
IEEE TRANSACTIONS ON RELIABILITY, VOL. 72, NO. 2, JUNE 2023 651

Error Detection Constructions for ITA Finite Field
Inversions Over GF(2m) on FPGA Using CRC

and Hamming Codes
Alvaro Cintas-Canto , Member, IEEE, Mehran Mozaffari Kermani , Senior Member, IEEE,

and Reza Azarderakhsh , Member, IEEE

Abstract—Finite field arithmetic operations over GF(2m) are
widely used in critical applications, such as cryptography, coding
theory, error-correcting codes, and digital signal processing. Finite
field inversions are the most time-consuming operations among
other widely-used ones and require a large footprint as well as
power/energy to be performed. To reduce such complexity, the
Itoh–Tsujii algorithm (ITA) has received prominent attention in the
literature; however, implementations using ITA are still vulnerable
to natural very-large-scale integration defects. To overcome the
challenge of detecting naturally-induced faults in such construc-
tions, for the first time, we propose error detection schemes based on
Hamming codes for architectures performing finite field inversions
using the ITA algorithm over GF(2m) with polynomial basis.
Additionally, CRC-oriented error detection schemes for inversions
in GF(2m) with normal basis are also studied and new approaches
to protect them are presented. In this article, general formula-
tions are provided along with different case studies to show the
feasibility of our schemes with any finite field size. Moreover, field-
programmable gate array (FPGA) implementations are performed
on two Xilinx FPGA families, i.e., Kintex UltraScale+ and Xilinx
Virtex-7 UltraScale+, to verify that the overheads added by the
error detection architectures to provide reliability are suitable for
deeply-constrained embedded systems.

Index Terms—Fault detection, field-programmable gate array
(FPGA), finite field inversion, hamming codes.

ACRONYMS AND ABBREVIATIONS

CRC Cyclic redundancy check.
FLT Fermat’s Little Theorem.
FPGA Field-programmable gate array.
GNB Gaussian normal basis.
ITA Itoh–Tsujii algorithm.

Manuscript received 30 March 2022; revised 4 June 2022 and 16 August 2022;
accepted 11 October 2022. Date of publication 1 November 2022; date of current
version 5 June 2023. This work was supported in part by Marymount University
through the START under Grant 2450100 and in part by the U.S. National
Science Foundation (NSF) through the Award SaTC-1801488. Associate Editor:
Tadashi Dohi.

Alvaro Cintas-Canto is with the School of Technology and Innovation, Mary-
mount University, Virginia, VA 22207 USA (e-mail: acintas@marymount.edu).

Mehran Mozaffari Kermani is with the Department of Computer Science
and Engineering, University of South Florida, Tampa, FL 33620 USA (e-mail:
mehran2@usf.edu).

Reza Azarderakhsh is with the Department of Computer and Electrical
Engineering and Computer Science, Florida Atlantic University, Boca Raton,
FL 33431 USA (e-mail: razarderakhsh@fau.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TR.2022.3216014.

Digital Object Identifier 10.1109/TR.2022.3216014

VLSI Very-large-scale integration.

I. INTRODUCTION

ARITHMETIC operations over the Galois field GF(2m)
are of special interest for many applications, such as

cryptography, coding theory, error-correcting codes, and digital
signal processing. The Galois field contains a finite number of
elements that satisfy certain rules when performing addition,
subtraction, multiplication, inversion, and division. The order of
a Galois field is a prime or a power of a prime. The characteristic
2 of such fields is widely used in very-large-scale integration
(VLSI) implementations due to the natural representation of
the GF(2m) symbols, which are m-bit vectors. Among the
different finite field arithmetic operations, finite field inversion
is the most time-consuming due to the large footprint required,
needing thousands of gates for large field sizes. Moreover,
battery-powered deeply-embedded systems such as implantable
medical devices, smart fabrics, and Internet of nano-Things
require low-energy realizations of these building blocks.

To reduce the complexity of finite field inversions, many
approaches have been studied, see, for example, [1], [2], [3], [4],
[5]. Most of these approaches decrease the complexity of finite
field inversions by the use of multiplications, squarings, and
additions. The Itoh–Tsujii algorithm (ITA) has been studied and
implemented in different systems since ITA drastically reduces
the number of multiplications needed to perform inversions over
GF(2m). In the early stages, ITA was meant for finite fields
with normal basis; however, its versatility and efficacy on finite
fields with polynomial basis have been proven [6], [7]. Recent
works have explored ITA even further to reduce its complexity
[8], [9]. Nevertheless, although ITA reduces the number of
multiplications, it still requires many gates to implement the
inverse of an element A where AεGF(2m). Implementations
using such large designs are sensitive and can be compromised
by natural defects. Producing a resilient architecture is a difficult
challenge, not only because the error coverage has to be high but
also because the overhead induced by the error detection blocks
has to be suitable for deeply-constrained embedded systems,
where one fault could lead to erroneous results.

Providing security is crucial for many applications and there
has been extensive research on creating reliable architectures
[10], [11], [12], [13]. A widely used method to provide reliability

0018-9529 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:06:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6800-3302
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0002-6921-6868
mailto:acintas@marymount.edu
mailto:mehran2@usf.edu
mailto:razarderakhsh@fau.edu
https://doi.org/10.1109/TR.2022.3216014

652 IEEE TRANSACTIONS ON RELIABILITY, VOL. 72, NO. 2, JUNE 2023

is by adding error detection schemes into the original archi-
tectures [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26]. Moreover, some studies focus on error detection
in architectures using GF(2m) arithmetic operations, mostly in
finite field multipliers. In [27], error detection based on 1-b parity
prediction for finite field multipliers using polynomial basis over
GF(2m) is performed. One of the drawbacks of singular parity
prediction is that it can only provide an error detection of up
to 50%, i.e., if the number of faults is even, the system would
not detect the faults. Other works such as [28], [29], [30], [31]
overcame such limitations by proposing error detection based
on multi-bit parity prediction at the expense of larger overheads
than 1-b parity prediction schemes. These highly predictable
countermeasures can be circumvented by intelligent fault injec-
tion; therefore, works [32], [33], [34] explore cyclic redundancy
checks (CRCs) as error detection schemes in architectures with
GF(2m) arithmetic. In this article, we not only complete work
[34] by deriving and implementing CRC-oriented error detection
schemes for inversions over GF(2m) with normal basis, but
we also propose for the first time error detection constructions
based on Hamming codes inversions over GF(2m) using the
ITA algorithm. Hamming codes are a very well-known type of
error-correcting codes and achieve the highest possible rate for
codes with their block length and minimum distance of three.
Our contributions to this work may be summed up as follows:

1) We propose fault detection architectures based on CRC-
3 and Hamming codes for finite field inversions over
GF(2m) using ITA with normal and polynomial basis,
respectively. Depending on the system security require-
ments, larger CRCs can be utilized by following similar
derivations of the ones presented in this article.

2) Formulations for the different finite fields using ITA with
normal and polynomial basis are derived and validated by
performing software implementations. In this work, we
also provide specific examples with different m values;
however, these formulations and error detection schemes
can be applied to any field size.

3) The overheads of the presented error detection schemes
are analyzed by embedding such schemes to the original
ITA implementation. This is done by utilizing Xilinx
field-programmable gate array (FPGA) family Virtex-7
for device xc7vx1140tflg1930-i and FPGA family Kintex
UltraScale+ for device xcku5p-sfvb784-1LV-i.

