
Cryptographic Engineering a Fast and Eficient SIKE in FPGA

RAMI ELKHATIB, BRIAN KOZIEL, and REZA AZARDERAKHSH, Florida Atlantic University, USA
MEHRAN MOZAFFARI KERMANI, University of South Florida, USA

Recent attacks have shown that SIKE is not secure and should not be used in its current state. However, this work was

completed before these attacks were discovered and might be beneicial to other cryptosystems such as SQISign. The primary

downside of SIKE is its performance. However, this work achieves new SIKE speed records even using less resources than

the state-of-the-art. Our approach entails designing and optimizing a new ield multiplier, SIKE-optimized Keccak unit, and

high-level controller. On a Xilinx Virtex-7 FPGA, this architecture performs the NIST Level 1 SIKE scheme key encapsulation

and key decapsulation functions in 2.23 and 2.39 ms, respectively. The combined key encapsulation and decapsulation time

is 4.62 ms, which outperforms the next best Virtex-7 implementation by nearly 2 ms. Our implementation achieves speed

records for the NIST Level 1, 2, and 3 parameter sets. Only our NIST Level 5 parameter set was beat by an all-out performance

implementation. Our implementations also eiciently utilize the FPGA resources, achieving new records in area-time product

metrics for all parameter sets. Overall, this work continues to push the bar for accelerating SIKE computations to make a

stronger case for SIKE standardization.

CCS Concepts: · Security and privacy→ Hardware security implementation; Embedded systems security.

Additional Key Words and Phrases: isogeny-based cryptography, Montgomery multiplication, post-quantum cryptography,

RISC-V, SIKE

1 INTRODUCTION

In 2016, the United States National Institute of Standards and Technology (NIST) initiated a multiple year process
to standardize post-quantum cryptography (PQC) for use by the US government [61]. The fear is that a large-scale
quantum computer will soon be available that will completely dismantle our deployed classical cryptography.
Post-quantum cryptography includes cryptosystems that are secure against attacks by both classical and quantum
computers. Unfortunately, today’s commonly deployed public-key cryptosystems such as RSA or elliptic curve
cryptography (ECC) are vulnerable to a large-scale quantum computer invoking Shor’s algorithm [59]. Shor’s
algorithm completely breaks the underlying discrete logarithm or factorization problems that support ECC or
RSA, respectively. Private-key cryptosystems such as AES or SHA will be weakened by a large-scale quantum
computer utilizing Grover’s algorithm [32], but their higher security parameter sets may still be used. It is
unknown when such a large-scale quantum computer will be available with estimates ranging from a few years
to several decades. However, there must be suicient time to evaluate, implement, and deploy PQC algorithms.
Historically, it has taken several years if not decades to completely transition our infrastructure. Thus, at the
conclusion of the NIST PQC standardization process, we will begin a huge transition to quantum-safe algorithms
over the coming decade.

Authors’ addresses: Rami Elkhatib, relkhatib2015@fau.edu; Brian Koziel, bkoziel2017@fau.edu; Reza Azarderakhsh, razarderakhsh@fau.edu,

Florida Atlantic University, 777 Glades Rd, Boca Raton, Florida, USA, 33431; Mehran Mozafari Kermani, mehran2@usf.edu, University of

South Florida, 4202 E Fowler Ave, Tampa, Florida, USA, 33620.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2023/2-ART $15.00

https://doi.org/10.1145/3584919

ACM Trans. Embedd. Comput. Syst.

HTTPS://ORCID.ORG/0000-0002-6398-3222
HTTPS://ORCID.ORG/0000-0001-8874-2217
HTTPS://ORCID.ORG/0000-0001-5451-9527
HTTPS://ORCID.ORG/0000-0003-4513-3109
https://orcid.org/0000-0002-6398-3222
https://orcid.org/0000-0001-8874-2217
https://orcid.org/0000-0001-5451-9527
https://orcid.org/0000-0003-4513-3109
https://doi.org/10.1145/3584919
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3584919&domain=pdf&date_stamp=2023-02-23

2 • Elkhatib et al.

