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Advances in quantum computing have urged the need for cryptographic algorithms that are low-power, low-

energy, and secure against attacks that can be potentially enabled. For this post-quantum age, different solu-

tions have been studied. Code-based cryptography is one feasible solution whose hardware architectures have

become the focus of research in the NIST standardization process and has been advanced to the final round

(to be concluded by 2022–2024). Nevertheless, although these constructions, e.g., McEliece and Niederreiter

public key cryptography, have strong error correction properties, previous studies have proved the vulnera-

bility of their hardware implementations against faults product of the environment and intentional faults, i.e.,

differential fault analysis. It is previously shown that depending on the codes used, i.e., classical or reduced

(using either quasi-dyadic Goppa codes or quasi-cyclic alternant codes), flaws in error detection could be ob-

served. In this work, efficient fault detection constructions are proposed for the first time to account for such

shortcomings. Such schemes are based on regular parity, interleaved parity, and two different cyclic redun-

dancy checks (CRC), i.e., CRC-2 and CRC-8. Without losing the generality, we experiment on the McEliece

variant, noting that the presented schemes can be used for other code-based cryptosystems. We perform er-

ror detection capability assessments and implementations on field-programmable gate array Kintex-7 device

xc7k70tfbv676-1 to verify the practicality of the presented approaches. To demonstrate the appropriateness

for constrained embedded systems, the performance degradation and overheads of the presented schemes

are assessed.

CCS Concepts: • Hardware→ Application specific integrated circuits; Hardware reliability screening;

Additional Key Words and Phrases: Code-based cryptography, low-power fault detection, McEliece cryptosys-

tem, post-quantum cryptography

ACM Reference format:

Alvaro Cintas Canto, Mehran Mozaffari Kermani, and Reza Azarderakhsh. 2022. Reliable Constructions for

the Key Generator of Code-based Post-quantum Cryptosystems on FPGA. ACM J. Emerg. Technol. Comput.

Syst. 19, 1, Article 5 (December 2022), 20 pages.

https://doi.org/10.1145/3544921

This work has been supported by the U.S. National Science Foundation (NSF) through Award No. SaTC-1801488.

Authors’ addresses: A. Cintas Canto, Marymount University, 2807 North Glebe Road, Arlington, VA 22207; email:

acintas@marymount.edu; M. Mozaffari Kermani, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620;

email: mehran2@usf.edu; R. Azarderakhsh, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431; email:

razarderakhsh@fau.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1550-4832/2022/12-ART5 $15.00

https://doi.org/10.1145/3544921

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 1, Article 5. Pub. date: December 2022.

https://orcid.org/0000-0001-6800-3302
https://orcid.org/0000-0003-4513-3109
https://orcid.org/0000-0002-6921-6868
https://doi.org/10.1145/3544921
mailto:permissions@acm.org
https://doi.org/10.1145/3544921
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544921&domain=pdf&date_stamp=2022-12-09


5:2 A. C. Canto et al.

1 INTRODUCTION

The potential of the advent of high-performance and low-power quantum computers has height-

ened the necessity for the development of public-key cryptosystems that are safe against faults that

such quantum-based computing systems may empower. In fact, the Shor’s quantum algorithm ef-

ficiently factors integers in polynomial time, allowing conventional cryptosystems to be broken.

In late 2017, the National Institute of Standards and Technology (NIST) launched a project

to standardize one or more quantum computer resistant public-key cryptographic algorithms [1],

which is currently in its final round since July 2020. It is expected that in 2024, the details for a

portfolio of standardized algorithms are revealed. Such standardized algorithms will be alternated

to the current classical public-key cryptosystems.

Different algorithms have been studied for this post-quantum age, denoted as post-quantum

cryptography (PQC). Among the different types of post-quantum cryptographic algorithms,

code-based cryptography is a potential approach for resisting quantum computer-based attacks.

The McEliece cryptosystem is a type of code-based cryptography whose security is based on the

hardness of decoding a general linear code, possibly chosen in a specific family, e.g., quasi-dyadic

Goppa codes and quasi-cyclic alternant codes. The McEliece cryptosystem security and implemen-

tation complexity have been scrutinized over years. As efficient examples, implementations of the

McEliece cryptoprocessor (MECS) have been proposed in References [2–8].

Classic McEliece has progressed to the current and last stage of the NIST PQC standardization

process. However, the McEliece post-quantum algorithm is still vulnerable to side-channel attacks

[9]. Additionally, fault analysis attacks are studied in Reference [10] to prove that the probability

when the McEliece construction does not repair an error is not negligible. Mounting attacks and

recovering the secret information through fault attacks in the McEliece cryptosystem are also

discussed on other works [11, 12]

The McEliece cryptosystem spends the majority of its runtime executing arithmetic operations

on finite fields to perform the key generation process. Among all the finite-field arithmetic, in-

version takes the longest time to compute. Many approaches have been studied to improve the

performance of inversions inGF (2m ) with polynomial basis. The Fermat’s little theorem (FLT)

and the Itoh-Tsujii algorithm (ITA) are two of the most used methods for computing inversions

inGF (2m ). ITA was originally designed to be used with elements overGF (2m ) using normal basis

[13]; nonetheless, recent works demonstrate that ITA can be utilized with different field element

representations [14, 15]. Such methods significantly utilize squarings and multiplications, involv-

ing hundreds of gates. Thus, these architectures are vulnerable to faults and implementing them

robust to natural and intended faults is a difficult challenge. These structures not only require little

overhead, but they also require sufficient error coverage.

1.1 Previous Works

For sensitive systems, degraded performance can lead to disastrous results; consequently, research

has explored strategies to reduce errors and provide higher reliability with acceptable overhead

[16–24]. In Reference [16], a fingerprint-based technique for detecting malicious programs in hard-

ware is presented. Fault diagnosis approaches based on multiterm signatures against false-alarms,

which may be unacceptable in critical intelligent infrastructures, are presented in Reference [17]. In

References [18, 19], fault detection mechanisms are presented for the lightweight cryptographic

block cipher QARMA and polynomial basis inversions, respectively. Moreover, error detection

constructions based on recomputation with encoded (shifted) operands and recomputation with

encoded (negated) operands for the Ring-LWE and for the ring polynomial multiplication and

modular reduction of Ring-LWE are implemented in References [20, 21], respectively. Last, error

detection schemes are proposed for secure cryptographic GCM structures in Reference [22], for
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Table 1. Comparison with Other Works

Work Error Detection Scheme Limitations

[30] Parity, Multi-parity
Singular parity offers up to 50% error coverage and both singular and multi-parity can be

vulnerable to intelligent fault injections

[20]–[23] Recomputing
Recomputing can add large overhead, since the operations are being performed twice. This

leads to an increased delay overhead of at least 100%, unless pipelining is used, which would
increase the number of registers and consequently, the area overhead is increased

[18], [19] CRC-10, CRC-3, CRC-5

CRC is an efficient choice to protect the systems against intelligent fault injections and
[24], adds acceptable overheads. These have been used for different applications in works [18],

[19], and [24]; however, those works do not provide flexibility in terms of security and
overhead. This article derives four different schemes for the Key Generator of McEliece
cryptosystem that can be combined to provide flexibility depending on the user needs

Hash-Counter-Hash tweakable enciphering constructions in Reference [23], and for cryptographic

applications using multipliers in Reference [24]. In Table 1, a summary of the limitations of these

works on fault detection is shown. We note that the error detection schemes are not confined to

one specific cryptographic algorithm, for example see References [25–29] for those related to the

AES and lightweight cryptography.