The rest of this article is organized as follows: Section II
discusses the differences between normal basis, especially Gaus-
sian normal basis (GNB), and polynomial basis. Additionally,
it states the equations used to perform finite field addition,
squaring, and multiplication with both normal and polynomial
basis. Section III is divided into four subsections. First, the fault
model in this work is discussed; next, an ITA overview and how
it works with finite field inversions are presented; finally, we
derive different fault detection based on CRC-3 and Hamming
codes for finite field inversions over GF(2m) using ITA with
normal and polynomial basis, respectively. We apply such fault
detection schemes into the original finite field inversion con-
struction in Section IV to benchmark the different overheads.
Finally, Section V concludes this article.

II. PRELIMINARIES

This section introduces finite fields over GF(2m) with normal
basis and finite fields over GF(2m) with polynomial basis. The
multiplication of elements with polynomial basis is relatively
simple compared to normal basis. However, performing squar-
ing with normal basis is much easier than with polynomial basis
since it can be done by simply applying cyclic right shifts, which
has no cost in hardware. Therefore, both polynomial basis and
normal basis are used in different applications depending on the
system requirements.

A finite field element A over GF(2m) with normal basis
{α, α2, α22 , . . ., α2m−1}, where each α is a normal element of
GF(2m), can be represented as

A =
m−1∑
i=0

aiα
2i ai ε {0, 1}. (1)

GNB is a type of normal basis in which m > 1 and not divisible
by 8. According to a more thorough definition in [35], m and t
are positive integers such that p = mt+ 1 is a prime number. A
Gauss period of type (m, t) over GF(2) is denoted as follows:

α =

t−1∑
i=0

δτ
i

where δ is the primitive (mt+ 1)th root of unity in GF(mt+ 1).
To calculate τ , which is the primitive tth root of unity, the follow-
ing property is applied: τ t = 1 mod p. For example, the GNB
with type-4 over GF(27) has τ = 12 since 124 = 1 mod 29.
Moreover, α is calculated as follows: α =

∑t−1
i=0 δ

12i = δ +
δ12 + δ17 + δ28.

To add finite field elements A and B with normal basis,
we add the coefficients of each element using XOR gates, i.e.,∑m−1

i=0 (ai + bi)α
2i . The multiplication of the finite field ele-

ments A and B with normal basis that generates an output C
can be represented as

C =

(((
am−1αB2−(m−1)

)2
+ am−2αB2−(m−2)

)2

+ · · ·
)2

+ a0αB. (2)

Readers interested in the mathematics behind this formulation
can refer to [28]. Finally, as previously noted, one of the primary
advantages of using normal basis is that squaring requires no
extra hardware cost and is accomplished by simply performing
cyclic right shifts. On normal basis, squaring an element A over
GF(2m) may be represented as

A2i =
m−1∑
j=0

a<j−i>α2i . (3)

On the other hand, a finite field element A over GF(2m) with
polynomial basis {1, α, α2, . . ., αm−1} can be represented as

A =

m−1∑
i=0

aiα
i, ai ε {0, 1} (4)

where ai’s are the coordinates of the input element A.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:06:55 UTC from IEEE Xplore. Restrictions apply.

CINTAS-CANTO et al.: ERROR DETECTION CONSTRUCTIONS FOR ITA FINITE FIELD INVERSIONS OVER GF(2M) ON FPGA 653

Fig. 1. Finite field squaring over GF(2m) using polynomial basis.

To add finite field elements A and B with polynomial basis,
as with normal basis, we also add the coefficients of each
element using XOR gates, i.e.,

∑m−1
i=0 (ai + bi)α

i. Finite field
multiplications with polynomial basis can be represented as

C = A ·B mod f(α)

=

m−1∑
i=0

bi ·
((
Aαi

)
mod f(α)

)

=
m−1∑
i=0

bi ·X(i)

where the set of bi’s is the B coefficients, f(α) is the irreducible
polynomial, X(i) = α ·X(i−1) mod f(α), and X(0) = A. To
perform such multiplication, we use the architecture from the
work by Reyhani-Masoleh and Hasan [36]. In [36], three differ-
ent modules are used to perform multiplications with polynomial
basis: Sum, pass-thru, andαmodules. The sum module adds two
elements in GF(2m) and it is used to perform finite field addition;
the pass-thru module multiplies a GF(2m) element by a GF(2)
element; and the α module multiplies an element of GF(2m) by
α such as

A(α) · α = am−1 · αm + am−2 · αm−1 + · · ·+ a0 · α (5)

where αm ≡ fm−1 · αm−1 + fm−2 · αm−2 + · · ·+ f0 mod
f(α), reducing the result modulo f(α). Finally, to perform
finite field squaring with polynomial basis, we use the sum
module previously mentioned and the α2 module, which
multiplies an element of GF(2m) by α2 such as

A(α) · α2 = am−1 · αm+1 + am−2 · αm + · · ·+ a0 · α2 (6)

where αm+1 ≡ fm−1 · αm + fm−2 · αm−1 + · · ·+ f0 · α mod
f(α) and αm ≡ fm−1 · αm−1 + fm−2 · αm−2 + · · ·+
f0 mod f(α). In Fig. 1, the entire finite field squaring
over GF(2m) using polynomial basis is shown.

III. PROPOSED FAULT DETECTION ARCHITECTURES

This section is divided into four different subsections. First,
the fault model used through our work for the finite field inver-
sions using ITA is described; we then describe ITA and the ben-
efits of using it; next, both similarities and differences between
CRC and Hamming codes are analyzed; fault detection archi-
tectures based on CRC for finite field inversions over GF(2m)
using ITA with normal basis are derived after; and finally, fault
detection architectures based on Hamming codes for finite field

inversions over GF(2m) using ITA with polynomial basis are
proposed. In this article, we work with two different fields,
i.e., GF(27) with normal basis using CRC and GF(264) with
polynomial basis using Hamming codes. Since the NIST field
GF(2163) is used in [34], we wanted to explore different fields to
show the flexibility and suitability of our schemes for different
types of finite fields. Additionally, small fields are not only good
for the sake of brevity of the article, but they also are used in many
applications and even in postquantum cryptographic algorithms,
e.g., McEliece cryptosystem and Luov cryptosystem.

A. Fault Model

Fault detection is especially important for remote systems
where error-free key production is critical for overall system
dependability. There are many fault models based on the sort
of fault, e.g., the number of bits impacted, where the faults are
located, and the fault duration. As a result, special countermea-
sures are required to safeguard the finite field inversions against
such defects.

We present several error detection techniques based on CRC-3
and Hamming codes in this article. These techniques attempt to
detect transient and permanent faults on the finite field inversion
constructions caused by natural faults in VLSI architectures.
These natural defects may be produced in more than one bit.
Therefore, to obtain a high error coverage and detect multiple bit
faults, we propose error detection schemes based on CRC-3 and
Hamming codes, which unlike parity error detection schemes
can detect even number of stuck-at faults (stuck-at 0 and stuck-at
1) in addition to single faults. In this article, it is assumed that the
comparators are hardened, i.e., the comparators are fault free and
not compromised, and that the inputs are not compromised prior
to the execution of the finite field inversion unit. Additionally,
we assume that both predicted and actual signature blocks
are not compromised simultaneously. These assumptions can
be made possible using triple-modular redundancy for specific
parts of the architecture prone to faults (a compromise between
overhead and error coverage). Moreover, physical hardening
can be achieved using 1) insulating substrates instead of the
usual semiconductor wafers, 2) shielding, and 3) cells with more
transistors per cell than usual.