The NIST PQC standardization process is currently at the conclusion of its third round of evaluation. This
standardization process allows public submission of algorithms which are then evaluated and scrutinized by
various experts across the globe. Starting at 69 full and complete submissions, the third round has cut down to 15
submissions, of which 7 candidates are Round 3 Finalists and the other 8 candidates are Round 3 Alternatives.
The inalists are slated to be standardized or discarded at the conclusion of the third round while some alternative
candidates may continue to a fourth round of evaluation for eventual standardization. These candidates are
further divided into the public-key encryption and key-establishment group as well as the digital signature group,
to specify their function in public-key infrastructure. Another separation among these candidates is its hard
foundational problem. There are several families of hard problems that are considered to be resistant to quantum
computers such as lattices, isogenies, or hashes. For instance, the learning with errors problem is a lattice hard
problem that secures several of the NIST lattice submissions. Among the NIST PQC submissions, there are many
tradeofs between foundational problem, performance, bandwidth, implementation proile, and so on. There is no
clear winner for each evaluation aspect, but some cryptosystems feature great advantages.
This paper focuses on the supersingular isogeny key encapsulation (SIKE) [4] candidate which enables key

establishment between two parties while also featuring the smallest public key sizes. Small public key sizes mean
less bandwidth when sending the public key as well as less space to store a party’s public key. SIKE is the only
isogeny-based candidate in the NIST PQC process. Protected by the diiculty to compute isogenies between
two supersingular elliptic curves, SIKE also features no possibility for decryption errors, no complicated error
distributions, and a simple, conservative security analysis when assuming only generic attacks. In its report
on Round 2 PQC candidates, NIST praised SIKE for its small key and ciphertext sizes that could enable some
applications [2]. However, NIST placed SIKE as a Round 3 Alternative candidate because of its slow performance
and because further investigation of its basic security problem was needed. This paper serves as another nice
improvement in SIKE’s performance. In terms of the basic security problem, recent attacks [11, 46, 53] have
shown that the private key can be recovered from the public key. Therefore, SIKE is not secure in its current state.

Among the PQC candidates, SIKE can heavily beneit from an optimized hardware implementation. For instance,
consider a small embedded ARM Cortex-M4 implementation of SIKE that can perform key encapsulation and
decapsulation (combined for SIKEp434) in 140 million cycles [3]. When running at a low frequency, this latency
may be unacceptable. However, if this intense computation was instead oloaded to a SIKE hardware accelerator,
this computation could be completed in only a few million cycles. Our FPGA results, for instance, feature a key
encapsulation and decapsulation time of 1.264 million cycles for SIKEp434, over 100 times improvement. Since
many currently deployed chips include hardware co-processors for ECC or RSA, it is not out of question to
consider a hardware accelerator for SIKE. SIKE ofers a unique perspective where the computational overhead
can be reduced by a hardware co-processor and the communication overhead is smaller as a result of its public
key sizes.

Related Work. Over the past several years, SIKE and its predecessor SIDH have enjoyed a myriad of hardware
implementation works and improvements that continue to push its performance envelope. Starting in 2016,
Koziel et al. [41] published the irst hardware implementation of SIDH (SIKE’s predecessor), achieving a full
key exchange in about 33 ms for a 503-bit prime. With improvements to isogeny algorithms, isogeny-optimized
multiplication, and high-level control, this current paper achieves a similar set of computations (SIKE key
encapsulation and key decapsulation over SIKEp503) in just 5.8 ms. Over the following years, Koziel et al.
continued to improve their design, integrating techniques for high parallelization during the isogeny computation
[40], implementing a scalable architecture with new isogeny formulas [39], and upgrading the architecture
from an SIDH implementation to a SIKE implementation [36]. Concurrently, several diferent authors have
proposed their own optimizations to the ield multiplication unit for SIDH/SIKE including Barrett reduction [35],
Montgomery multiplication [20, 22, 43ś45, 63], and even redundant number system (RNS) multiplication [56].
These multiplication algorithms take advantage of special number representations bywhich multiplication can

ACM Trans. Embedd. Comput. Syst.