We present the first work on fault detection in the underlying blocks of the McEliece cryptosys-

tem Key Generator, based on regular parity, interleaved parity, CRC-2, and CRC-8. Fault detection

is essential in the generation of the keys, especially for remote systems where the creation of fault-

free keys is required for the overall system dependability. The hardware implementation of the

Key Generator is the most complicated inside McEliece, since it has the largest area complexity.

Our suggested techniques are suitable to the generation of the control matrix H, and we have also

incorporated fault detection techniques in the other units of the Key Generator. Nonetheless, the

underlying blocks that execute finite-field operations can be employed not just in these construc-

tions but also in other cryptographic systems. In Reference [30], fault detection techniques based

on parities are proposed for the composite-field operations of the McEliece cryptosystem. This

work completes [30] by performing fault detection in finite fields and adding cyclic redundancy

checks (CRC) as a fault detection technique. Although we have presented our approach for the

Key Generator of the McEliece cryptosystem and implemented the different schemes on field-

programmable gate array (FPGA), the presented models are suitable to other code-based cryp-

tographic algorithms, e.g., Niederreiter cryptosystem. These models are also platform-oblivious,

anticipating comparable outcomes on application-specific integrated circuit (ASIC) platforms.

1.2 Contributions

The following is a summary of our contributions in this work:

• We construct sets of formulations for the various finite-field blocks of the McEliece cryp-

tosystem, e.g., addition, subtraction, multiplication, squaring, and inversion, based on reg-

ular parity, interleaved parity, CRC-2, and CRC-8. To account for the entire Key Generator,

we additionally offer fault detection techniques in the remaining units of the Key Generator.

• The presented fault detection techniques are employed in the distinct units of the Key Gen-

erator to maximize the likelihood of error detection, since it is generally formed by multipli-

cations and inversions over GF (213).
• The fault coverage of the presented fault detection methods is examined. To assess the dif-

ferent overheads of the suggested techniques, we implemented our schemes on FPGA by

adding them to the original sub-blocks of McEliece cryptosystem Key Generator.

The following is the outline of the article: Preliminaries are discussed in Section 2, where

the McEliece cryptosystem is introduced. Section 3 presents the proposed fault detection
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constructions based on regular parity, interleaved parity, and CRC for the different finite-field

blocks in the McEliece cryptosystem. In Section 4, the presented fault detection techniques

are implemented to calculate the different overheads when the derived schemes are used in

the original constructions. Moreover, we benchmark our derived work by implementing the

presented designs on FPGA. Finally, concluding observations are given in Section 5.

2 PRELIMINARIES

There are three main parameters in the McEliece cryptosystem: m, which is used for the code

subspace dimension; t, which is the maximum number of faults that the system can correct; and

n, which stands for the code length. The cryptosystem presented in this article uses parameters

m = 13, t = 128, and n = 8,192, since they were one of the proposed security metrics to NIST in

2020 [31]; although the presented schemes are oblivious of these metric sizes.

The McEliece cryptosystem has three main processes: Key generation, which consists of the gen-

eration of two keys, e.g., private and public and keys, required to maintain the data safe; encryption,

which uses the public key to create the ciphertext; and decryption, which utilizes the private key

to get the initial data. The private key is produced by a generator matrix while the public key is

provided by a control matrix. Initially, the Key Generator produces at random a monic irreducible

polynomial of degree t such as f (α ) = α t + ft−1α
t−1 + · · ·+ f1α + f0, known as the Goppa polyno-

mial. To create the Goppa polynomial, the coefficients of a basic finite fieldGF (2m ) are utilized. In

the NIST submission, this basic finite field has 8,192 elements when m = 13, i.e., α0,α1, . . . ,α8191,

which are all 13-bit vectors. The private key, which consists of the Goppa polynomial and a per-

mutation matrix P , is kept hidden, since the control matrix H is created by using such key and

three other matrices designated as X , Y , and Z . Thereafter, a permutation utilizing the matrix P is

done to produce the public key. This process yields a large public key H̃, which gets shortened by

converting it into a binary form H2 overGF (2) and by utilizing the matrices Πmt and R to convert

it into a systematic form G̃. Finally, G̃ is transposed into G, obtaining the public key, represented

as RT . Algorithm 1 shows how the pair of keys are generated.

For the process of encryption in MECS, an l-bit plaintextm and the public key RT are required.

A random n-bit error vector e , a random (k − l )-bit vector r1, and a random l-bit vector r2 are

generated next. Then, public key RT is expanded toG = [RT |Πk ], a hash function h = hash(m | |r2)
is performed, and a safe plaintext m̃ = r1 | |h is created to be encoded into z ′ = m̃G. Finally, the

ciphertext z is calculated by performing z = (z ′ ⊕ e ) | |(hash(r1) ⊕m) | |(hash(e ) ⊕ r2).
The decryption process in MECS uses the ciphertext z and the private key (P ,д(α )) to obtain

the plaintextm. First, the ciphertext z is split into (z1, z2, z3), where z1 is n bits long and z2 and z3

ALGORITHM 1: MECS key generation

1: Choose the parametersm, t , and n.

2: Calculate k according tom, t , and n where k = n −mt .
3: Randomly create a monic, irreducible polynomial f (α ) = α t + ft−1α

t−1 + · · · + f1α + f0 using

the coefficients in GF (2m ) and degree of t .
4: Create the auxiliary matrices t × t matrix X , t × n matrix Y , and n × n matrix Z .

5: Calculate the t × n control matrix H = XYZ .

6: Randomly pick a permutation matrix P and compute the permuted control matrix H̃ = HPT .

7: Transform H̃ into H2 over GF (2) and then, into the form G̃ = [Πmt |R].

8: G̃ is transposed into G obtaining RT .

9: Return RT as its public key, and (P , f (α )) as its private key.
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are l bits long. z1 is permuted into c = z1P and an error vector e ′ is reconstructed by employing

the Patterson algorithm [32]. Then, the error vector is permuted e = e ′PT and z ′ is reconstructed

by performing z ′ = z1 ⊕ e . Next, z1 is split into r1 (k − l bits long), h (l bits long), and m̃ (n − k bits

long). Finally, the plaintext is reconstructed m = z2 ⊕ hash(r1) as well as r2 : r2 = hash(e ) ⊕ z3,

and if hash(m | |r2)≡ h, then the plaintext has no errors and it is returned, meaning that the entire

process of decryption is completed.