B. Itoh–Tsujii Algorithm

Inversions over GF(2m) are one of the most complex and
time-consuming arithmetic operations with finite fields. The
inverse of a finite field element A can be represented as
A−1 εGF(2m) where A ·A−1 = 1. Due to the complexity of
such operations, many different approaches have been studied
over time. One of the most famous approaches is Fermat’s
Little Theorem or FLT. With FLT, finite field inversions can be
performed usingm− 2multiplications over GF(2m) andm− 1
squarings over GF(2m) by following this formula:

A2m−2 ≡ A−1 mod f(α). (7)

This was a good improvement in the complexity of finite field
inversions; however, it could lead to low performance in deeply-
embedded systems, especially when m is large, e.g., GF(2163).

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:06:55 UTC from IEEE Xplore. Restrictions apply.

654 IEEE TRANSACTIONS ON RELIABILITY, VOL. 72, NO. 2, JUNE 2023

Algorithm 1: Multiplicative Inversion Addition-Chain ITA.

Input: AεGF(2m)
Output: A−1εGF(2m)
1: ζ0 = A(α)
2: for i← 1 to t do
3: ζi = [ζi1]

2
ci2 · ζi2 (mod f(α))

4: end for
5: return ((ζt)

2 (mod f(α))

ITA was then introduced to reduce the amount of finite
field multiplications to log2(m− 1) +H2(m− 1)− 1, where
H2(m− 1) is the Hamming weight. This is done by assigning
20 + 21 + 22 + · · ·+ 2m−2 to 1 + 2n + 22n + · · ·+ 2(k−2)n

and decomposing it as follows:

1 + 2n + 22n + · · ·+ 2(k−2)n

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + 2n)× (1 + 22n

+24n + · · ·+ 2(k−3)n), if k − 1 ≡ 0 mod 2

1 + 2n × (1 + 2n)

×(1× 22n + 24n + · · ·
+2(k−4)n), if k − 1 ≡ 1 mod 2.

(8)

Other techniques employ addition chains effectively to ac-
complish ITA. In [37], the finite field inverse of an element
A is expressed as A−1 = [ζm−1(A)]2, where ζk(A) = A2k−1

and k ε N. To generate the addition chain U = {u1,u2, . . ., ut},
we first assign u0 = 0 and ut = m− 1. Next, if ui is even,
ut−1 = ut/2, and if ut is odd, ut−1 = ut − 1. In Algorithm 1,
the computational steps to perform the Multiplicative Inversion
Addition-Chain ITA of a finite field element A in GF(2m)
are provided. Addition chains can be generalized into many
directions, and numerous ideas can be found in the literature
[38], [39], [40].

In this work, we use both ITA approaches, i.e., ITA without
addition chains and ITA utilizing additions chains, in the next
two sections, respectively.

C. CRC Versus Hamming Codes

As mentioned previously, error detection techniques based on
CRC and Hamming codes are derived in this work. Both CRC
and Hamming codes are binary linear codes with error detection
capabilities. The latter is also used for error correction; however,
CRC can only be used for error detection. CRC is widely used
to detect transmission errors in a frame or block of data while
Hamming codes are used to detect and correct bit errors that can
occur when computer data are moved or stored. Furthermore,
another notable difference is that Hamming codes, depending
on the Hamming code employed, only work on data of a specific
size, but the CRC is a convolutional code that works on data of
any size. In Table I, a summary of other works on fault detection
and their limitations is shown.

Algorithm 2: Finite field multiplication over GF(2m) with
normal basis.

Input: AεGF(2m), B ε GF(2m)
Output: CεGF(2m)
1: C0 ← 0
2: for j ← 1 to m do
3: Cj = C2

j−1 + am−jαB2−(m−j)

4: end for
5: C = Cm

6: return C

The goal of this article is not to choose one scheme over the
other since both have their own advantages but to propose for
the first time error detection constructions based on Hamming
codes inversions over GF(2m) using the ITA algorithm.

For the sake of comparison in terms of area (occupied slices),
delay (ns), and power (mW) with the clock frequency of 50 MHz
between CRC-3 and Hamming codes, we have added them to the
original architectures of a finite field multiplier using elements
in GF(24) using polynomial basis and implemented them on
Xilinx FPGA family Artix-7 device xc7a12tcpg238-3, Kintex-7
device xc7k70tfbg484-3, and Spartan-7 device xc7s6cpga196-2
using the Vivado tool. As we can see in Table II, the area obtained
by Hamming codes is lower than that obtained with CRC-3, but
the delay is higher. Therefore, one could choose one or the other
based on the system requirements. In Section IV, more in-depth
implementations are carried out along with an analysis on the
error detection capabilities of each.

D. Fault Detection Based on CRC-3 of Finite Field Inversions
Over GF(2m) With Normal Basis Using ITA

In this article, CRC provides two sets of equations, which
we can call predicted signatures and actual signatures (do not
mistake this kind of signatures with digital signatures). Predicted
signatures are mathematically calculated before the operation
takes place. These signatures are then compared via XOR gates
with the actual signatures, which is the actual output divided into
smaller parts (the smaller they are, the larger the CRC is, e.g.,
CRC-3 divides the signatures into three parts). To implement
CRC, a generator polynomial g(α) is needed. In this subsection,
we work with the field GF(27)using CRC-3 and the original ITA,
since addition chains do not reduce the number of multiplica-
tions for the case of GF(27). Different CRC schemes and field
sizes can be easily adopted by following the derivations of this
work.

Following (8), the field GF(27) has the following decompo-
sition using ITA:

1 + 2 + 22 + · · ·+ 25

= (1 + 2)× (1 + 22 × (1 + 22
))

.

Finite field squarings with normal basis are done by just cyclic
right shifting while finite field multiplications with normal basis
are more complex as seen in (2). We use Algorithm 2 to compute
(2).

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:06:55 UTC from IEEE Xplore. Restrictions apply.

CINTAS-CANTO et al.: ERROR DETECTION CONSTRUCTIONS FOR ITA FINITE FIELD INVERSIONS OVER GF(2M) ON FPGA 655

TABLE I
SUMMARY OF OTHER WORKS ON FAULT DETECTION AND THEIR CHARACTERISTICS/LIMITATIONS

TABLE II
ILLUSTRATIVE EXAMPLE WITH FPGA IMPLEMENTATION RESULTS FOR FINITE FIELD MULTIPLIERS USING CRC-3 AND HAMMING CODES FOR ELEMENTS IN

GF(24) WITH POLYNOMIAL BASIS

TABLE III
F VALUES OF TYPE-4 GNB IN GF(27)

The αB multiplier, which multiplies α with the finite field
element B, performs the most complex step in Algorithm 2,
and it is where the fault error detection schemes are incorpo-
rated. To calculate αB, α = δ + δ2

m
+ · · ·+ δ2

m(t−1)
produces

the normal basis and B = bF (0) + bF (1)δ + · · ·+ bF (p−1)δp−1,
where F (2i2mj mod p) = i, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ t− 1. In
Table III, the F values of type-4 GNB in GF(27) can be seen.

Furthermore, αB in GNB form is calculated as

αB = B(1) +B(2m mod p) + · · ·+B(2m(t−1) mod p) (9)

where

B(i) =

p−1∑
j=0

bF (j−i)δj .

The normal basis form of (9) is represented as

αB =

m−1∑
i=0

b̄iα
2i

where b̄i =
∑t−1

i=0 bF (2i−2mj) + bF (0). If t is even, bF (0) is omit-
ted [28].

