
Hardware Constructions for Lightweight
Cryptographic Block Cipher QARMAWith

Error Detection Mechanisms

JASMIN KAUR , (Student Member, IEEE), MEHRAN MOZAFFARI KERMANI , (Senior Member, IEEE), AND
REZA AZARDERAKHSH , (Member, IEEE)

Jasmin Kaur and Mehran Mozaffari Kermani are with the Department of Computer Science and Engineering, University of South Florida, Tampa FL 33620, USA
Reza Azarderakhsh is with the Department of Computer and Electrical Engineering and Computer Science, I-SENSE Fellow,

Florida Atlantic University, Boca Raton FL 33431, USA

CORRESPONDING AUTHOR: M. MOZAFFARI-KERMANI (mehran2@usf.edu)

ABSTRACT The cryptographic algorithm QARMA is a family of lightweight tweakable block ciphers tar-
geted at applications such as memory encryption and construction of keyed hash functions. Utilizing light-
weight security in hardware has the advantage of adopting the mechanisms to battery-constrained usage
models including implantable and wearable medical devices. This lightweight block cipher utilizes a substitu-
tion permutation network (SPN) which is inspired by block ciphers such as PRINCE, MANTIS, and MID-
ORI. Moreover, it uses a three-round Even-Mansour scheme instead of the FX-construction, with its central
permutation being non-involutory and keyed. In this article, we introduce error detection schemes on varia-
tions of QARMA, namely QARMA-64 and QARMA-128, which to the best of authors’ knowledge, have not
been presented to date. We present our derivations for the logic-gate-based implementation, following which,
we present the derivations for signature-based and interleaved signature-based schemes for the LUT-based
approach. The presented, new signature-based error detection schemes, including cyclic redundancy check
(CRC), are provided for the compact, involutory, and optimized S-box. Besides, recomputations through
encoding the operands allow for the architectures to counter both transient and permanent faults. Also, the
schemes are benchmarked on a field-programmable gate array (FPGA) hardware platform, where perfor-
mance and implementation metrics show acceptable overheads and degradations. The proposed schemes are
aimed to make the implementations of this lightweight tweakable block cipher more reliable.

INDEX TERMS Error detection, field-programmable gate array (FPGA), lightweight tweakable block
cipher, QARMA

I. INTRODUCTION

Lightweight cryptography is crucial to modern deeply-embed-
ded systems, i.e., those embedded in human bodies and objects,
including area and power/energy-constrained implantable and
wearable medical devices, smart buildings, and the Internet of
nano-Things. Such variant of cryptography is an optimized
approach for secure embedded systems, especially for those
applications and devices that are required to have a low area
footprints and power/energy consumption levels such as RFID
tags, wireless nano-sensors, and the like [1]. Research on light-
weight cryptography has resulted in block ciphers which aim to
achieve high- security levels like those of the Advanced
Encryption Standard (AES), low energy consumption, and low

hardware complexity for constrained devices [2]. On the other
hand, tweakable block ciphers [3] focus primarily on designs
of encryption modes and hash functions for specific applica-
tions such as disk encryption [4], and memory encryption [5].
Nevertheless, without taking proper measures, the construc-
tions and implementations of these block ciphers could be vul-
nerable to security attacks [6], [7], making them unsafe. We
note that, however, the security attacks such as meet-in-the-
middle attack differ from implementation attacks commonly
known as side-channel attacks. The focus of our paper is to pro-
pose error detection schemes for QARMA.
QARMA [8] is a family of lightweight tweakable block

ciphers with a bricklayer substitution permutation network

Received 9 February 2020; revised 2 July 2020; accepted 26 September 2020.
Date of publication 1 October 2020; date of current version 4 March 2022.