3 PROPOSED FAULT DETECTION ARCHITECTURES

Differential fault analysis (DFA) compares a correct output with a defective one (produced by

a natural cause or a third party) generally to obtain the private key. We can observe several fault

models based on the sort of attack. These models depend on the amount of bits compromised,

where the faults are located, how the faults are introduced, and the duration of the faults. Due to

technological limitations, an adversary may not be able to flip precisely one bit to capture sensitive

information. In practice, the attacker attempts to introduce as few faults as possible (ideally single

faults of varying intensities) to minimize the effort. Biased fault models with a single-bit (more

probable in low fault intensity), two-bit, three-bit, and four-bit (more frequent in higher intensities)

may be utilized to mimic fault intensity fluctuation. In this work, techniques that can identify

multiple stuck-at faults (both stuck-at one and stuck-at zero cases), adjacent (for interleaved cases),

and single or multiple stuck-at faults are addressed, i.e., regular parity, interleaved parity, CRC-2,

and CRC-8. These schemes also aim to detect transient and permanent internal faults on the Key

Generator. We take into consideration an acceptable tradeoff between the fault detection abilities

and the overheads to be accepted while providing the relevant error detection techniques. Because

of their low overhead and good error coverage, the schemes presented in this work are suitable

for embedded devices.

The Key Generator has the largest area complexity and, as a result, it is the most extensive

hardware implementation inside McEliece. The H-generator is the most involved and complex

block in the design of the Key Generator. It generates a control matrix H required to get the public

key of the McEliece cryptosystem. As previously stated, H is generated by multiplying the matrices

X, Y, and Z using the G-memory, H-memory, Horner, GF (2m ) Multiplication, GF (2m ) Inverse, and

GF (2m ) Generator blocks. First, an auxiliary matrix t x t X is created by using the G-memory, which

contains the Goppa polynomial and is expressed as

X =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

дt 0 · · · 0

дt−1 дt · · · 0
...

...
. . .

...
д1 д2 · · · дt

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪
⎭

.

Matrix Y is then generated using theGF (2m ) Generator block, which produces αi elements where

i ∈ {0, 1, . . . , 8, 191} (this work uses the composite fields of complex Goppa codes, i.e.,GF ((213)128),
GF (213) with the field polynomial p (α ) = α13 +α4 + α3 + α + 1, andGF (2); however, numbers can

vary depending on the security parameters utilized). Matrix Y is a t x n matrix expressed as

Y =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

1 0 · · · 0

α0 α1 · · · αn−1

...
...

. . .
...

α t−1
0 α t−1

1 · · · α t−1
n−1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪
⎭

.
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ALGORITHM 2: Multiplicative Inversion Addition-Chain Itoh-Tsujii Algorithm

1: β0 = A(α )
2: for i from 1 to t do

3: βi = [βi1 ]2
ci2 · βi2 (mod p (α ))

4. return ((βt )2 (mod p (α ))

The inversion of f (αi ) is then used to calculate a matrix Z size n x n, requiring theGF (2m ) Inverse

block to obtain

Z =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

д(α0) 0 · · · 0

0 д(α1)−1 · · · 0
...

...
. . .

...
0 0 · · · д(αn−1)−1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪
⎭

.

The H-Generator operates as follows: Matrices X and Y are multiplied first using the Horner block,

which transforms high degree multiplications into easier and more efficient ones, e.g., the opera-

tion f1 + f2α2 + f3α
2
2 is calculated as f1 + ( f2 + f3α2)α2. To execute (XY)Z, GF (2m ) Multiplication

blocks are needed, since αi is multiplied by the corresponding element accessible from XY to get

f (αi ), e.g., f1+ f2α2+ f3α
2
0 , which is available in the H-memory, is multiplied by α0 to obtain f (α0).

Then, utilizing the GF (2m ) Inverse block, f (αi ) is inverted.

The process of obtaining a particular element A−1 ϵ GF (2m ) so A · A−1 = 1 is denoted as per-

forming the multiplicative inverse of the element A � 0 over GF (2m ). The FLT and ITA meth-

ods are investigated in this article to perform the multiplicative inverse of any finite-field el-

ement over GF (2m ). According to FLT, the inverse of a finite-field element A is calculated as

A2m−2 ≡ A−1 mod p (α ).However, the FLT algorithm yields to 2m−2 multiplications overGF (2m ) in

hardware implementations, needing additional memory to hold the precomputed data. There have

been many studies to reduce the amount of gates needed for finite-field inversions, e.g., Kaliski

inversion, square-and-multiply algorithm, and ITA algorithm. The latter approach, which was de-

veloped by Itoh and Tsujii, greatly reduces the total amount of finite-field multiplications involved

in the exponentiation by effectively using addition chains. The inverse of a finite-field element A

is represented asA−1 = [βm−1 (A)]2, where βk (A) = A2k−1ϵGF (2m ) and k ϵN. To compute βm−1 (A),
[15] uses a recursive sequence with an addition chain form − 1 to calculate βm−1 (A). To compute

the addition chain C = {c1, c2, . . . , ct } using p (α ) or field polynomial of m degree, we need c1 = 1

and ct =m − 1. If ci is odd, then ci−1 = ci − 1; if ci is even, then ci−1 = ci/2. Moreover, Algorithm 2

shows the Multiplicative Inversion Addition-Chain ITA. To calculate the inversion of an element in

GF (213) using ITA with addition chains, 4 multiplications and 12 squarings inGF (213) are needed.

The hardware design to execute finite-field multiplications over GF (2m ) is split into three mod-

ules, i.e., α , sum, and pass-thru modules. The α module reduces the output modulo F (α ) after

multiplying a finite-field element by α , the sum module utilizes m number of XOR gates to add

two elements in GF (2m ) (finite-field additions only use the sum module), and the pass-thru mod-

ule multiplies an element in GF (2m ) with an element in GF (2). However, to perform finite-field

squarings, only two modules are needed, i.e., α2 (where a finite-field element is multiplied by α2)

and sum modules.

3.1 Regular and Interleaved Parity

Derivations for the α module with regular parity are formulated in the work of Reference [33].

This type of parity is suitable for single faults; however, it does not detect an even amount of faults.

Therefore, the goal of our initial derivations is to ensure that contiguous faults are identified as
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well. Next, Theorem 3.1 is proposed for error detection in the α module based on interleaved parity,

where element A is the input and X is the output. Without compromising generality,m is assumed

to be odd in Theorem 3.1; however, it is simple to adapt it for evenm.

Theorem 3.1. Consider aGF (2m ) elementA, where pAe =
∑m−1

2

i=0 a2i represents the even parity bits

of A, and pAo =
∑m−1

2

i=1 a2i−1 represents the odd parity bits of A. Let fi ∈ GF (2) for i = 0, 1, . . . ,m − 1

and m, which is used as the code subspace dimension, be odd. Then, the predicted parities of the output

X denoted as p̂X e and p̂X o for even and odd bits, respectively, are

p̂X e = am−1 +

m−1
2∑

i=1

(a2i−1 + am−1 · f2i ), (1)

p̂X o =

m−1
2∑

i=1

(a (2i−1)−1 + am−1 · f2i−1), (2)

and whenm = 13, p̂X e = pAo and p̂X o = pAe + a12 are obtained.