For the case study of GF(27), B = (b0, b1, . . ., b6) and α =
δ + δ12 + δ17 + δ28. The redundant basis of B is then repre-
sented as

B = b0δ + b1δ
2 + b5δ

3 + b2δ
4 + b1δ

5 + b6δ
6

+ b5δ
7 + b3δ

8 + b3δ
9 + b2δ

10 + b4δ
11 + b0δ

12

+ b4δγ
13 + b6δ

14 + b6δ
15 + b4δ

16 + b0δ
17 + b4δ

18

+ b2δ
19 + b3δ

20 + b3δ
21 + b5δ

22 + b6δ
23 + b1δ

24

+ b2δ
25 + b5δ

26 + b1δ
27 + b0δ

28. (10)

Next, (9) and (10) are used to obtain αB = (δ + δ12 + δ17 +
δ28)B, or αB = B(1) +B(12) +B(17) +B(28), where

B(1) = b0 + b0δ
2 + b1δ

3 + b5δ
4 + b2δ

5 + b1δ
6

+ b6δ
7 + b5δ

8 + b3δ
9 + b3δ

10 + b2δ
11 + b4δ

12

+ b0δ
13 + b4δ

14 + b6δ
15 + b6δ

16 + b4δ
17 + b0δ

18

+ b4δ
19 + b2δ

20 + b3δ
21 + b3δ

22 + b5δ
23 + b6δ

24

+ b1δ
25 + b2δ

26 + b5δ
27 + b1δ

28.

B(12) = b0 + b4δ + b2δ
2 + b3δ

3 + b3δ
4 + b5δ

5

+ b6δ
6 + b1δ

7 + b2δ
8 + b5δ

9 + b1δ
10 + b0δ

11

+ b0δ
13 + b1δ

14 + b5δ
15 + b2δ

16 + b1δ
17 + b6δ

18

+ b5δ
19 + b3δ

20 + b3δ
21 + b2δ

22 + b4δ
23 + b0δ

24

+ b4δ
25 + b6δ

26 + b6δ
27 + b4δ

28.

B(17) = b0 + b4δ + b6δ
2 + b6δ

3 + b4δ
4 + b0δ

5

+ b4δ
6 + b2δ

7 + b3δ
8 + b3δ

9 + b5δ
10 + b6δ

11

+ b1δ
12 + b2δ

13 + b5δ
14 + b1δ

15 + b0δ
16

+ b0δ
18 + b1δ

19 + b5δ
20 + b2δ

21 + b1δ
22 + b6δ

23

+ b5δ
24 + b3δ

25 + b3δ
26 + b2δ

27 + b4δ
28.

B(28) = b0 + b1δ
1 + b5δ

2 + b2δ
3 + b1δ

4 + b6δ
5

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:06:55 UTC from IEEE Xplore. Restrictions apply.

656 IEEE TRANSACTIONS ON RELIABILITY, VOL. 72, NO. 2, JUNE 2023

TABLE IV
αB2−I PREDICTED SIGNATURES USING CRC-3

+ b5δ
6 + b3δ

7 + b3δ
8 + b2δ

9 + b4δ
10 + b0δ

11

+ b4δ
12 + b6δ

13 + b6δ
14 + b4δ

15 + b0δ
16 + b4δ

17

+ b2δ
18 + b3δ

19 + b3δ
20 + b5δ

21 + b6δ
22 + b1δ

23

+ b2δ
24 + b5δ

25 + b1δ
26 + b0δ

27.

Utilizing these formulations and (9), we can finally obtain

αB = (b4 + b4 + b1)α+ (b0 + b2 + b6 + b5)α
2

+ (b1 + b3 + b6 + b2)α
22 + (b5 + b3 + b4 + b1)α

23

+ (b1 + b6 + b4 + b5)α
24 + (b5 + b2 + b3 + b3)α

25

+ (b6 + b2 + b0 + b0)α
26 . (11)

It is noted that (11) is utilized when i = 7 in Algorithm 1,
which makesαB2−(7−7) orαB. We utilize the following equation
to deduce the remainder of the formulations for other i’s:

B2−i =

m−1∑
j=0

b<j−i>α2i . (12)

For the purpose of brevity, the formulations and error detection
techniques for the other i’s in Algorithm 1 are not derived in this
study, but they are provided in Table IV.

To provide error detection constructions based on CRC sig-
natures for the αB module, we follow the next steps.

1) Selection of the generator polynomial g(α) ≡ αN +
αN−1 + · · ·+ α+ 1 for a specific CRC-N , where N
denotes the number of error flags each module has.

2) Derivation of the generator polynomial, which is arranged
as αN = αN−1 + · · ·+ α+ 1 mod g(α), into different
equations by multiplying α to each side. Repeat until a
substitution for αm−1 or gm−1 is obtained.

3) Substitution of different α’s of

αB = (bm−1 + bm−2 + · · ·+ b1 + b0)(α+ α2

+ · · ·+ α2m−2 + α2m−1)

with the different equations calculated in Step 2 to obtain

αB = (bm−1 + bm−2 + · · ·+ b1 + b0)(g0 + g1

+ · · ·+ gm−2 + gm−1)
In this article, a generator polynomial g(α) = α3 + α+ 1 for

CRC-3 is chosen to generate fault detection techniques in the

Fig. 2. αB multiplication with the proposed error detection scheme based on
CRC.

computation of αB. With that g(α), a set of equations is then
developed

α4 ≡ α2 + αmod g(α)

α5 ≡ α3 + α2 ≡ α2 + α+ 1 mod g(α)

α6 ≡ α3 + α2 + α ≡ α2 + 1 mod g(α). (13)

To obtain the predicted signatures, we apply (13) into (11),
producing

Predicted = (b4 + b4 + b1) + (b0 + b2 + b6 + b5)α

+(b1+b3+b6+b2)α
2+(b5+b3 + b4 + b1)(α

+1)+(b1+b6+b4+b5)(α
2+α)+(b5+b2+b3

+b3)(α
2+α+1)+(b6+b2+b0 + b0)(α

2 + 1)

or

Predicted = (b3 + b4 + b6) + (b0 + b3)α

+ (b3 + b4 + b6 + b2)α
2. (14)

Finally, to obtain the actual signatures, we rename the coeffi-
cients of (11) and apply (13) to obtain

Actual = (γ0) + (γ1)α+ (γ2)α
2 + (γ3)(α+ 1)

+(γ4)(α
2+α)+(γ5)(α

2+α+1)+(γ6)(α
2 + 1)

or

Actual = (γ0 + γ3 + γ5 + γ6) + (γ1 + γ3

+ γ4 + γ5)α+ (γ2 + γ4 + γ5 + γ6)α
2. (15)

We note that the actual signatures are the same for all i’s. The
fault detection technique based on CRC-3 for the multiplication
of αB is depicted in Fig. 2. For CRC-3, three separated error
flags, denoted as Ei, are produced by XORing the predicted
signatures with the actual signatures. E1 is the result of XORing
the predicted signature (b3 + b4 + b6) with the actual signature
(γ0 + γ3 + γ5 + γ6), obtained after α is multiplied with the
field element B. In the same manner, (b0 + b3) is XOR with
(γ1 + γ3 + γ4 + γ5) obtaining E2, and (b3 + b4 + b6 + b2) is
XOR with (γ2 + γ4 + γ5 + γ6) obtaining E3.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:06:55 UTC from IEEE Xplore. Restrictions apply.

