
and p̂ν2 = pA2 + a5 + a6 + a11 + a12.

Proof: The predicted parity p̂ν can be split as p̂ν = am−1 · fm−1 +
am−2 + am−1 + (am−1 · fm−1 + am−2) · f1 + ∑[(m−1)/2]

i=2 (am−1 ·
fi−1 + (am−1 · fm−1 + am−2) · fi + ai−2) + ∑m−1

i=[(m−1)/2]+1(am−1 ·
fi−1 + (am−1 · fm−1 + am−2) · fi + ai−2) = p̂ν1 + p̂ν2. The concise
formulations are derived similar to previous proofs. This completes
the proof.

Fig. 2. GCDIPD with the proposed error detection scheme.

Theorem 4: Let pA1 = ∑�[(m−1)/3]�
i=0 ai be the first parity for bits

of A, pA2 = ∑2(�[(m−1)/3]�)+1
i=�[(m−1)/3]�+1 ai be the second parity for bits of A,

and pA3 = ∑m−1
i=2(�[(m−1)/3]�+1)

ai be the last parity for bits of A.
Then, the predicted parities of output ν, referred to as p̂ν1, p̂ν2, and
p̂ν3, are p̂ν1 = am−1 · fm−1 +am−2 +am−1 + (am−1 · fm−1 +am−2) ·
f1 + ∑�[(m−1)/3]�

i=2 (am−1 · fi−1 + (am−1 · fm−1 + am−2) · fi + ai−2),

p̂ν2 = ∑2(�[(m−1)/3]�)+1
i=�[(m−1)/3]�+1 (am−1 · fi−1 + (am−1 · fm−1 + am−2) · fi +

ai−2), p̂ν3 = ∑m−1
i=2(�[(m−1)/3]�+1)

(am−1 · fi−1 + (am−1 · fm−1 +
am−2) · fi + ai−2), and for the case study of m = 13, we get to
the following concise formulations: p̂ν1 = pA1 + a3 + a4 + a12,
p̂ν2 = pA2 + a8 + a9 + a12, and p̂ν3 = pA3 + a11 + a12.

Proof: The predicted parity p̂ν can be split as p̂ν = am−1 · fm−1 +
am−2+am−1+(am−1 ·fm−1+am−2)·f1+∑�[(m−1)/3]�

i=2 (am−1 ·fi−1+
(am−1 · fm−1 + am−2) · fi + ai−2)

∑2(�[(m−1)/3]�)+1
i=�[(m−1)/3]�+1 (am−1 · fi−1 +

(am−1 · fm−1 + am−2) · fi + ai−2)
∑m−1

i=2(�[(m−1)/3]�+1)
(am−1 · fi−1 +

(am−1 · fm−1 + am−2) · fi + ai−2) = p̂ν1 + p̂ν2 + p̂ν3. The concise
formulations can be also derived and this completes the proof.

B. Goppa Square Root

Square root is needed in the decryption process. It is a rather time-
consuming task because first, it multiplies the input polynomial by a
matrix Q−1 [a polynomial of order t and with coefficients of GF(2m)

where its rows are formed by the square of a monomial modulo the
Goppa polynomial], and then, it does the square root of each coef-
ficient GF(2m) obtained. In total, 16 384 finite field multiplications
and 128 square roots are needed for the case study of m = 13. Since
all the elements are in the field GF(213), 12 GF(213) squarings are
needed to perform the square root of each element.

C. Goppa Greatest Common Division, Goppa Inversion, and
Goppa Polynomial Decomposition

Goppa greatest common division, Goppa inversion, and Goppa
polynomial decomposition (GCDIPD) unit performs three different
operations in the Goppa field GF((2m)t). It finds the greatest common
divisor of two polynomials of order t, it inverts the syndrome, and it
does polynomial decomposition. To perform such operations, Goppa
division, Goppa multiplication, and GF(213) inversion are needed.
We show the architecture of the proposed fault detection construc-
tions for this unit in Fig. 2, where r stands for remainder, q stands
for quotient, α is the intermediate remainder, and β = (b(x) mod
a(x))−1 = t(x). Goppa division and Goppa multiplication have their

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:17:05 UTC from IEEE Xplore. Restrictions apply.

1002 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 5, MAY 2021

TABLE II
OVERHEADS OF THE PROPOSED ERROR DETECTION SCHEMES FOR THE GPE UNIT

own signatures inside their blocks denoted as P_DIV and P_MULT,
respectively, while the signatures for inversion block are separated
in Fig. 2, since it performs GF(213) inversion, instead of Goppa
inversion. First, the polynomials t1(x) and t2(x) are set to 1 and 0,
respectively. While b(x) �= 0 : g(x) is divided over b(x) to obtain
q(x); g(x) is mod with b(x) to obtain r(x); t(x) is obtained by per-
forming t2(x)-q(x)t1(x); and finally, g(x), b(x), t2(x), and t1(x) are
set to b(x), r(x), t1(x), and t(x), respectively. If the degree of r(x) is
less than 25 and the mode is Patterson (which reconstructs the error
vector needed in the process of decryption), α(x) and β(x) are set
to r(x) and t(x), respectively. If the mode is gcd, gcd(g(x), b(x)) is
returned. Moreover, if the mode is inverse, r−1(x) is multiplied with
t1(x) to obtain b−1(x). The Error_Flag becomes high for faults in
any of the polynomial operations.