Proof. The X coordinates are calculated by utilizing the following formula:

xi =
⎧⎪⎨
⎪
⎩

ai−1 + am−1 · fi 1 ≤ i ≤ m − 1,

am−1 i = 0,
(3)

which divides the predicted parity p̂X as

p̂X = am−1 +

m−1∑

i=1

(ai−1 + am−1 · fi )

= am−1 +

m−1
2∑

i=1

(a2i−1 + am−1 · f2i )

+

m−1
2∑

i=1

(a (2i−1)−1 + am−1 · f2i−1)

= p̂X e + p̂X o .

The field polynomial used in our design is p (α ) = α13 + α4 + α3 + α + 1, obtaining f13 = f4 = f3 =
f1 = f0 = 1. Then, from Equations (1) and (2), we have

p̂X e = a12 + a1 + a3 + a12 + a5 + a7 + a9 + a11

= pAo

and
p̂X o = a0 + a12 + a2 + a12 + a4 + a6 + a8 + a10

= pAe + a12.

This brings the proof to a close. �

ElementsA and B inGF (2m ) are added in the sum module to produce the even and odd predicted

parities of output D, denoted as p̂De and p̂Do , respectively, obtaining p̂De = pAe + pBe and p̂Do =

pAo + pBo .
Last, in the pass-thru module, a GF (2) element b is multiplied by the parity bits of A, which

are split into pAe and pAo , producing output G. Next, the even and odd predicted parities of G,

represented as p̂Ge and p̂Go , are split into p̂Ge = b · pAe and p̂Go = b · pAo , respectively.
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5:8 A. C. Canto et al.

Fig. 1. The proposed design for α2 module, where ai and fi ’s symbolize the inputs and xi ’s symbolize the

outputs.

To perform a finite-field squaring, α2 and sum modules are required. In the α2 module, element

A is multiplied by α2, obtaining

A(α ) · α2 = am−1 · αm+1 + am−2 · αm + · · · + a0 · α2, (4)

where

αm+1 = fm−1 · αm + fm−2 · αm−1 + · · · + f0 · α mod p (α )

and

αm = fm−1 · αm−1 + fm−2 · αm−2 + · · · + f0 mod p (α ),

usingp (α ) as the field polynomial. Moreover, using Equation (4), theX coordinates are represented

as

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

am−1 · fi−1 + (am−1

·fm−1 + am−2) · fi
+ai−2 2 ≤ i ≤ m − 1,

am−1 + (am−1 · fm−1

+am−2) · f1 i = 1,

am−1 · fm−1 + am−2 i = 0.

(5)

The hardware design of theα2 module is presented in Figure 1, wherea0-am−1 are the coefficients

of inputA, f0-fm−1 are the field polynomialp (α ) coefficients, andα0-αm−1 are denoted as the output

X coefficients. Additionally, the derivations from Equation (5) are shown in Figure 1, using several

XOR and AND gates to obtain such formulations. For instance, the output x0 is obtained by XORing

the input am−2 with the result of adding through an AND gate the inputs am−1 and fm−1, the output

x1 is obtained by XORing am−1 with the result of (am−1 · fm−1 + am−2) · f1 (using two AND gates

and an extra XOR gate), and so on. To derive the regular and interleaved parities of the α2 module,

Theorems 3.2 and 3.3 are presented next.
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Theorem 3.2. Consider a GF (2m ) element A, where pA =
∑m−1

i=0 ai represents the parity bits of

A. Let fi ∈ GF (2) for i = 0, 1, . . . ,m − 1 and m be used as the code subspace dimension. Then, the

predicted parity of the output X is

p̂X = am−1 · fm−1 + am−2 + am−1 + (am−1

·fm−1 + am−2) · f1 +
m−1∑

i=2

(am−1 · fi−1

+ (am−1 · fm−1 + am−2) · fi + ai−2),

(6)

and whenm = 13, p̂X = pA + a11 + a12 is obtained.

Proof. Our proposed scheme uses the field polynomial p (α ) = α13 +α4 +α3 +α + 1. Therefore,

f13 = f4 = f3 = f1 = f0 = 1. Then from Equation (6), one obtains

p̂X = a11 + a12 + a11 + a12 + a0 + a11 + a1 + a12 + a11

+a2 + a12 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10

= pA + a11 + a12.

This brings the proof to a close. �

Theorem 3.3. Consider aGF (2m ) elementA, where pAe =
∑m−1

2

i=0 a2i represents the even parity bits

of A, and pAo =
∑m−1

2

i=1 a2i−1 represents the odd parity bits of A. Let fi ∈ GF (2) for i = 0, 1, . . . ,m − 1

and m, which is used as the code subspace dimension, be odd. Then, predicted parities of the output X

denoted as p̂X e and p̂X o for even and odd bits, respectively, are

p̂X e = am−1 · fm−1 + am−2 +

m−1
2∑

i=1

(am−1

·f2i−1 + (am−1 · fm−1 + am−2) · f2i + a2i−2),

(7)

p̂X o = am−1 + (am−1 · fm−1 + am−2) · f1 +
m−3

2∑

i=1

(am−1

·f2i + (am−1 · fm−1 + am−2) · f2i+1 + a2i−1),

(8)

and whenm = 13, p̂X e = pAe + a12 and p̂X o = pAo + a11 are obtained.

Proof. The predicted parity p̂X is divided into

p̂X = am−1 · fm−1 + am−2 + am−1 + (am−1

·fm−1 + am−2) · f1 +
m−1∑

i=1

(am−1 · f2i−1

+ (am−1 · fm−1 + am−2) · f2i + a2i−2)
= p̂X e + p̂X o .

The field polynomial utilized in our design is p (α ) = α13 + α4 + α3 + α + 1; therefore, one obtains

f13 = f4 = f3 = f1 = f0 = 1. Then, from Equations (7) and (8), we have

p̂X e = a11 + a12 + a0 + a12 + a11 + a2 + a4 + a6 + a8 + a10

= pAe + a12

and
p̂X o = a12 + a11 + a11 + a1 + a12 + a3 + a5 + a7 + a9

= pAo + a11.

This brings the proof to a close. �
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Fig. 2. The presented fault detection scheme of the H-generator for MECS.