Digital Object Identifier 10.1109/TETC.2020.3027789

514
2168-6750 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE

permission. See ht_tps://www.ieee.org/publications/rights/index.html for more information. VOLUME 10, NO. 1, JAN.-MAR. 2022Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:11:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4723-4800
https://orcid.org/0000-0003-4723-4800
https://orcid.org/0000-0003-4723-4800
https://orcid.org/0000-0003-4723-4800
https://orcid.org/0000-0003-4723-4800
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868

(SPN) that adopts a three-round Even-Mansour scheme keyed
with a pseudo-reflector. The diffusion layer uses a family of
Almost-(Maximum Distance Separable: MDS) matrices defined
over a ring with zero divisors. The heuristics for the S-boxes are
also chosen such that it has a minimum delay. QARMA can
choose from three different S-boxes depending upon the applica-
tion requirements, and has two variants, namely QARMA-64
and QARMA-128.QARMA is mainly used for memory encryp-
tion, nonce rotation, tweak compression, hash generation, and
has already been deployed for pointer authentication by ARM
[9]. Its small area, low latency, and low power consumption also
make it suitable for use in parallelism (pipelining or unrolling
architectures).
Proposing reliable error detection schemes for lightweight

block ciphers have been a prominent research topic in light-
weight cryptography [10]–[16]. Signature-based schemes
have been adopted in works [10], [14], [16] for detection of
natural and malicious faults, while recomputing with
encoded operands schemes in [15] are used for high effi-
ciency and error coverage. QARMA, shown in Figure 1,
takes its cryptographic properties from the block ciphers
PRINCE, MIDORI and MANTIS [8]. Even though QARMA
claims to have acceptable security margins, however, its
implementations can be prone to natural defects, malicious
faults aiming at erroneous outputs, and fault attacks. There-
fore, by implementing the proposed hardware architectures
for error detection, QARMA’s hardware architectures can be
augmented for fault detection.
In this paper, the logic-gate-based and look-up table (LUT)-

based error detection schemes are presented for the hardware
implementations of QARMA, as no prior work has been intro-
duced on this to the best of authors’ knowledge. These schemes
are designed to provide high error coverage, low overhead, and
resistance against faults as well as to augment the original con-
structionswithVLSI reliability. They impracticably do not under-
mine the performance and implementation metrics of the original
design. First, the derivations for the logic-gate-based implementa-
tion, following which, the derivations for signature-based and
interleaved signature-based schemes for the LUT-based approach
are presented. These signature-based schemes are tailored for sig-
nature (for single faults), interleaved signature (for burst/multiple
faults), cyclic redundancy check (CRC), and architecture-oblivi-
ous (recomputed with encoded operands) constructions. The pro-
posed approaches can be adopted to similar cryptographic
algorithms with sub-blocks presented in this paper, making them
not just confined to QARMA cryptographic algorithm.

Specifically, NIST candidates for lightweight cryptography can
take advantage of the proposed constructions. We also bench-
mark the proposed error detection architectures on field-program-
mable gate array (FPGA) hardware platform to confirm the
achieved objectives, noting that the proposed approaches are
oblivious of the platform and we expect similar acceptable over-
heads on application-specific integrated circuit (ASIC).
The paper is organized as follows: In Section II, prelimi-

naries describing the functionality of QARMA are presented.
In Section III, we present the proposed error detection
schemes. In Section IV, the error coverage assessments and
FPGA implementations are presented. In Section V, finally,
the conclusions are made.

II. PRELIMINARIES

The overall scheme of QARMA is shown in Figure 1, while
its structure is shown in Figure 2.
The encryption process is a sequence of operations on the

n ¼ 64-bit or n ¼ 128-bit internal state (IS), represented as
arrays of 16m-bit cells, combined with a tweak and a key.
The tweak used is n-bit long, the key is 2n-bit long, and the
rounds are calculated as 2r þ 2 for a given r. The permuta-
tions are parameterized using a core key and the round keys
are derived using a whitening key. The 2n ¼ 32m-bit master
key is split into w0jjk0, where w0 and k0 are the 16m-bit whit-
ening and core keys, respectively. For encryption, k1 ¼ k0

and w1 ¼ oðw0Þ, where oðxÞ is an orthomorphism defined as
oðxÞ :¼ ðxo 1Þ þ ðx� ð16m� 1ÞÞ. Here, the � symbol
and the o symbol denote a right shift and a right circular
shift of the register bits, respectively.
The forward round function F of QARMA has the follow-

ing four operations:
1) AddingRoundTweaky (K): For this operation, the ith

n-bit round key Ki is XORed with the state IS, the
tweak (t), and the round constant (ci). The permutation
h ¼ ½6; 5; 14; 15; 0; 1; 2; 3; 7; 12; 13; 4; 8; 9; 10; 11� is
used to permute the cells of the tweak, and an LFSR v

is used to update the tweak.
2) ShuffleCells (t): For this operation, ðtðISÞÞi ¼ stðiÞ, where

04i415: It uses the cell permutation t ¼ ½0; 11; 6;
13; 10; 1; 12; 7; 5; 14; 3; 8; 15; 4; 9; 2� on the IS.