CINTAS-CANTO et al.: ERROR DETECTION CONSTRUCTIONS FOR ITA FINITE FIELD INVERSIONS OVER GF(2M) ON FPGA 657

TABLE V
STEPS NEEDED TO PERFORM THE INVERSE OF A ε GF(264) USING ITA WITH

ADDITION CHAINS

E. Fault Detection Based on Hamming Codes of Finite Field
Inversions Over GF(2m) With Polynomial Basis Using ITA

Hamming codes are a type of error-correcting code and are
often called perfect codes because they achieve the highest
possible rate for codes with their block length and minimum dis-
tance of three. Hamming codes are classified into two categories
depending on the structure of the encoder output, e.g., systematic
encoding and nonsystematic encoding. In this work, we use
systematic encoding, which separates the data and the parity
bits, with a (7,4) Hamming block encoder. What this means is
that it takes 4-b of data and produces a 7-b codeword, which are
4 data bits and 3 parity bits. To produce such codewords, we
multiply each 4-b of data with a generator matrix G in the form
of

codeword = message×G (16)

where

G =

⎛
⎜⎜⎝
1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 1 1 1
0 0 0 1 0 1 1

⎞
⎟⎟⎠ (17)

Hamming codes are incorporated to the α and α2 mod-
ules needed to perform finite field multiplications and in-
versions, respectively. In this section, we use GF(264) as
our case study and ITA using the addition chain U =
{1, 2, 3, 6, 7, 14, 15, 30, 31, 62, 63}. In Table V, the different
steps needed to perform ITA using addition chains for GF(264)
are shown. As it can be seen on the left-most column, a total
of 10 finite field multiplications and 63 finite field squarings are
needed to perform the inverse ofA ε GF(264) (only 62 squarings
are shown in Table V; however, an extra squaring is needed since
A−1 = [ζm−1(A)]2 using ITA with addition chains).

To derive the set of formulations needed to provide error
detection in the α and α2 modules, (5) and (6) are used. Since
a (7,4) Hamming block encoder is utilized in this work, the
polynomials from (5) and (6) are divided into 4-b blocks. For
our case study, 64 is divisible by 4; however, if the field m is not
divisible by 4, this can be easily fixed by appending the necessary
number of “0” bits to the input message until it is divisible by 4.

1) α Module With Hamming Codes: For the α module with
m = 64, f(α) = α64 + α4 + α3 + α+ 1, and using a (7,4)

Hamming block, we use (5) and divide the input into 16 sub-
messages m such as

m15 = a62α
63 + a61α

62 + a60α
61 + a59α

60

m14 = a58α
59 + a57α

58 + a56α
57 + a55α

56

m13 = a54α
55 + a53α

54 + a52α
53 + a51α

52

. . .

m2 = a10α
11 + a9α

10 + a8α
9 + a7α

8

m1 = a6α
7 + a5α

6 + a4α
5 + (a63 + a3)α

4

m0 = (a63 + a2)α
3 + a1α

2 + (a63 + a0)α+ a63. (18)

Next, each codeblock from (18) is multiplied with the last three
columns of generator matrixG from (17), to obtain the following
48 (or 16× 3) predicted signatures:

predicted47 = a62α
63 + a61α

62 + a59α
60

predicted46 = a62α
63 + a61α

62 + a60α
61

predicted45 = a61α
62 + a60α

61 + a59α
60

predicted44 = a58α
59 + a57α

58 + a55α
56

. . .

predicted3 = a5α
6 + a4α

5 + (a63 + a3)α
4

predicted2 = (a63 + a2)α
3 + a1α

2 + a63

predicted1 = (a63 + a2)α
3 + a1α

2 + (a63 + a0)α

predicted0 = a1α
2 + (a63 + a0)α+ a63. (19)

We note that the first bit of the message to be multiplied with
G is a62, then (a63 + a0)α, and so on, since a63 is the least
significant bit. To obtain the actual signatures, we rename the
coefficients of (18): a62 as γ63, a61 as γ62,..., and a63 as γ0

actual47 = γ63α
63 + γ62α

62 + γ60α
60

actual46 = γ63α
63 + γ62α

62 + γ61α
61

actual45 = γ62α
62 + γ61α

61 + γ60α
60

actual44 = γ59α
59 + γ58α

58 + γ56α
56

. . .

actual3 = γ6α
6 + γ5α

5 + γ4α
4

actual2 = γ3α
3 + γ2α

2 + γ0

actual1 = γ3α
3 + γ2α

2 + γ1α

actual0 = γ2α
2 + γ1α+ γ0. (20)

Once the predicted and the actual signatures are implemented,
they are XORed with each other to check for natural faults.
An entire finite field multiplier needs m− 1 α modules, m
pass-through modules, and m− 1 sum modules, while a finite
field squaring uses m− 1 α2 modules and m− 1 sum modules
as shown in Fig. 1. In Fig. 3, we zoom in to show how the
proposed error detection schemes based on Hamming codes are
realized when they are applied to just one α module or one α2

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:06:55 UTC from IEEE Xplore. Restrictions apply.

658 IEEE TRANSACTIONS ON RELIABILITY, VOL. 72, NO. 2, JUNE 2023

Fig. 3. Error detection schemes based on Hamming codes for the α and α2 modules.

module (presented in the next section). If there would not be
error detection, Fig. 3 would just have an input, the α or α2

module, and the output. However, with Hamming codes, the
finite field element A (or input) goes into two different blocks,
as it can be seen in Fig. 3. In the top part, A goes through the α
module orα2 module block to perform (5) or (6), respectively, as
it would do without any error detection unit. Then, the resulting
64-b output is split into 16 parts, each of them containing 4-b.
The Actual Sign. block performs the calculations from (20) and
each output bit of the Actual Sign. block contains each signature
of (20). Meanwhile, in the bottom part, the input A is directly
split into 16 parts. Following (19) for the case of multiplication
[or (22) for the case of squaring], 48 predicted signatures (1-b
each) are obtained in the Predicted Sign. block. Each of these
predicted signatures is then XORed with the actual signatures to
check if an error has been found, e.g., predicted0 and actual0
are the inputs of the first XOR gate, which will outputEF1 = 1 if
predicted0 and actual0 are different, and therefore, this would
mean that an error has been found.

2) α2 Module With Hamming Codes: For the α2 module
with m = 64, f(α) = α64 + α4 + α3 + α+ 1, and using a
(7,4) Hamming block, we use (6) and divide the input into 16
submessages m such as

m15 = a61α
63 + a60α

62 + a59α
61 + a58α

60

m14 = a57α
59 + a56α

58 + a55α
57 + a54α

56

m13 = a53α
55 + a52α

54 + a51α
53 + a50α

52

. . .

m2 = a9α
11 + a8α

10 + a7α
9 + a6α

8

m1 = a5α
7 + a4α

6 + (a63 + a3)α
5 + (a63 + a62 + a2)α

4

m0 = (a62 + a1)α
3 + (a63 + a0)α

2 + (a63 + a62)α+ a62.
(21)

Next, each codeblock from (18) is multiplied with the last three
columns of generator matrixG from (17), to obtain the following
48 (or 16× 3) predicted signatures

predicted47 = a61α
63 + a60α

62 + a58α
60

predicted46 = a61α
63 + a60α

62 + a59α
61

predicted45 = a60α
62 + a59α

61 + a58α
60

predicted44 = a57α
59 + a56α

58 + a54α
56

. . .

predicted3 = a4α
6 + (a63 + a3)α

5 + (a63 + a62 + a2)α
4

predicted2 = (a62 + a1)α
3 + (a63 + a0)α

2 + a62

predicted1 = (a62 + a1)α
3 + (a63 + a0)α

2 + (a63 + a62)α

predicted0 = (a63 + a0)α
2 + (a63 + a62)α+ a62. (22)

We note that the first bit of the message to be multiplied with
G is a62, then (a63 + a62)α, and so on, since a62 is the least
significant bit. To obtain the actual signatures, we rename the
coefficients of (18): a61 as γ63, a60 as γ62,..., and a62 as γ0,
obtaining the same formulations as (20).

In this article, we work with two finite fields to show how
the proposed error detection schemes are applied; however, by
following the previous derivations, any field size can use the
presented schemes.