Figure 2 shows both the original H-generator architecture (top) and the H-generator with the

presented fault detection blocks (bottom). The proposed design produces the matrix H by multi-

plying matricesX , Y , and Z . In Figure 2, the H-generator may employ both regular and interleaved

parities represented as P1−P4. The different fault detection blocks have been simplified in Figure 2

as four big white blocks; however, each of those P blocks contain many XOR gates, OR gates, and

error flags. In Section 4, we calculate the amount of signatures, which relate to the footprint of the

output of an error-detecting block, for the entire Key Generator. Nevertheless, let us go over a spe-

cific example to show how the P blocks behave. For instance, the GF (213) Mult(2) block performs

a total of 8, 192 · 128 multiplications to obtain XYZ . Each of those multiplications uses 12 α , 12

sum, and 13 pass-thru modules, which translates into (8,192 · 128)mult · (12α + 12sum + 13pass ) sub-

outputs. Each of these sub-outputs are compared with the predicted sub-outputs of the P4 block,

obtaining (8,192 · 128)mult · (12α + 12sum + 13pass ) or close to 3.9 × 107 signatures, which are

then ORed with each other. We note that the term signature here refers to appended bits used for

error detection through error-detecting codes and not the typical signatures commonly used for

proof of authenticity in cryptography. If the fault detection scheme used is based on interleaved

parity, then the number of error flags will double. As deducted from Theorem 3.1 for finite-field
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Fig. 3. CRC applied to the original α , α2, sum, and pass-thru modules.

multiplications, P2 and P4 blocks contain the different gates to obtain Equations (1) and (2). After

the Horner derivations are performed, P1 is used, using Equations (1) and (2) to provide error detec-

tion. Regular and interleaved parities for multiplications and squarings over GF (2m ) formulated

in Theorem 3.1 and Theorems 3.2 and 3.3, respectively, are performed by the P3 block. Therefore,

the P3 block uses the Equations (1), (2), and (6)–(8) to provide error detection capabilities to the

GF (213) inverse block. All the different error detection blocks are connected together through an

OR gate that indicates if a fault has been detected in any block of the H-generator.

3.2 CRC

CRC uses cyclic error-correcting codes. First, a generator polynomial д(α ) is selected to perform

CRC. Next, a long division of polynomials is calculated, where д(α ) becomes the divisor, the data

becomes the dividend, the remainder generates the result, and the quotient is disregarded. Last,

the data is appended with a specified number of check bits, which are examined when the output

is retrieved to identify any faults. The CRCs that are used along this work are customizable

depending on the security considerations and the amount of overhead that may be accepted. To

put it another way, for applications like gaming consoles where performance is crucial (because

they are plugged in, their power usage is not), the CRC size may be increased. Nonetheless,

smaller CRCs are desirable for constrained devices.

CRCs in the sum and pass-thru modules need fewer formulations than those in the α and α2

modules. The predicted CRC-1 for the sum module is equivalent to the parity bits of the inputs A
and B inGF (2m ) addition, which give us p̂X = pA+pB . Furthermore, CRC for the pass-thru module,

where b is an element in GF (2), corresponds to p̂X = b · pA. Instead of adding all the parity bits as

in CRC-1, the sum and pass-thru modules for each CRC-X scheme verify X bits at a time. The NIST

field GF (213) is utilized next in conjunction with CRC-2 and CRC-8. Figure 3 shows how CRC is

added to the original α , α2, sum, and pass-thru modules. The number of error flags, denoted as Ex ,

is directly related to the CRC scheme used.

3.2.1 CRC for α Module. In the α module, multiplying an element in GF (213) by α produces

A(x ) · x = a12 · α13 + a11 · α12 + a10 · α11 + a9 · α10

+a8 · α9 + a7 · α8 + a6 · α7 + a5 · α6 + a4 · α5

+a3 · α4 + a2 · α3 + a1 · α2 + a0 · α ,
(9)

where

α13 = f12α
12 + f11α

11 + · · · + f1α + f0 mod p (α ).
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The irreducible polynomial p (α ) = α13 + α4 + α3 + α + 1 is then employed to get

A(α ) · α ≡ a12α
4 + a12α

3 + a12α + a12 + a11α
12

+a10α
11 + a9α

10 + a8α
9 + a7α

8 + a6α
7 + a5α

6 (10)

+a4α
5 + a3α

4 + a2α
3 + a1α

2 + a0α mod p (α ).

• For the case study of m = 13 with CRC-2 in the α module, д0 (α ) = α2 + α + 1 is utilized as

the generator polynomial, which is used to find its derivations as follows:

α2 ≡ α + 1 mod д0 (α ),
α3 ≡ 1 mod д0 (α ),
α4 ≡ α mod д0 (α ),

α5 ≡ α + 1 mod д0 (α ),
α6 ≡ 1 mod д0 (α ),
α7 ≡ α mod д0 (α ),

α8 ≡ α + 1 mod д0 (α ),
α9 ≡ 1 mod д0 (α ),
α10 ≡ α mod д0 (α ),

α11 ≡ α + 1 mod д0 (α ),
α12 ≡ 1 mod д0 (α ).

Next, to determine the predicted CRC-2 equation for GF (213) in the α module, denoted as

(PCRC213), д0 (α ) is applied in Equation (10), obtaining

A(α ) · α ≡ a11 + a10 (α + 1) + a9α + a8 + a7 (α

+ 1) + a6α + a5 + a4 (α + 1) + a3α + a2 + a1 (α

+ 1) + a0α mod д0 (α ),

or

PCRC213 = (a10 + a9 + a7 + a6 + a4 + a3

+a1 + a0)α + (a11 + a10 + a8 + a7 + a5 (11)

+a4 + a2 + a1).

Then, the coefficients from Equation (10) are renamed to determine the actual CRC-2 equa-

tion for GF (213) in the α module (ACRC213): a11 as γ12, . . . , a0 as γ1,

A(x ) · x ≡ γ12α
12 + γ11α

11 + γ10α
10 + γ9α

9

+γ8α
8 + γ7α

7 + γ6α
6 + γ5α

5 + γ4α
4 (12)

+γ3α
3 + γ2α

2 + γ1α
1 + γ0 mod д0 (α ),

and we apply д0 (α ) as follows:

A(α ) · α ≡ γ12 + γ11 (α + 1) + γ10α + γ9

+γ8 (α + 1) + γ7α + γ6 + γ5 (α + 1) + γ4α

+γ3 + γ2 (α + 1) + γ1α + γ0 mod д0 (α ),

or

ACRC213 = (γ11 + γ10 + γ8 + γ7 + γ5 + γ4

+γ2 + γ1)α + (γ12 + γ11 + γ9 + γ8 + γ6 + γ5 (13)

+γ3 + γ2 + γ0).
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• For the case study ofm = 13 with CRC-8 in the α module, д1 (α ) = α8 +α2 +α + 1 is utilized

as the generator polynomial, which is used to find its derivations as follows:

α8 ≡ α2 + α + 1 mod д1 (α ),
α9 ≡ α3 + α2 + α mod д1 (α ),
α10 ≡ α4 + α3 + α2 mod д1 (α ),
α11 ≡ α5 + α4 + α3 mod д1 (α ),
α12 ≡ α6 + α5 + α4 mod д1 (α ).