3) MixColumns (M): In this operation, each column of the
IS array is multiplied by the matrix M, i.e., IS ¼ IS�M,

FIGURE 1. The overall scheme of QARMA. The first permutation

ðF) and the third permutation ðF0Þ are functionally inverse and

are parameterized by a tweak ðTÞ. The central permutation ðcÞ is
inverted using a key transformation.

FIGURE 2. A detailed structure of QARMA having r rounds. It

shows the three-round Even-Mansour scheme with the keyed

pseudo-reflector central construction.

VOLUME 10, NO. 1, JAN.-MAR. 2022 515

Kaur et al.: Hardware Constructions for Lightweight Cryptographic Block Cipher QARMAWith Error Detection Mechanisms

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:11:20 UTC from IEEE Xplore. Restrictions apply.

where M is involutory. The multiplication of an ele-
ment of the array with ri is a left circular rotation of the
element by i bits.

4) SubCells (S): For this operation, the IS is updated using the
chosen m-bit S-box as si sðsiÞ, where 04i415 and
m ¼ 4 orm ¼ 8. For our implementation, the chosen opti-
mized involutory 8-bit bi-jective S-box s ¼ ½10; 13;
14; 6; 15; 7; 3; 5; 9; 8; 0; 12; 11; 1; 2; 4�, is applied in par-
allel on each byte of the IS of QARMA-128.

The backward round function F0 is the inverse of the for-
ward round function. The central construction c consists of a
forward round, a backward round, a Pseudo-Reflector, and a
key (derived from the whitening key).

III. PROPOSED ERROR DETECTION ARCHITECTURES

In this section, the efficient and overhead-aware error detec-
tion schemes for QARMA are presented. In the proposed
architectures, we have based our schemes on different tiers
of approaches requiring wide range of reliability, overhead,
and obliviousness of the architectures.

A. PROPOSED SIGNATURE-BASED SCHEMES FOR THE

OPTIMIZED S-BOX

For the SubCells operation of encryption process in QARMA-
128, each sub-byte of the IS is passed through the instances of
the 8-bit S-box which is constructed by placing two 4-bit S-
boxes in parallel. The input and output bits of the S-box are
wired in an asymmetric manner, where the output bits are
cyclically rotated and fed to the next instance of the S-box. In
this paper, we focus mainly on the homogeneous S-box s

used in QARMA which is optimal, compact, and involutory.
For hardware implementations of the S-box s, we propose the
following approaches, which are applicable to variants of the
S-box, i.e., the logic-gate-based and the LUT-based. The first
approach has the advantage of having low area and low power
consumption, while the second approach has the advantage of
having higher error coverage but at the cost of area and power
consumption. We also present a CRC-3 construction to show
that the proposed work can be tailored based on the error cov-
erage needs and overhead to be tolerated. Since the 8-bit S-
box of QARMA-128 is bijective, the equations are derived
only for the 4-bit variant.
We first present our derivations for the logic-gate-based

implementation of the S-Box s. Next, we present the val-
ues for signature-based and interleaved signature-based
schemes for the LUT-based approach in Table 1, where
the one-bit signature ðp̂0Þ and interleaved signatures
ðp̂1;p̂2Þ corresponding to each of the sixteen 4-bit

elements of the S-box s are listed. The equations of these
signatures for logic-gate-based constructions are also
derived below. The signatures presented in Table 1 are
better suited for FPGAs, as the abundant memory units
(block memories or pipelined distributed memories) can
be utilized to store the signature values along with the
S-Box values. While the logic-gate based constructions
are better for ASICs, as the LUT-based S-boxes not pre-
ferred due to memory macros and registers being expen-
sive in implementations. Here and throughout the paper,
detailed derivations have not been presented for the sake
of brevity.
Remark 1. Considering the 4-bit S-box of QARMA with

the input (m ¼ ðm3;m2;m1;m0Þ) and output (n ¼ ðn3; n2; n1;
n0Þ), we derive the following low-complexity equations for
logic-gate-based variant:

n0 ¼m2ð �m1 _ �m3Þ _ �m1ðm3 þ m0Þ;
n1 ¼ �m0ð �m3 _ m2Þ _ �m3ðm1 þ m2Þ;
n2 ¼m0ð �m3 _ m1Þ _ �m3ðm1 þ m2Þ;
n3 ¼ �m1ð �m2 _ �m0Þ _ �m2ð �m3 þ m0Þ:

(1)

Here and throughout the paper, the symbols _, þ, and the-
bar represent OR, XOR, and NOT operations, respectively.
Theorem 1. Considering the 4-bit S-box of QARMA with

the input as ðm ¼ ðm3;m2;m1;m0ÞÞ and the output as ðn ¼
ðn3; n2; n1; n0ÞÞ, the one-bit signature is derived as follows:

p̂0 ¼ m3m2 _ �m1m0 _ �m3 �m2m1 �m0; (2)

Proof. The predicted signatures corresponding to each ele-
ment of the given S-box are computed by modulo-2 addition
of all the output bits corresponding to the input bits. Hence,
using (1) we get, p̂0 ¼ m3m2 �m1 �m0 _ m3m2 �m1m0 _ m3m2

m1m0 _ m3m2m1 �m0 _ �m3 �m2 �m1m0 _ �m3m2 �m1m0 _ m3m2 �m1m0

_m3 �m2 �m1m0 _ �m3 �m2m1 �m0, which on further simplification
gives us the final equation as (2). tu
Theorem 2. Considering the 4-bit S-box of QARMA with

the input as ðm ¼ ðm3;m2;m1;m0ÞÞ and the output as ðn ¼
ðn3; n2; n1; n0ÞÞ of the S-box, the interleaved signatures are
derived as follows:

p̂1 ¼ �m3 �m2m1 _ ðm3 þ m1Þ �m0 _ m3m1m0 _ m3m2 �m1; (3)

p̂2 ¼ �m2m0 _ m3 �m2 �m1 _ �m3 �m1m0 _ m2m1 �m0: (4)

Proof. The interleaved parities are computed by the sepa-
rate modulo-2 addition of odd bits and even bits of the

TABLE 1. Signature ðp̂0Þ and interleaved signature ðp̂1; p̂2Þ of QARMA’s involutive S-box s (in hexadecimal form).

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

sðxÞ A D E 6 F 7 3 5 9 8 0 C B 1 2 4
p̂0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1
ðp̂1; p̂2Þ (0,0) (0,1) (1,0) (1,1) (0,0) (0,1) (1,1) (0,0) (1,1) (0,1) (0,0) (1,1) (1,0) (1,0) (0,1) (1,0)

516 VOLUME 10, NO. 1, JAN.-MAR. 2022

Kaur et al.: Hardware Constructions for Lightweight Cryptographic Block Cipher QARMAWith Error Detection Mechanisms

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:11:20 UTC from IEEE Xplore. Restrictions apply.

sixteen 4-bit entries of the S-box. Using our derived detailed
formulations in (1), the equation for odd-bit parity is formu-
lated as p̂1 ¼ m3m2 �m1 �m0 _ m3m2 �m1m0 _ m3m2m1 m0 _ m3 �m2

m1m0 _ �m3 �m2m1 �m0 _ �m3m2m1 �m0 _ m3 �m2 �m1 �m0 _ m3 �m2m1m0,
which gives us the equation p̂1 ¼ ðn0 þ n2Þ ¼ �m3 �m2m1 _
�m3m1 �m0 _ m3m1m0 _ m3m2 �m1 _ m3 �m1 �m0. On further simpli-
fication, we get the equation in (3), i.e., p̂1 ¼ �m3 �m2m1 _
ðm3 þ m1Þ �m0 _ m3m1m0 _ m3m2 �m1. Similarly, the even-bit
parity is derived as, p̂2 ¼ ðn1 þ n3Þ ¼ �m3 �m2 �m1m0 _ �m3 �m2

m1m0 _ �m3m2 �m1m0 _ �m3m2 m1 �m0 _ m3m2m1 �m0 _ m3 �m2 �m1 �m0

_m3 �m2 �m1m0 _ m3 �m2m1m0, which gives us the equation in
(4), i.e., p̂2 ¼ �m2m0 _ m3 �m2 �m1 _ �m3 �m1m0_ m2m1 �m0. tu
For our other approach, we present a CRC-3 scheme to