D. Goppa Polynomial Evaluation

Goppa polynomial evaluation (GPE) unit is utilized in the key
generation and decryption processes. Adopting the Horner scheme,
it only needs to use a GF(213) multiplier because it allows removing
high-degree polynomial multiplications, e.g., the element f1 + f2α2 +
f3α2

2 is written as f1 + (f2 + f3α2)α2.

IV. ERROR COVERAGE AND FPGA IMPLEMENTATIONS

Since the GPE unit uses less signatures than most of the other
units, we perform an analysis to show the efficiency of our proposed
error detection schemes even for the smallest units of the McEliece
cryptosystem. The GPE unit uses the Horner scheme over the Goppa
polynomial, which has order t and coefficients of GF(2m). To per-
form the GPE, a total of 128 GF(213) finite field multiplications
and 128 GF(213) finite field additions are required. Each finite
field multiplication and addition requires α, sum, and pass-thru
modules. More precisely, a total of 12 α, 12 sum, and 13 pass-
thru modules are needed for each finite field multiplication, and
a total of 12 sum modules are required for each finite field addi-
tion. Moreover, the total number of signatures needed in the GPE
unit is 128mult. · (12α + 12sum + 13pass-thru) + 128add. · (12sum)

or a total of close to 6 · 103 signatures for the normal signature
scheme. The percentage of error detection is calculated by apply-
ing the formula 100 · (1 − (1/2)#sign)%, where #sign is as the
total number of signatures. Therefore, the percentage error cover-
age by this unit is approximately 100 · (1 − (1/2)6·103

)%, which is
close to 100%. In the two-part signature scheme, for every mod-
ule, there are two error flags instead of one (as it is with normal
signatures). Moreover, two-part signature scheme uses 2error-flags ·
(128mult. · (12α + 12sum + 13pass-thru) + 128add. · (12sum)) or a total
of close to 1.2 · 104 signatures, which makes an error percentage of
approximately 100 ·(1−(1/2)1.2·104

)%. Finally, in the three-part sig-
nature scheme, for every module, there are three error flags needing

3error-flags · (128mult. · (12α +12sum +13pass-thru)+128add. · (12sum))

or a total of close to 1.8 · 104 signatures with error coverage of
100 · (1 − (1/2)1.8·104

)%.
We have implemented our error detection schemes benchmarked on

two different Xilinx FPGA families. We note that the target platform
does not necessarily affect the results because the chosen FPGAs
belong to the same series (Xilinx series 7), being very similar from
a technological point of view. As we are not using specific FPGA-
related sub-blocks, such as large multipliers or inner multiplexers, the
choice for hardware platform does not directly affect our derived over-
head. The design entry is Verilog. We have implemented the proposed
error schemes in the GPE unit. In Table II, the overheads in terms of
area (occupied slices), delay, power (at the frequency of 50 MHz), and
throughput of the different signatures on the GPE unit are presented.
The overheads obtained are very acceptable, especially since the error
detection coverage is close to 100%. There are several hardware
implementations of the McEliece cryptosystem, e.g., [15] and [16].
López-García and Cantó-Navarro [15] produced a hardware/software
implementation which is able to decipher 8192 bit-length in 47.39
ms. Bu et al. [16] proposed a new variant of McEliece cryptosystem
and its encryption-decryption co-processor based on the generalized
nonbinary orthogonal Latin square code (OLSC). The error detection
schemes proposed in this work are suitable for any cryptosystem that
uses any of the mentioned Goppa modules, such as the works in [15]
and [16]. There has not been any prior work done on this type of error
detection methods for the McEliece cryptosystem to the best of our
knowledge. For qualitative comparison to verify that the overheads
incurred are acceptable, let us go over some case studies. The work
in [17] presented signature-based fault diagnosis for cryptographic
block ciphers LED and HIGHT, obtaining a combined area and delay
overhead of 21.9% and 31.9% for LED and HIGHT, respectively.
Additionally, Mozaffari Kermani et al. [9] proposed efficient error
detection architectures of hash-counter-hash tweakable enciphering
schemes, obtaining a combined area and throughput overhead of less
than 13.5%. The proposed schemes in this article have combined
area and delay overheads of less than 12% (worst-case scenario).
Such prior works on classical cryptography verify that the proposed
error detection architectures obtain acceptable overhead.