Next, to determine the predicted CRC-8 equation for GF (213) in the α module, denoted as

(PCRC813), д1 (α ) is applied in Equation (10), obtaining

A(α ) · α ≡ a12 (α4 + α3 + α + 1) + a11 (α6 + α5 + α4)

+a10 (α5 + α4 + α3) + a9 (α4 + α3 + α2) + a8 (α3

+α2 + α ) + a7 (α2 + α + 1) + a6α
7 + a5α

6 + a4α
5

+a3α
4 + a2α

3 + a1α
2 + a0α mod д1 (α ),

or

PCRC813 = a6α
7 + (a11 + a5)α6 + (a11 + a10

+a4)α5 + (a12 + a11 + a10 + a9 + a3)α4+ (14)

(a12 + a10 + a9 + a8 + a2)α3 + (a9 + a8 + a7

+a1)α2 + (a12 + a8 + a7 + a0)α + (a12 + a7).

Then, the coefficients from Equation (10) are renamed to determine the actual CRC-8 equa-

tion, denoted as ACRC813, for GF (213) in the α module: a11 as γ12, . . . , a0 as γ1,

A(α ) · α ≡ γ12α
12 + γ11α

11 + γ10α
10 + γ9α

9

+γ8α
8 + γ7α

7 + γ6α
6 + γ5α

5 + γ4α
4 (15)

+γ3α
3 + γ2α

2 + γ1α + γ0 mod д1 (α ),

and we apply д0 (α ) as follows:

A(α ) · α ≡ γ12 (α6 + α5 + α4) + γ11 (α5 + α4 + α3)

+γ10 (α4 + α3 + α2) + γ9 (α3 + α2 + α ) + γ8 (α2

+α + 1) + γ7α
7 + γ6α

6 + γ5α
5 + γ4α

4 + γ3α
3

+γ2α
2 + γ1α + γ0 mod д1 (α ),

or

ACRC813 = γ7α
7 + (γ12 + γ6)α6 + (γ12 + γ11

+γ5)α5 + (γ12 + γ11 + γ10 + γ4)α4 + (γ11 (16)

+γ10 + γ9 + γ3)α3 + (γ10 + γ9 + γ8 + γ2)α2

+ (γ9 + γ8 + γ1)α + (γ8 + γ0).

The NIST fieldGF (213) is utilized next with CRC-2 and CRC-8 for theα2 module; nonetheless,

the presented error detection techniques can be applied with any field sizes or CRCs.
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3.2.2 CRC for α2 Module. In the α2 module, multiplying any element inGF (213) by α2 produces

A(α ) · α2 = a12 · α14 + a11 · α13 + a10 · α12

+a9 · α11 + a8 · α10 + a7 · α9 + a6 · α8

+a5 · α7 + a4 · α6 + a3 · α5 + a2 · α4

+a1 · α3 + a0 · α2,

(17)

where α14 = f12α
13 + f11α

12 + · · · + f1α
2 + f0α mod p (α ) and α13 = f12α

12 + f11α
11 + · · · + f1α +

f0 mod p (α ). For m = 13, p (α ) = α13 + α4 + α3 + α + 1, which is the irreducible polynomial, is

employed to get

A(α ) · α2 ≡ a12α
5 + a12α

4 + a12α
2 + a12α + a11α

4

a11α
3 + a11α + a11 + a10α

12 + a9α
11 + a8α

10

+a7α
9 + a6α

8 + a5α
7 + a4α

6 + a3α
5 + a2α

4

+a1α
3 + a0α

2 mod p (α ).

• Form = 13 with CRC-2 in the α2 module, д0 (α ) is utilized in Equation (17) to determine the

predicted CRC-2 equation for GF (213), denoted as PCRC213, obtaining

A(α ) · α2 ≡ a10 + a9 (α + 1) + a8α + a7 + a6 (α

+ 1) + a5α + a4 + a3 (α + 1) + a2α + a1 + a0 (α

+ 1) mod д0 (α ),

or

PCRC213 = (a9 + a8 + a6 + a5 + a3 + a2 + a0) (18)

·α + (a10 + a9 + a7 + a6 + a4 + a3 + a1 + a0).

Then, the coefficients from Equation (17) are renamed to determine the actual CRC-2 equa-

tion for GF (213) in the α2 module, denoted as ACRC213, getting the same derivations as for

the α module.

• Form = 13 with CRC-8 in the α2 module, д1 (α ) is utilized in Equation (17) to determine the

predicted CRC-8 equation for GF (213), denoted as PCRC813, obtaining

A(α ) · α2 ≡ a12 (α5 + α4 + α2 + α ) + a11 (α4 + α3

+α + 1) + a10 (α6 + α5 + α4) + a9 (α5 + α4 + α3)

+a8 (α4 + α3 + α2) + a7 (α3 + α2 + α ) + a6 (α2

+α + 1) + a5α
7 + a4α

6 + a3α
5 + a2α

4 + a1α
3

+a0x
2 mod д1 (α ),

or

PCRC813 = a5α
7 + (a10 + a4)α6 + (a12 + a10 + a9

+a3)α5 + (a12 + a11 + a10 + a9 + a8 + a2)α4 + (a11 (19)

+a9 + a8 + a7 + a1)α3 + (a12 + a8 + a7 + a6

+a0)α2 + (a12 + a11 + a7 + a6)α + (a11 + a6).

Then, the coefficients from Equation (17) are renamed to determine the actual CRC-8 equa-

tion for GF (213) in the α2 module, denoted as ACRC813, getting the same derivations as for

the α module.
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Table 2. Steps Required to Complete the Inverse of an

Element A in GF (213) Employing the Addition Chain C

Step βVi
(α ) βVj+Uk

(α ) Exponentiation

1 β1 (α ) − A

2 β2 (α ) β1+1 (α ) (β1)21
β1 = A22−1

3 β3 (α ) β2+1 (α ) (β2)21
β1 = A23−1

4 β6 (α ) β3+3 (α ) (β3)23
β3 = A26−1

5 β12 (α ) β6+6 (α ) (β6)26
β6 = A212−1

4 ERROR COVERAGE AND FPGA IMPLEMENTATIONS

As previously stated, multiplications in GF (2m ) require three distinct modules (α , sum, and pass-

thru modules), squarings in GF (2m ) utilize the α2 and sum modules, and additions in GF (2m )
require just the sum module. For m = 13 using a bit-parallel design with regular parity, 12 α , 12

sum, and 13 pass-thru modules are utilized to perform each multiplication inGF (213); 12 α2 and 12

sum modules are required for each squaring inGF (213); and just 12 sum modules are used on each

addition in GF (213). The number of signatures for regular parity utilized by the Pi blocks, where

1 ≤ i ≤ 4, is determined as:

(1) A 128×128 matrixX is generated to calculate the matrixXY . To achieve efficient polynomial

multiplications, the Horner algorithm is performed. Each column of the 128 × 8,192 XY
matrix needs a total of 127 multiplications and 127 additions in GF (213), resulting in a total

of 8,192column · 127mult . · (12α + 12sum + 13pass ) signatures for finite-field multiplications

and 8,192column · 127add . · 12sum signatures for finite-field additions. Therefore, the Horner

block requires more than 5 · 107 signatures.

(2) In Figure 2, it is shown that to derive the matrix Z , the GF (213) Mult(1) block is needed.