account for the needs for higher error coverage at the expense
of higher overhead. The following theorem derives signa-
tures p̂3;p̂4, and p̂5 for the presented CRC-3 scheme.
Theorem 3. Considering the 4-bit S-box of QARMA with

the input as (m ¼ ðm3;m2;m1;m0Þ) and the output as
(n ¼ ðn3; n2; n1; n0Þ), we get the CRC-3 signatures as:

p̂3 ¼ �m2ðm3 þ �m0Þ _ m2ð �m3m1 _ �m1m0Þ; (5)

p̂4 ¼ �m2m0 _ �m1ðm3 �m2 _ �m3m0Þ _ m2m1 �m0; (6)

p̂5 ¼ m0ð �m3 _ m1Þ _ �m3ðm2 þ m1Þ: (7)

Proof. For CRC-3, we perform modular reduction using
the CRC-3 polynomial gðxÞ ¼ x3 þ xþ 1. Using our deriva-
tions, we get the equation for the signature as n3ðxþ 1Þ þ
n2x2 þ n1xþ n0, where the coefficients terms of x0; x1, and
x2 correspond to the individual signature bits p̂3;p̂4, and p̂5,
respectively. The equation on further simplification gives
us the final equation as n2x2 þ ðn1 þ n3Þxþ ðn0 þ n3Þ
for the given output vectors ðn ¼ ðn3; n2; n1; n0ÞÞ. By substi-
tuting the output vectors with corresponding input vectors
(m ¼ ðm3;m2;m1;m0Þ), we get the simplified equations
of the signature bits as shown in (5), (6), and (7),
respectively. tu
We have also depicted the CRC-3 signatures in Table 2

based on formulations (5), (6), and (7), specifically for LUT-
based S-boxes where these values can be stored in memories
along with the S-box output bits. The proposed architecture-
dependent scheme for one instance of the 8-bit involutive S-
box of QARMA-128 is shown in Figure 3.

B. LOW-AREA/POWER STRUCTURE-OBLIVIOUS

SCHEME FOR THE S-BOX

For the 8-bit bijective S-box in QARMA-128 described
above, we propose architecture-oblivious error detection
scheme, realized through recomputing with encoded oper-
ands, to give the designers freedom in choosing the S-box
constructions. In this approach, as shown in Figure 4, we
swap the input nibbles to the 8-bit S-box in QARMA-128,
i.e., the first four inputs go to the second 4-bit S-box and the
next four inputs are fed to the first 4-bit S-box. The correct
result is obtained by swapping the output bits of the S-box,
which then in comparison with the actual output detects tran-
sient and permanent faults. This proposed scheme does not
affect the algorithmic security of QARMA-128, since the
error detection is performed via re-computation, hence the
original structure of QARMA-128 is protected. The results
are presented in Section IV.

C. PROPOSED SCHEMES FOR OTHER OPERATIONS

1) SCHEME FOR MIXCOLUMNS OPERATION OF QARMA

QARMA can choose from several matrices for its MixCol-
umns operation, in which each column of IS is multiplied by
an involutory matrix M. The multiplication of an element of
IS by an element ri of the matrix M is a left circular shift of
the bits of the IS element by i bits. For example, in QARMA-
128, the following matrix with 8-bit elements is used for
array multiplication:

M8 ¼ Q8 ¼
0 r r4 r5

r5 0 r r4

r4 r5 0 r

r r4 r5 0

0
BB@

1
CCA:

TABLE 2 CRC-3 signatures p̂3; p̂4; p̂5 of QARMA’s involutive S-box

s (in hexadecimal form).

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

sðxÞ A D E 6 F 7 3 5 9 8 0 C B 1 2 4
p̂3 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0

p̂4 0 1 0 1 0 1 1 0 1 1 0 1 0 0 1 0
p̂5 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1

FIGURE 3. The proposed architecture-dependent scheme for one

instance of the 8-bit involutive S-box of QARMA-128. The two ef
depict the error indication flags for the proposed schemes.

FIGURE 4. The proposed architecture-oblivious scheme for 8-bit

involutive S-box of QARMA-128 as implemented on one of the

instances. Here, the input and output bits are swapped.

VOLUME 10, NO. 1, JAN.-MAR. 2022 517

Kaur et al.: Hardware Constructions for Lightweight Cryptographic Block Cipher QARMAWith Error Detection Mechanisms

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:11:20 UTC from IEEE Xplore. Restrictions apply.