IV. ERROR COVERAGE AND FPGA IMPLEMENTATIONS

To calculate the error coverage given by the various error
detection techniques discussed in this article, the total number
of signatures must be determined. When the total signatures s are
calculated, the error coverage is given by performing 100 · (1−
(12)

s)%. We note that one actual signature with one predicted
signature is equivalent to just one signature in this formula.

To perform the finite field inversion of an element in GF(27)
with normal basis using ITA and CRC-3 as the error detection
technique, a total of 3mult · (6αB · (3EF)) or 54 signatures are
needed, where mult denotes the number of finite field multipli-
cations, αB stands for the number of αB operations in each
multiplication, and EF is the number of error flags in each αB
operation. These 54 signatures translate into an error coverage
of 100 · (1− (12)

54)% or close to 100%.
On the other hand, to perform the finite field inversion of

an element in GF(264) with polynomial basis using ITA and

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:06:55 UTC from IEEE Xplore. Restrictions apply.

CINTAS-CANTO et al.: ERROR DETECTION CONSTRUCTIONS FOR ITA FINITE FIELD INVERSIONS OVER GF(2M) ON FPGA 659

TABLE VI
FPGA IMPLEMENTATION RESULTS OF THE PROPOSED FAULT DETECTION SCHEMES BASED ON CRC-3 FOR FINITE FIELD INVERSION USING ITA AND ELEMENTS IN

GF(27) WITH NORMAL BASIS. PERFORMED ON XILINX FPGA FAMILY VIRTEX-7 DEVICE XC7VX1140TFLG1930-I

TABLE VII
FPGA IMPLEMENTATION RESULTS OF THE PROPOSED FAULT DETECTION SCHEMES BASED ON HAMMING CODES FOR FINITE FIELD INVERSION USING ITA AND

ELEMENTS IN GF(264) WITH POLYNOMIAL BASIS. PERFORMED ON XILINX FPGA FAMILY KINTEX ULTRASCALE+ DEVICE XCKU5P-SFVB784-1LV-I

Hamming codes as the error detection technique, 10 finite
field multiplications, and 63 finite field squarings are needed.
Each finite field multiplication uses 63 α modules, and each
α module utilizes 48 signatures. Moreover, each finite field
squaring uses 63 α2 modules, and each α module utilizes
48 signatures. Therefore, the total number of signatures is
10mult · (63α · (48EF)) + 63squaring · (63α2 · (48EF)) or 220 752.
Moreover, the error coverage is 100 · (1− (12)

220,752)% or very
close to 100%. We note that our error detection schemes would
not detect faults for very specific cases using CRC-3. The
three schemes for hardening mentioned in Section III-A can be
combined with the proposed methods to alleviate such cases.
Looking at Table IV, we can corroborate that the proposed
architecture would detect all faults besides: If there is a single
bit flip located at the coefficients b1 or b5, or a double bit flip at
coefficients b4 and b6 when the step αB20 is being performed;
when a double bit flip happens at the coefficients b2 and b5
when the step αB2−1 is being performed; when a single bit flip
occurs at the coefficient b3 or a double bit flip happens at the
coefficients b2 and b4, b0 and b5, b0 and b3, and b0 and b5 when
the step αB2−2 is being performed; when a double bit flip at
coefficients b0 and b6 when the step αB2−3 is being performed;
when a single bit flip located at the coefficients b2 or b4, or a
double bit flip at coefficients b1 and b6 or b2 and b5 when the step
αB2−4 is being performed; when a single bit flip located at the
coefficient b0 or a double bit flip at coefficients b1 and b5 when
the step αB2−5 is being performed; and when a single bit flip
located at the coefficient b0 or b5 when the step αB2−6 is being
performed. If an attacker has the expensive resources to mount
single-bit flip attacks, the error coverage of CRC-3 for single
bit flips in the step αB20 is 71.43%; 100% in the step αB2−1 ;
85.71% in the step αB2−2 ; 100% in the step αB2−3 ; 71.43%
in the step αB2−4 ; 85.71% in the step αB2−5 ; and 71.43% in
the step αB2−6 . These calculations have been done taking into
account that there is a total of 7 coefficients where the error can be
injected. Additionally, if the attacker performs double bit flips,
the error coverage of CRC-3 for double bit flips in the stepαB20

is 95.24%; 95.24% in the stepαB2−1 ; 80.95% in the stepαB2−2 ;
95.24% in the stepαB2−3 ; 90.48% in the stepαB2−4 ; 95.24% in
the step αB2−5 ; and 100% in the step αB2−6 . These calculations
have been done taking into account that there is a total of 21

possible double bit flips where the errors can be injected. On
the other hand, the proposed architecture using Hamming codes
would be able to detect all 1-b, 2-b, 3-b, and 4-b errors. This type
of error detection is mutually exclusive, meaning that all errors
are detected having not too many redundant error detection
flags.

We have implemented the proposed fault detection tech-
niques to demonstrate that they provide high error coverage
with acceptable overhead. These implementations are performed
on Xilinx FPGA family Virtex-7 device xc7vx1140tflg1930-i
and family Kintex UltraScale+ device xcku5p-sfvb784-1LV-i
using the Vivado tool and Verilog as the hardware design entry.
Table VI shows the overheads of the fault detection architectures
based on CRC-3 when added to the original finite field inversions
constructions with normal basis using ITA. The overheads are
presented in terms of area (occupied slices), delay (ns), power
(mW) with the clock frequency of 50 MHz, throughput (Gb/s),
and efficiency (Gb/s/Slices). The first three are given directly by
the Vivado tool while the latter two are calculated by dividing
the total number of output bits over the delay and by dividing
first the total number of output bits over the delay and then
over the area, respectively. As shown in Table VI, the area
overhead is less than 39% and the delay overhead is close to
11%. Table VII presents the overheads of the fault detection
architectures based on Hamming codes when added to the
original finite field inversions constructions with polynomial
basis using ITA. Table VII also presents the overheads in terms
of area, delay, power, throughput, and efficiency (we note that
Negli. Over. stands for negligible overhead). As it can be seen
in Table VII, the area overhead is less than 24% and the delay
overhead is less than 32%.

There has not been any prior work done on error detection
based on CRC-3 and Hamming codes for finite field inversions
using ITA with normal basis and polynomial basis elements, re-
spectively, to the best of our knowledge. For qualitative compari-
son to verify that the overheads incurred are acceptable, let us go
over some case studies on error detection in GF(2m) arithmetic
hardware. One of the goals of this article was to complete [34]
by performing error detection on elements with normal basis.
In [34], fault detection schemes for the inverse of an element
in GF(2163) using polynomial basis are proposed, obtaining an

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:06:55 UTC from IEEE Xplore. Restrictions apply.

660 IEEE TRANSACTIONS ON RELIABILITY, VOL. 72, NO. 2, JUNE 2023

area overhead of close to 26%. In [26], error detection based on
parity prediction for normal basis multiplication is performed,
obtaining a worst case delay overhead of 58.2% and worst case
area overhead of 27%. Additionally, parity prediction signatures
provide an error detection of up to 50%, i.e., if the number of
faults is even, the approach would not be able to detect the faults.
As shown in Table I, duplication/recomputing is also used in
a variety of works. Duplication provides a high error detection
percentage; however, it can add a 100% overhead unless different
techniques (such as pipelining for recomputation) are carried.
Reliable concurrent error detection architectures for extended
Euclidean-based division over GF(2m) are provided in [41]. The
schemes utilized are based on parity prediction and they have
a worst case area overhead of 25.18%. These and other similar
works on error detection show that the overheads obtained in
this work are acceptable.