Such block performs 8,192 multiplications and 8,192 additions in GF (213), resulting in a

total of 8,192mult . · (12α + 12sum + 13pass ) signatures for finite-field multiplications, and

8,192add . · 12sum signatures for finite-field additions. Therefore, the GF (213) Mult(1) block

requires more than 4 · 105 signatures.

(3) Next, a total of 8,192 inversions inGF (2m ) are performed by theGF (213) Inverse block shown

in Figure 2. Form = 13, the addition chain utilized isC = {1, 2, 3, 6, 12}. Table 2 shows the

different steps required to obtain the inverse of AϵGF (213) using addition chains. In Table 2,

the integers in the calculated addition chain are denoted as Vi , Vj = Vi−1, and Uk = Vi −Vj ,

requiring 4 multiplications and 12 squaring inGF (213). Therefore, a total of 8,192inv . ·(4mult . ·
(12α +12sum +13pass )+12add . · (12α +12sum )) or close to 3.6 ·106 operations and signatures

are required. We note that each finite-field multiplication and squaring requires a total of

seven and six clock cycles, respectively, specifying a main clock time constraint of 20 ns,

which corresponds to a frequency of 50 MHz.

(4) Then, the GF (213) Mult(2) block from Figure 2 requires 8,192 · 128 multiplications to obtain

XYZ . Moreover, theGF (213) Mult(2) block uses (8,192 ·128)mult · (12α +12sum+13pass ) signa-

tures to perform all the finite-field multiplications needed, totaling about 3.9 ·107 signatures.

(5) After the control matrix H is generated, other steps are computed. The matrix H is

multiplied with a matrix P to be permuted, obtaining H̃. Our fault detection schemes

can be integrated in this process, since it requires approximately 8.6 · 109 multiplications

(8,192 · 8,192 · 128) and approximately 8.6 · 109 additions (8,192 · 8,192 · 128) in GF (213).
The Gauss Systemizer unit, which conducts row permutations and XOR additions of two

rows, is also used in the key generation. Permutations can be achieved in this situation by
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Table 3. Area and Delay Results Obtained After Adding Fault Detection into the Original Horner and

Inversion Architectures on FPGA Kintex-7 (Device xc7k70tfbv676-1)

Architecture
Area

Delay (ns)
(occupied slices)

Original Horner block 2,976 28.267

Horner Reg. Parity (predicted/actual/compressor) 3,138 (5.44%) 28.541 (Neg. over.)

Horner Inter. Parity (predicted/actual/compressor) 3,402 (14.31%) 29.410 (Neg. over.)

Horner CRC-2 (predicted/actual/compressor) 3,285 (10.38%) 28.850 (Neg. over.)

Horner CRC-8 (predicted/actual/compressor) 3,572 (20.03%) 29.803 (5.43%)

Original Inversion block 783 28.820

Inversion Reg. Parity (predicted/actual/compressor) 976 (24.65%) 29.013 (Neg. over.)

Inversion Inter. Parity (predicted/actual/compressor) 1,083 (38.31%) 28.995 (Neg. over.)

Inversion CRC-2 (predicted/actual/compressor) 1,121 (43.17%) 28.720 (Neg. over.)

Inversion CRC-8 (predicted/actual/compressor) 1,166 (48.91%) 31.124 (7.99%)

Table 4. Power and Throughput Results Obtained After Adding Fault Detection into the Original Horner

and Inversion Architectures on FPGA Kintex-7 (Device xc7k70tfbv676-1)

Architecture
Power (mW)

Throughput (Gbps)
Efficiency

@50 MHz (Gbps/slices)

Original Horner block 0.144 0.460 1.54 × 10−4

Horner Reg. Parity (predicted/actual/compressor) 0.147 (Neg. over.) 0.455 (Neg. over.) 1.45 × 10−4 (5.84%)

Horner Inter. Parity (predicted/actual/compressor) 0.157 (9.03%) 0.442 (Neg. over.) 1.30 × 10−4 (15.58%)

Horner CRC-2 (predicted/actual/compressor) 0.154 (6.94%) 0.451 (Neg. over.) 1.37 × 10−4 (11.04%)

Horner CRC-8 (predicted/actual/compressor) 0.158 (9.72%) 0.446 (Neg. over.) 1.25 × 10−4 (18.83%)

Original Inversion block 0.101 0.451 5.76 × 10−4

Inversion Reg. Parity (predicted/actual/compressor) 0.108 (6.93%) 0.448 (Neg. over.) 4.59 × 10−4 (20.31%)

Inversion Inter. Parity (predicted/actual/compressor) 0.110 (8.91%) 0.448 (Neg. over.) 4.14 × 10−4 (28.12%)

Inversion CRC-2 (predicted/actual/compressor) 0.112 (10.89%) 0.453 (Neg. over.) 4.04 × 10−4 (29.86%)

Inversion CRC-8 (predicted/actual/compressor) 0.113 (11.88%) 0.418 (–7.31%) 3.58 × 10−4 (37.84%)

rewiring, which does not require to add signatures, and XOR additions (perform between

13-bit vectors), which can integrate the signatures mentioned above.

The formula 100 · (1 − ( 1
2 )#siдn )%, where #siдn. stands as the number of signatures, is used to

compute the fault coverage percentage of the presented schemes. Moreover, the presented regular

parity has a high fault coverage percentage of close to 100 · (1− ( 1
2 )108

)%, the presented interleaved

parity and CRC-2 have a fault coverage percentage of close to 100· (1− ( 1
2 )2·108

)%, and the presented

CRC-8 has a fault coverage percentage of close to 100 · (1 − ( 1
2 )8·108

)%. Additionally, only the

signatures required for one block out of the four in our presented method illustrated in Figure 1

would be considered for local faults. For regular parity, the fault coverage is close to 100 · (1 −
( 1

2 )3.6·106
)%, 100 · (1 − ( 1

2 )7.2·106
)% for interleaved parity and CRC-2, and 100 · (1 − ( 1

2 )2.9·107
)% for

CRC-8, if the errors are restricted to the GF (213) Inverse block.

In Tables 3 and 4, the overheads of our fault detection schemes are shown in terms of area (occu-

pied slices), delay, power (with a 50 MHz frequency), throughput, and performance for the Horner

and the GF (213) Inverse block, where neд. over . stands for negligible overhead. The presented

constructions are not fully pipelined, and they are implemented on Xilinx FPGA family Kintex-7

device xc7k70tfbv676-1 using the Vivado tool and Verilog as the hardware design language. How-

ever, we note that because our schemes are platform-oblivious, the outcome is not necessarily
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influenced by the intended platform. To get the area, the Vivado’s place utilization report reads

CLBs, which are the main resources for creating general purpose combinational and sequential

circuits. To compute the delay, we utilize Vivado’s Timing Constraints Wizard, specifying a main

clock time constraint of 20 ns, which corresponds to a frequency of 50 MHz. The total on-chip

power, which is the power utilized internally within the FPGA and is calculated by combining de-

vice static power and design power, is also reported. Throughput is obtained by dividing the total

number of output bits over the delay, efficiency is obtained by dividing throughput over area, and

performance is obtained by dividing throughput over slices.