Remark 2. The column-wise signatures for the outputs of
MixColumns are equal to modulo-2 addition of columns of
the state input matrix. This results in an efficient and low-
complexity error detection scheme.

2) SCHEME FOR ADDROUNDKEYOPERATION OF

QARMA

In this operation, the round key K is XORed with the IS, a
tweak t, and round constant c. The tweak is permuted using the
permutation h and only the cells with indices [0,1,3,4,8,11,13]
are updated using LFSR v. This results in a simple yet efficient
error detection scheme through modulo-2 addition of the state
and the key/tweak.

3) SCHEME FOR DECRYPTION OF QARMA

The decryption operation in QARMA is the same as encryption
operation, except that k0 þ a is used as the core key, k1 ¼ Q:k0,
the whitening keys w0 and w1 are swapped, and Q�t is used as
the tweakey. Hence, the same error detection schemes that are
used for encryption can be implemented for decryption as well.

IV. ERROR COVERAGE AND FPGA BENCHMARK

Our proposed error detection schemes are designed to detect
transient faults and permanent faults which can occur due to
malicious or natural faults. An attacker may not be successful
at flipping exactly one bit to collect sensitive information due
to technological constraints. Therefore, in addition to single
faults, we need to consider schemes that are able to detect
multiple stuck-at faults (stuck-at 0 and stuck-at 1). Moreover,
parity, interleaved parity, CRC-3, and recomputing with
encoded operands can be combined to achieve high error
coverage. Such schemes are needed for detecting random
faults, natural faults, and to also provide security against
intelligent attackers who may rely on other vulnerabilities of
the design (side-channel attacks). In practice, the attacker is
interested in using as few faults as possible (preferably single
faults with different intensities) to minimize the effort. Previ-
ous works argue that the single-bit (more likely in low fault
intensity), two-bit, three-bit, and four-bit (more likely in
higher intensities) biased fault models can be used to simu-
late variation of fault intensity [17]. In addition, fault catego-
ries presented include: single bit upset (SBU), single byte
double bit upset, single byte triple bit upset (SBTBU), single
byte quadruple bit upset (SBQBU), other single byte faults
(OSB), and multiple byte faults (MB); the former four corre-
sponding to single/two/three/four-bit models [17].
Differential fault analysis uses transient and mostly multiple

bit and byte faults. In the case of interleaved parities, we detect
burst faults which are more realistic to consider for the attackers.
Multibyte faults cannot be used to realistically attack time
redundancy countermeasure implementations, e.g., recomput-
ing with permuted operands, and single-byte fault models are
the only viable option for the attackers. The proposed
approaches are for VLSI reliability and also make fault attacks
more difficult; however, it is possible for the attacker to inject
faults to the error detection architecture. In such cases, the

attacks and technologies tomount themwould bemore sophisti-
cated, yet this is a possibility. Hardening the error detection
architecture through larger parallel transistor-based logic is a
viable remedy in this case. Through simulations, the error cover-
age for stuck-at faults was evaluated for QARMA, specifically
for the proposed CRC-3 and the recomputing with encoded
operands scheme. Single and multiple stuck-at faults were con-
sidered to cover both natural (permanent) and malicious (tran-
sient) fault injections. Multiple stuck-at faults were injected in
the inputs of the S-Box to generate faulty outputs by forcing the
input bits to be either 0 or 1. The faulty outputs were then com-
pared to the predicted outputs and the error indication flags of
the proposed schemes were monitored. For the single stuck-at
faults, the error coverage was 100 percent since the proposed
schemes are designed to detect odd faults. For multiple stuck-at
faults, through injecting 50,000 faults, the results for the CRC-3
and recomputing with encoded operands scheme showed error
coverage of 99.46 and 99.53 percent, respectively.
The benchmark of overheads of the proposed schemes, imple-

mented for QARMA-128, are presented in this section as well.
The FPGA implementation has been performed on the device
-xcku035-ffva1156-2-i of Kintex UltraScale FPGA family.
Xilinx Vivado version 14.1 has been used for performance and
implementation metrics derivations and the RTL has been coded
using Verilog. Table 3 shows the results of our implementations-
for the logic-gate based variant. FromTable 3, we can see that the
overheads of the implemented architectures are acceptable. The
area overhead of one-bit signature is 1.44 percent on top of the
original architecture, while the delay is higher by 0.50 percent
and the power goes up by 2.48 percent. This increase is due to
additional clock-cycles that are needed to compute the predicted
and actual parities which are then compared to original signatures
for error flags. The table also tabulates the throughput (bits at the
output every second) and the efficiency (which is throughput
over area) for the architectures. The performance and implemen-
tation metrics for the proposed implemented CRC-3 scheme are
also presented in this table. The overheads for the LUT-based var-
iant of our proposed schemes are expected to be similar to the
overheads mentioned above as the signature values are stored in
memory along with the contents of the S-Box s, and does not
require additional circuitry.