V. CONCLUSION

Providing reliable architectures that allow error detection has
been the focus of extensive research. Finite field inversions are
used by many different architectures and it is essential that such
constructions are capable of detecting natural defects in VLSI.
In this work, we have presented error detection schemes based
on CRC and Hamming codes for finite field inversions using
ITA with normal basis and polynomial basis elements. These
schemes employ different formulations and derivations that have
been meticulously calculated with software implementations.
Additionally, we have implemented the proposed fault detection
architectures by adding them to the original finite field inversion
constructions on Xilinx FPGA Virtex-7 and Kintex UltraScale+.
When fault detection schemes based on CRC-3 are applied to
the original ITA finite field inversion constructions for GF(2m)
elements normal basis, the area overhead is less than 39%
and the delay overhead is close to 11%. When fault detection
schemes based on Hamming codes are applied to the original
ITA finite field inversion constructions for GF(2m) elements
with polynomial basis, the area overhead is less than 24% and
the delay overhead is less than 32%. The results obtained in this
work were compared to other works on error detection to prove
that the presented fault detection techniques achieve a high error
coverage with acceptable overheads.

REFERENCES

[1] A. Ibrahim, T. Alsomani, and F. Gebali, “Unified systolic array architecture
for finite field multiplication and inversion,” Comput. Elect. Eng., vol. 61,
pp. 104–115, 2017.

[2] H. Yi, S. Tang, and R. Vemuri, “Fast inversions in small finite fields by
using binary trees,” Comput. J., vol. 59, no. 7, pp. 1102–1112, 2016.

[3] J. Li, Z. Li, C. Xue, J. Zhang, W. Gao, and S. Cao, “A fast modular inversion
FPGA implementation over GF (2m) using modified x2n unit,” in Proc.
IEEE Int. Symp. Circuits Syst., 2018, pp. 1–5.

[4] H. El-Razouk and A. Reyhani-Masoleh, “New architectures for digit-level
single, hybrid-double, hybrid-triple field multiplications and exponentia-
tion using Gaussian normal bases,” IEEE Trans. Comput., vol. 65, no. 8,
Aug. 2016, Art. no. 2495.

[5] A. Reyhani-Masoleh, H. El-Razouk, and A. Monfared, “New multiplica-
tive inverse architectures using Gaussian normal basis,” IEEE Trans.
Comput., vol. 68, no. 7, pp. 991–1006, Jul. 2019.

[6] J. Guajardo and C. Paar, “Itoh-Tsujii inversion in standard basis and its
application in cryptography and codes,” Des., Codes, Cryptogr., vol. 25,
2002, Art. no. 207.

[7] F. Rodriguez-Henriquez, N. A. Saqib, and N. Cruz-Cortes, “A fast imple-
mentation of multiplicative inversion over GF (2m),” in Proc. Int. Symp.
Inf. Technol., 2005, pp. 574–279.

[8] J. Hu, W. Guo, J. Wei, and R. C. C. Cheung, “Fast and generic inversion
architectures overGF (2m) using modified Itoh–Tsujii algorithms,” IEEE
Trans. Circuits Syst. II: Exp. Briefs, vol. 62, no. 4, pp. 367–371, Apr. 2015.

[9] M. Kalaiarasi, V. R. Venkatasubramani, and S. Rajaram, “A parallel quad
Itoh-Tsujii multiplicative inversion algorithm for FPGA platforms,” in
Proc. IEEE 3rd ISEA Conf. Secur. Privacy, 2020, pp. 31–35.

[10] A. Sarker, M. Mozaffari-Kermani, and R. Azarderakhsh, “Error detection
architectures for ring polynomial multiplication and modular reduction of

Ring-LWE in Z =
Z/pZ[x]
xn+1 benchmarked on ASIC,” IEEE Trans. Rel.,

vol. 70, no. 1, pp. 362–370, Mar. 2021.
[11] M. M. Kermani and R. Azarderakhsh, “Reliable architecture-oblivious

error detection schemes for secure cryptographic GCM structures,” IEEE
Trans. Rel., vol. 68, no. 4, pp. 1347–1355, Dec. 2019.

[12] M. H. Saračević et al., “Data encryption for Internet of Things applications
based on Catalan objects and two combinatorial structures,” IEEE Trans.
Rel., vol. 70, no. 2, pp. 819–830, Jun. 2021.

[13] Y. Zhu, R. Yu, D. Ma, and W. C. C. Chu, “Cryptographic attribute-based
access control (ABAC) for secure decision making of dynamic policy
with multiauthority attribute tokens,” IEEE Trans. Rel., vol. 68, no. 4,
pp. 1330–1346, Dec. 2019.

[14] D. Abbasinezhad-Mood and M. Nikooghadam, “Efficient design of a novel
ECC-based public key scheme for medical data protection by utiliza-
tion of NanoPi fire,” IEEE Trans. Rel., vol. 67, no. 3, pp. 1328–1339,
Sep. 2018.

[15] M. Elhoseny and K. Shankar, “Reliable data transmission model for mobile
ad hoc network using signcryption technique,” IEEE Trans. Rel., vol. 69,
no. 3, pp. 1077–1086, Sep. 2020.

[16] P. Ahir, M. M. Kermani, and R. Azarderakhsh, “Lightweight architectures
for reliable and fault detection Simon and Speck cryptographic algorithms
on FPGA,” ACM Trans. Embedded Comput. Syst., vol. 16, no. 4, pp. 109:1–
109:17, Sep. 2017.

[17] A. Aghaie, M. M. Kermani, and R. Azarderakhsh, “Fault diagnosis
schemes for low-energy block cipher Midori benchmarked on FPGA,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 25, no. 4, pp. 1528–1536,
Apr. 2017.

[18] J. S. Coron, A. Roy, and S. Vivek, “Fast evaluation of polynomials over
binary finite fields and application to side-channel countermeasures,” in
Proc. Int. Workshop Cryptographic Hardware Embedded Syst., 2014,
pp. 170–187.

[19] M. M. Kermani, A. Jalali, R. Azarderakhsh, J. Xie, and K.-K. R. Choo,
“Reliable inversion in GF (28) with redundant arithmetic for secure error
detection of cryptographic architectures,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 37, no. 3, pp. 696–704, Mar. 2018.

[20] S. Subramanian, M. M. Kermani, R. Azarderakhsh, and M. Nojoumian,
“Reliable hardware architectures for cryptographic block ciphers LED and
HIGHT,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 36,
no. 10, pp. 1750–1758, Oct. 2017.

[21] M. M. Kermani and A. Reyhani-Masoleh, “Reliable hardware architec-
tures for the third-round SHA-3 finalist Grostl benchmarked on FPGA
platform,” in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI Syst.,
2011, pp. 325–331.

[22] M. M. Kermani and A. Reyhani-Masoleh, “A high-performance fault
diagnosis approach for the AES SubBytes utilizing mixed bases,” in Proc.
IEEE Workshop Fault Diagnosis Tolerance Cryptogr., 2011, pp. 80–87.

[23] A. Sarker, M. M. Kermani, and R. Azarderakhsh, “Hardware construc-
tions for error detection of number-theoretic transform utilized in secure
cryptographic architectures,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 27, no. 3, pp. 738–741, Mar. 2019.

[24] M. M. Kermani, R. Azarderakhsh, A. Sarker, and A. Jalali, “Efficient
and reliable error detection architectures of Hash-Counter-Hash tweakable
enciphering schemes,” ACM Trans. Embedded Comput. Syst., vol. 17,
no. 2, pp. 54:1–54:19, May 2018.

[25] M. M. Kermani and A. Reyhani-Masoleh, “Fault detection structures
of the S-boxes and the inverse S-boxes for the advanced encryption
standard,” J. Electron. Testing: Theory Appl., vol. 25, no. 4, pp. 225–245,
Aug. 2009.