Let us go over an example to show how our fault detection schemes are incorporated to the Key

Generator. First, the top module calls a functional unit, e.g., Horner block, GF (213) Inverse block,

GF (213) Mult(1) block, GF (213) Mult(2) block, and GF (213) Gen. block. For instance, if the Horner

block is called, this functional unit calls many multiplications and additions in GF (2m ). When

each finite-field multiplication is called, our error detection scheme is called as well to compare

the predicted output of that specific finite-field operation and the actual output with XOR gates,

producing an error flag. Last, when the Horner unit has made all the calls to the different finite-field

multiplications and additions, it compares all the error flags with OR gates to check that all the

finite-field operations have been performed free of faults. Additionally, we have implemented the

Inverse block with different finite-field sizes, i.e., GF (212), which is the other finite-field option for

the McEliece cryptosystem NIST submission and is considered a Category 3 parameter set in terms

of expected strength (as opposed toGF (213), which is considered Category 5), andGF (211), to show

the feasibility of our schemes for other fields. For the Inverse block using the finite field GF (212),
the area overheads are 37.92% (451 slices), 42.51% (466 slices), and 46.79% (480 slices) when using

normal parity, interleaved parity, and CRC-2, respectively; the delay overheads are 6.14% (14.796

ns), negligible (13.654 ns), and negligible (13.704 ns) when using normal parity, interleaved parity,

and CRC-2, respectively; and the power overheads and 7.06% (0.091 mW), 5.88% (0.090 mW), and

5.88% (0.090 mW) when using normal parity, interleaved parity, and CRC-2, respectively. For the

Inverse block using the finite field GF (211), to show the feasibility, the area overheads for the first

two cases are 33.50% (267 slices), 19.50% (239 slices), the delay overheads are 6.30% (4.519 ns), 8.89%

(4.629 ns), and the power overheads are negligible, i.e., 0.085 mW.

To obtain the area, the utilization report from Vivado reads the occupied slices, which are

essential for the implementation of general purpose combinational and sequential circuits. To

compute the delay, we utilize Vivado’s Timing Constraints Wizard, specifying a main clock time

constraint of 20 ns, or a 50 MHz frequency. Total on-chip power, which is the power utilized

internally through the FPGA is reported as well and is calculated by combining the design power

and the device static power. Last, the number of bits from the output is divided by the delay to

get the throughput. As demonstrated in Tables 3 and 4, when stronger schemes with better error

coverage are added to the original designs, they result in increased area and power overheads.

The overhead difference in terms of delay is small and changes based on the gates employed in

each design. Furthermore, it is certain that the larger the overall design is, the lower the overhead

is. Since the GF (213) Inverse block does fewer operations than the Horner block, the overall

overheads are higher. Both interleaved parity and CRC-2 are quite comparable, since they have

the same amount of error flags, while CRC-8 is the most costly fault detection architecture. This is

to be expected, given CRC executes more operations, resulting in larger error coverage, as seen by

our studies. The overall area overheads of the strategies proposed in this article are less than 49%,

which corresponds to the overhead obtained by theGF (213) Inverse block when it uses CRC-8, and

more than 5%, which corresponds to the overhead obtained by the Horner block when it uses regu-

lar parity. Low delay overheads are observed for the presented fault detection schemes. As shown

in Table 3, the worst-case scenarios in terms of delay overhead are less than 6% and less than 8%
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Table 5. Worst-case Overhead Comparison of the Presented Schemes with Other Fault Detection Works

Work Fault Detection Scheme
Worst-Case Overhead %

Area Delay Power Throughput Efficiency

[18] CRC-10 25.51 Not given Not given Not given Not given
[19] CRC-3 20.81 18.71 10.29 15.77 28.99
[20] Recom. shifted operands 40.74 21.23 22.41 Not given Not given
[23] Recom. customizable swapped entries 5.1 Not given Not given 13.5 18.0
[24] CRC-5 18.33 11.25 �0 10.10 Not given
[30] Multi-parity 8.54 4.68 3.90 2.91 Not given

This work CRC-8 (Goppa Horner) 20.03 5.43 9.72 Neg. over. 18.83
This work CRC-8 (Inversion) 48.91 7.99 11.88 7.31 37.84

for the Horner andGF (213) Inverse block when using CRC-8, respectively. Furthermore, the power

overheads added to the original architectures are less than 12%, which is obtained by the GF (213)
Inverse block using CRC-8. Last, Table 4 shows how the throughput decreases when fault detection

is added to the original constructions, obtaining a worst-case throughput overhead scenario of less

than 8%. The fault detection schemes used are customizable based on the level of security required

and the amount of overheads to be accepted. The scheme sizes can be increased for situations

where performance is crucial, while smaller schemes are preferable for deeply-embedded systems.

To the best of the authors’ knowledge, there has been no past studies on this sort of fault detec-

tion methods for the McEliece’s Key Generator has been done. Let us look at some case studies for

a qualitative assessment to verify that the overheads generated are reasonable. In Reference [29],

fault detection techniques using parity prediction for multiplication in GF (2m ) with normal basis

are presented in Reference [34], getting approximately 58% of combined area and delay overhead

(worst-case scenario). One of the drawbacks of regular parity prediction is that intelligent fault

injection can get around this predictable countermeasure by injecting an even number of faults.

Therefore, we present interleaved parity as well as CRC-2 and CRC-8 to resolve this issue. Concur-

rent error detection constructions to perform the Extended Euclidean-based division overGF (2m )
are provided in Reference [35]. The schemes utilized are based on parity prediction and they have

a combined worst-case area and delay overhead of 25.18%. Moreover, Table 5 shows a compari-

son in terms of worst-case area, delay, and power overheads of the presented schemes with other

works on fault detection. These and related earlier research on traditional cryptography demon-

strate that the presented fault detection constructions acquire comparable overheads to existing

works on error detection, obtaining a tolerable overhead.

5 CONCLUSION

In this work, fault detection schemes are used in the different blocks of the Key Generator and

other units of code-based cryptosystems. Key generation has the largest area complexity and, as a

result, it is the most involved hardware implementation inside McEliece, using finite-field addition,

multiplication, squaring, and inversion operations. McEliece has been advanced to the current and

final round in the NIST standardization process as of July 2020. Our work has a special focus on

the H generator, which provides the control matrix H required to get the McEliece cryptosystem

public key. We have derived closed formulations for regular parity, interleaved parity, CRC-2, and

CRC-8 for the finite-field blocks, and we have implemented these signatures on FPGA to assess the

overheads and performance deterioration of the presented schemes and demonstrate their appli-

cability for constrained embedded systems. The overall area and delay overheads of the strategies

proposed in this article are less than 49%, which corresponds to the overhead obtained by the

GF (213) Inverse block when it uses CRC-8, and more than 5%, which corresponds to the overhead
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obtained by the Horner block when it uses regular parity. The provided fault detection construc-

tions produce high error coverage at a reasonable overhead, as the results show.
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