TABLE 3. FPGA implementation results for the original QARMA-

128 encryption and its proposed error detection scheme on Kin-

tex UltraScale FPGA family for device -xcku035-ffva1156-2-i.

518 VOLUME 10, NO. 1, JAN.-MAR. 2022

Kaur et al.: Hardware Constructions for Lightweight Cryptographic Block Cipher QARMAWith Error Detection Mechanisms

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:11:20 UTC from IEEE Xplore. Restrictions apply.

In absence of any compensation, the total time of recomputing
architectures that do not embed throughput alleviation
approaches is not acceptable. This drastic deterioration of the
throughput can be improved by incorporating subpipelining.
The design throughput will be close to the original architecture
as subpipelining increases the frequency. Table 4 shows the
overhead results of recomputing with encoded operands scheme
depicted in Figure 4. For the recomputing with encoded oper-
ands scheme, the output is calculated twice, hence, giving us the
overheads for the area, delay, and power consumption as 20.26,
12.93, and 17.05 percent, respectively. Due to runtime retiming
of the implemented circuit on FPGA, the presented overheads
can slightly deviate from the expected overheads for this scheme.
Throughput can be improved by using subpipelining, i.e., by put-
ting a register array between S-boxes to store both the predicted
and the actual output for comparison, as explained above. These
proposed schemes or combinations of the results in Tables 3 and
4 can be used to achieve the reliability requirements and the
required implementation and performance metrics to tailor for
deeply-embedded systems.
There has not been any prior work done on this type of

error detection methods for QARMA to the best of our
knowledge. However, for qualitative comparison to verify
that the overheads incurred are acceptable, let us go over
some case studies. The work in [15] presented signature-
based fault diagnosis for cryptographic block ciphers LED
and HIGHT, obtaining a combined area and delay overhead
of 21.9 and 31.9 percent for LED and HIGHT, respectively.
Additionally, the authors in [16] propose efficient error
detection architectures of hash-counter-hash tweakable enci-
phering schemes, obtaining a combined area and throughput
overhead of less than 13.5 percent. Such prior work on clas-
sical cryptography verifies that the proposed error detection
architectures obtain acceptable overhead.

V. CONCLUSION

In this paper, we have presented signature-based error detec-
tion schemes for the lightweight block cipher QARMA to
provide fault detection and VLSI reliability due to natural
defects, e.g., single-event upsets (SEUs). We note that we
have proposed both architecture-dependent low-complexity
approaches as well as structure-oblivious schemes that are
applicable to different S-boxes implementations. For the S-
boxes of QARMA, we have derived and implemented both
LUT-based and logic gate variants, where the presented

schemes can be tailored to the reliability and overheard require-
ments.We note that on FPGAs,memory units (blockmemories
or pipelined distributed memories) are abundant but on ASICs,
memory macros and registers are expensive and LUT-based S-
boxes are thus not preferred. Through FPGA implementations
using Xilinx Kintex UltraScale family, it has been shown that
the overheads of the proposed architectures are acceptable for
resource-constrained applications. We would like to emphasize
that the proposed approaches are mainly aimed at VLSI reli-
ability but we envision that they make some fault attacks more
difficult to mount.

ACKNOWLEDGMENTS

This work was performed under the U.S. federal agency
award 60NANB20D013 granted from National Institute of
Standards and Technology (NIST).

REFERENCES

[1] T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel, “A sur-
vey of lightweight-cryptography implementations,” IEEE Des. Test Com-
put., vol. 24, no. 6, pp. 522–533, Nov./Dec. 2007.

[2] G. Hatzivasilis, K. Fysarakis, I. Papaefstathiou, and C. Manifavas, “A
review of lightweight block ciphers,” J. Cryptogr. Eng., vol. 8, no. 2, pp.
141–184, 2017.