[26] M. M. Kermani and A. Reyhani-Masoleh, “A low-cost S-box for the
advanced encryption standard using normal basis,” in Proc. IEEE Int. Conf.
Electro/Inf. Technol., 2009, pp. 52–55.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:06:55 UTC from IEEE Xplore. Restrictions apply.

CINTAS-CANTO et al.: ERROR DETECTION CONSTRUCTIONS FOR ITA FINITE FIELD INVERSIONS OVER GF(2M) ON FPGA 661

[27] A. Reyhani-Masoleh and M. Anwar Hasan, “Fault detection architectures
for field multiplication using polynomial bases,” IEEE Trans. Comput.,
vol. 55, no. 9, pp. 1089–1103, Sep. 2006.

[28] C. Y. Lee, P. K. Meher, and J. C. Patra, “Concurrent error detection in
bit-serial normal basis multiplication over GF (2m) using multiple parity
prediction schemes,” IEEE Trans. Very Large Scale Integration Syst.,
vol. 18, no. 8, pp. 1234–1238, Aug. 2010.

[29] A. Cintas-Canto, M. Mozaffari-Kermani, and R. Azarderakhsh, “Reli-
able architectures for composite-field-oriented constructions of McEliece
post-quantum cryptography on FPGA,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 40, no. 5, pp. 999–1003, May 2021.

[30] C. Fei, F. Zhou, N. Wu, F. Ge, J. Wen, and P. Qin, “A scalable bit-parallel
word-serial multiplier with fault detection on GF (2m),” in Proc. IEEE
20th Int. Conf. Commun. Technol., 2020, pp. 1660–1664.

[31] C. Y. Lee and J. Xie, “High capability and low-complexity: Novel fault
detection scheme for finite field multipliers over GF (2m) based on
MSPB,” in Proc. IEEE Int. Symp. Hardware Oriented Secur. Trust, 2019,
pp. 21–30.

[32] A. Cintas-Canto, M. Mozaffari-Kermani, and R. Azarderakhsh, “Reliable
CRC-based error detection constructions for finite field multipliers with
applications in cryptography,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 29, no. 1, pp. 232–236, Jan. 2021.

[33] A. Cintas-Canto, M. Mozaffari Kermani, and R. Azarderakhsh, “Reliable
constructions for the key generator of code-based post-quantum cryptosys-
tems on FPGA,” ACM J. Emerg. Technol. Comput. Syst., 2022.

[34] A. Cintas-Canto, M. Mozaffari-Kermani, and R. Azarderakhsh, “CRC-
based error detection constructions for FLT and ITA finite field inversions
over GF (2m),” IEEE Trans. Very Large Scale Integr. Syst., vol. 29, no. 5,
pp. 1033–1037, May 2021.

[35] A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, and T.
Yaghoobian, Applications of Finite Fields. Norwell, MA, USA: Kluwer,
1993.

[36] A. Reyhani-Masoleh and M. A. Hasan, “Error detection in polynomial
basis multipliers over binary extension fields,” in Proc. Int. Workshop
Cryptographic Hardware Embedded Syst., 2002, pp. 515–528.

[37] L. Li and S. Li, “Fast inversion in GF (2m) with polynomial basis using
optimal addition chains,” in Proc. IEEE Int. Symp. Circuits Syst., 2017,
pp. 1–4.

[38] K. Jarvinen, V. Dimitrov, and R. Azarderakhsh, “A generalization of
addition chains and fast inversions in binary fields,” IEEE Trans. Comput.,
vol. 64, no. 9, pp. 2421–2432, Sep. 2015.

[39] B. Rashidi, “High-speed hardware implementation of Gaussian normal
basis inversion algorithm over F2m ,” Microelectron. J., 63, pp. 138–147,
2017.

[40] T. Shahroodi, S. Bayat-Sarmadi, and H. Mosanaei-Boorani, “Low-latency
double point multiplication architecture using differential addition chain
over GF (2m),” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 66, no. 4,
pp. 1465–1473, Apr. 2019.

[41] M. Mozaffari-Kermani, R. Azarderakhsh, C. Y. Lee, and S. Bayat-Sarmadi,
“Reliable concurrent error detection architectures for Extended Euclidean-
based division over GF (2m),” IEEE Trans. Very Large Scale Integration
Syst., vol. 22, no. 5, pp. 995–1003, May 2014.

Alvaro Cintas-Canto (Member, IEEE) received the
B.Sc. degree in computer engineering and the M.Sc.
degree in computer and electrical engineering from
Tennessee Tech University, Cookeville, TN, USA,
in 2016 and 2018, respectively, and the Ph.D. de-
gree in computer science and engineering from the
Department of Computer Science and Engineering,
University of South Florida, Tampa, FL, USA, in
2021.

In 2018, he joined the Cryptographic Engineering
and Hardware Security Research lab, performing re-

search on error detection of postquantum cryptographic schemes. Since 2021, he
has been an Assistant Professor with the School of Technology and Innovation,
Marymount University, Arlington, VA, USA. His current research interests in-
clude hardware security, postquantum cryptography, cryptographic engineering,
finite field and its applications, and high-performance embedded systems design.

Mehran Mozaffari Kermani (Senior Member,
IEEE) received the B.Sc. degree in electrical and
computer engineering from the University of Tehran,
Tehran, Iran, in 2005, and the M.E.Sc. and Ph.D.
degrees in electrical engineering from the Department
of Electrical and Computer Engineering, University
of Western Ontario, London, ON, Canada, in 2007
and 2011, respectively.

He was with the Advanced Micro Devices as a Se-
nior ASIC/layout Designer, integrating sophisticated
security/cryptographic capabilities into accelerated

processing. In 2012, he joined the Electrical Engineering Department, Princeton
University, NJ, as an NSERC Postdoctoral Research Fellow. From 2013 to 2017,
he was an Assistant Professor with the Rochester Institute of Technology, and
since 2017, he has been with the Computer Science and Engineering Department,
University of South Florida, where he is currently an Associate Professor.

Dr. Kermani is an Associate Editor for the IEEE TRANSACTIONS ON VLSI
SYSTEMS, the ACM Transactions on Embedded Computing Systems, and the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS.He has been the TPC member
for a number of conferences including HOST (Publications Chair), CCS (Publi-
cations Chair), DAC, DATE, RFIDSec, LightSec, WAIFI, FDTC, and DFT. He
was a recipient of the prestigious Natural Sciences and Engineering Research
Council of Canada Post-Doctoral Research Fellowship in 2011 and the Texas
Instruments Faculty Award (Douglas Harvey) in 2014. He is also the awardee
for USF 2021 Faculty Outstanding Research Achievement Award, USF Nexus
Initiative Global Award, and USF College of Engineering’s 2018 Outstanding
Junior Research Achievement Award.

Reza Azarderakhsh (Member, IEEE) received the
Ph.D. degree in electrical and computer engineering
from Western University, London, ON, USA, in 2011.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
Florida Atlantic University, Boca Raton, FL, USA.
His current research interests include finite field and
its application, elliptic curve cryptography, pairing-
based cryptography, and postquantum cryptography.

Dr. Azarderakhsh was a recipient of the NSERC
Post-Doctoral Research Fellowship working in the

Center for Applied Cryptographic Research and the Department of Combi-
natorics and Optimization, University of Waterloo. He was the Guest Editor
for the IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING for
the special issue of Emerging Embedded and Cyber Physical System Security
Challenges and Innovations (2016 and 2017). He was also the Guest Editor for
the IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFOR-
MATICS for special issue on security. He is an Associate Editor for the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS (TCAS-I).

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 24,2024 at 00:06:55 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