V. CONCLUSION

In this work, we have derived error detection schemes for the
Goppa arithmetic units that the McEliece cryptosystem uses (based
on the underlying composite fields). We also discussed that the
proposed error detection schemes are applicable to the main func-
tions of public-key cryptosystems which use composite fields as
underlying arithmetic constructions as well. To show the efficiency
of the presented schemes we implemented the GPE unit on FPGA
and showed the different overheads with respect to the GPE unit with

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:17:05 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 5, MAY 2021 1003

no signatures and the GPE unit with normal, two-part, and three-part
signatures. Results prove that a very high error coverage of close to
100% is obtained [it is approximately at least 100·(1−(1/2)6·103

)%]
at the cost of low and viable overheads.

REFERENCES

[1] D. J. Bernstein, T. Lange, and C. Peters, “Attacking and defending the
McEliece cryptosystem,” in Proc. Int. Workshop Post Quantum Cryptogr.
(PQC), 2008, pp. 31–46.

[2] R. Misoczki and P. Barreto, “Compact McEliece keys from Goppa
codes,” in Proc. Int. Workshop Sel. Areas Cryptogr., 2009, pp. 376–392.

[3] P. Barreto, R. Lindner, and R. Misoczki, “Monoidic codes in cryp-
tography,” in Proc. Int. Workshop Post Quantum Cryptogr., 2011,
pp. 179–199.

[4] V. G. Umaña and G. Leander, “Practical key recovery attacks on
two McEliece variants,” IACR Cryptol. ePrint Archive, Lyon, France,
Rep. 2009/509, 2009.

[5] A. Shoufan, T. Wink, S. Huss, and E. Kohnert, “A novel cryptoprocessor
architecture for the McEliece public-key cryptosystem,” IEEE Trans.
Comput., vol. 59, no. 11, pp. 1533–1546, Nov. 2010.

[6] F. Strenzke, E. Tews, H. G. Molter, R. Overbeck, and A. Shoufan, “Side
channels in the McEliece PKC,” in Proc. Int. Workshop Post Quantum
Cryptogr. (PQC), 2008, pp. 216–229.

[7] C. Chen, T. Eisenbarth, I. Von Maurich, and R. Steinwandt, “Differential
power analysis of a McEliece cryptosystem,” in Proc. Conf. Appl.
Cryptogr. Netw. Security, 2015, pp. 538–556.

[8] I. Von Maurich and T. Güneysu, “Towards side-channel resistant imple-
mentations of QC-MDPC McEliece encryption on constrained devices,”
in Proc. Conf. Appl. Cryptogr. Netw. Security, 2014, pp. 266–282.

[9] M. M. Kermani, R. Azarderakhsh, A. Sarker, and A. Jalali, “Efficient
and reliable error detection architectures of hash-counter-hash tweakable
enciphering schemes,” ACM Trans. Embedded Comput. Syst., vol. 17,
no. 2, pp. 54:1–54:19, May 2018.

[10] X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri, “Security analysis of
concurrent error detection against differential fault analysis,” J. Cryptogr.
Eng., vol. 5, no. 3, pp. 153–169, 2015.

[11] M. Mozaffari Kermani, R. Azarderakhsh, and A. Aghaie, “Fault detec-
tion architectures for post-quantum cryptographic stateless hash-based
secure signatures benchmarked on ASIC,” ACM Trans. Embedded
Comput. Syst., vol. 16, no. 2, pp. 1–19, 2019.

[12] M. Mozaffari Kermani and A. Reyhani-Masoleh, “A high-performance
fault diagnosis approach for the AES SubBytes utilizing mixed bases,”
in Proc. IEEE Workshop Fault Diagnosis Tolerance Cryptogr. (FDTC),
Nara, Japan, Sep. 2011, pp. 80–87.

[13] D. J. Bernstein et al. (Nov. 2017). Classic McEliece:
Conservative Code-Based Cryptography. [Online]. Available:
https://classic.mceliece.org/nist/mceliece-20171129.pdf

[14] A. Reyhani and M. Hasan, “Error detection in polynomial basis
multipliers over binary extension fields,” in Proc. Int. Workshop
Cryptograph. Hardw. Embedded Syst. (CHES), 2002, pp. 515–528.

[15] M. López-García and E. Cantó-Navarro, “Hardware-software implemen-
tation of a McEliece cryptosystem for post-quantum cryptography,” in
Proc. Future Inf. Commun. Conf., 2020, pp. 814–825.

[16] L. Bu, R. Agrawal, H. Cheng, and M. A. Kinsy, “A lightweight McEliece
cryptosystem co-processor design,” 2019. [Online]. Available: arXiv
preprint:1903.03733.

[17] S. Subramanian, M. Mozaffari-Kermani, R. Azarderakhsh, and
M. Nojoumian, “Reliable hardware architectures for cryptographic
block ciphers LED and HIGHT,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 36, no. 10, pp. 1750–1758,
Oct. 2017.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:17:05 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