[3] M. Liskov, R. L. Rivest, and D. Wagner, “Tweakable block ciphers,” J.
Cryptol., vol. 24, no. 3, pp. 588–613, 2010.

[4] L. Martin, “XTS: A mode of AES for encrypting hard disks,” IEEE Secu.
Privacy Mag., vol. 8, no. 3, pp. 68–69, May/Jun. 2010.

[5] M. Henson and S. Taylor, “Memory encryption: A survey of existing tech-
niques,” ACM Comput. Surv., vol. 46, no. 4, pp. 1–26, 2014.

[6] S. Ali, X. Guo, R. Karri, and D. Mukhopadhyay, “Fault attacks on AES
and their countermeasures,” in Secure System Design Trustable Comput-
ing. Berlin, Germany: Springer, 2016, pp. 163–208.

[7] C. Dobraunig, M. Eichlseder, T. Korak, V. Lomn�e, and F. Mendel, “Statis-
tical fault attacks on nonce-based authenticated encryption schemes” in
Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur., 2016, pp. 369–395.

[8] R. Avanzi, “The QARMA block cipher family,” IACR Trans. Symmetric
Cryptol., vol. 0, no. 0, pp. 4–44, 2017.

[9] Qualcomm, “Pointer authentication on ARMv8.3,” 2017. [Online] Avail-
able: https://www.qualcomm.com/media/documents/files/whitepaper-
pointer-authentication-on-armv8–3.pdf

[10] M. M. Kermani and A. Reyhani-Masoleh, “A low-cost S-box for the
advanced encryption standard using normal basis,” in Proc. IEEE Int.
Conf. Electro/Inf. Technol., 2009, pp. 52–55.

[11] S. Patranabis et al., “Lightweight design-for-security strategies for com-
bined countermeasures against side-channel and fault analysis in IoT appli-
cations,” J. Hardware Syst. Secur., vol. 3, no. 2, pp. 103–131, 2019.

[12] M. M. Kermani and A. Reyhani-Masoleh, “Reliable hardware architectures for
the third-round SHA-3 finalist Grostl benchmarked on FPGA platform,” in
Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI Syst., 2011, pp. 325–331.

[13] X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri, “Security analysis of con-
current error detection against differential fault analysis,” J. Cryptogr.
Eng., vol. 5, no. 3, pp. 153–169, 2015.

[14] M. M. Kermani and A. Reyhani-Masoleh, “A lightweight concurrent fault
detection scheme for the AES S-Boxes using normal basis,” in Proc.
LNCS Cryptogr. Hardware Embedded Syst., 2008, pp. 113–129.

[15] S. Subramanian, M. Mozaffari-Kermani, R. Azarderakhsh, and M. Nojou-
mian, “Reliable hardware architectures for cryptographic block ciphers
LED and HIGHT,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 36, no. 10, pp. 1750–1758, Oct. 2017.

[16] M. M. Kermani, R. Azarderakhsh, A. Sarker, and A. Jalali, “Efficient and
reliable error detection architectures of Hash-Counter-Hash tweakable
enciphering schemes,” ACM Trans. Embedded Comput. Syst., vol. 17,
no. 2, pp. 54:1–54:19, May 2018.

[17] S. Patranabis, A. Chakraborty, D. Mukhopadhyay, and P. H. Nguyen, “Using
state space encoding to counter biased fault attacks on AES countermeas-
ures,” 2015. [Online]. Available: https://eprint.iacr.org/2015/806.pdf

TABLE 4. Implementation results for the original QARMA-128

encryption and its proposed recomputing with encoded oper-

ands scheme on Kintex UltraScale FPGA family for device

-xcku035-ffva1156-2-i.

Architecture Area ðSlicesÞ Delay ðnsÞ Power @ 100 MHz ðWÞ
QARMA-128 543 3.611 0.522

QARMA-128
w/ Recomputing

653 (20.26%) 4.078 (12.93%) 0.611 (17.05%)

VOLUME 10, NO. 1, JAN.-MAR. 2022 519

Kaur et al.: Hardware Constructions for Lightweight Cryptographic Block Cipher QARMAWith Error Detection Mechanisms

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:11:20 UTC from IEEE Xplore. Restrictions apply.

https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8--3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8--3.pdf
https://eprint.iacr.org/2015/806.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