Cryptographic Engineering a Fast and Eficient SIKE in FPGA • 3

take advantage of the shape of isogeny-friendly primes. In terms of full implementations, the implementations
have primarily focused on high performance by using a mix of replicated multipliers with eicient schedulers
including [23, 25, 26, 36, 51, 64]. Based on the number of ield multiplication and additions required for these
isogenies on elliptic curves, multiple addition and multiplication units are required, which must be eiciently
scheduled to achieve good performance. Otherwise, software-hardware co-design implementations of SIKE
feature both the lexibility of software with the optimization of complex computations in hardware including
[9, 21, 24, 47, 55]. These implementations have generally featured a smaller proile and the lexibility to support
multiple parameter sets.

This work presents a new high-performance implementation of SIKE that is also area-eicient. Our contributions
can be summarized as follows:

Our contributions:

• We propose and implement a new SIKE-optimized multiplier that eiciently utilizes DSPs and resources for
Xilinx 7th generation FPGAs.
• We propose and implement a small hardware Keccak accelerator that is specially inetuned for SIKE’s
performance proile. This Keccak requires approximately 300 slices and runs at 1500 cycles per permutation.
• We propose and implement an isogeny accelerator controller that utilizes a tiny RISC-V processor.
• We achieve the best area-time products for all SIKE parameter sets.
• We achieve new FPGA speed records for SIKEp434, SIKEp503, and SIKEp610.

The organization of the paper is as follows. In Section 2, we review the fundamentals of SIKE. In Section 3,
we propose our inite ield accelerator which contains our new ield multiplier. In Section 4, we propose our
SIKE-optimized Keccak unit. In Section 5, we propose our new SIKE control architecture using a RISC-V processor.
In Section 6, we present and discuss our FPGA design’s results and compare to the state-of-the-art. In Section 7,
we close and discuss more directions for future work.

2 PRELIMINARIES

In this section, we review the necessary background of fundamentals of isogeny-based cryptography needed for
SIKE [4]. The reader can refer to [28] for further background on the mathematics of isogenies.

2.1 Isogeny Fundamentals

Isogeny-based cryptography primarily focuses on isogenies, or mappings, between elliptic curves and their use
in creating secure cryptosystems. An elliptic curve over a inite ield F� is the collection of all points (�,�) as well

as the point at ininity that satisfy the short Weierstrass form of elliptic curve �/F� : �2 = �3 + �� + �, where
�, �, �,� ∈ F� . This set creates an abelian group over addition. In standard elliptic curve cryptography, we pick a
point � = (�,�) and perform consecutive point additions and point doublings to execute an elliptic curve point
multiplication, � = �� where � ∈ Z and �,� ∈ �. Given � and � , the elliptic curve discrete logarithm problem
states that it is computationally infeasible to ind the scalar � . However, a large-scale quantum computer can use
Shor’s algorithm [59] to compute � .
Isogeny-based cryptography uses isogenies between elliptic curves for which there are cases where it is

diicult for a quantum computer to compute the isogenies. An elliptic curve isogeny over F� , � : � → �′, is a
non-constant rational map from � (F�) to �

′ (F�) that is a group homomorphism, or preserves the point at ininity.
An elliptic curve’s �-invariant serves as a unique identiier for the elliptic curve’s isomorphism class. An isogeny
moves from one elliptic curve to another elliptic curve, changing �-invariants. In SIDH and SIKE, we eiciently
compute isogenies by using Vélu’s formulas [65] over a kernel point: � : � → �/⟨��� ⟩. The degree of an isogeny

ACM Trans. Embedd. Comput. Syst.

4 • Elkhatib et al.

is its degree as a rational map. For eiciency, we compute a large-degree isogeny of the form ℓ� as a chain of �
isogenies of degree ℓ .

2.2 Isogeny-Based Cryptosystems

History. Isogeny-based cryptography has evolved over the past few decades of research. The use of isogenies
in cryptography was irst proposed in independent works by Couveignes [17] and Rostovtsev and Stolbunov
[54] that were irst published in 2006. These works proposed utilizing the hardness of computing isogenies
between ordinary elliptic curves as a basis for a key exchange. These papers initially claimed to have quantum
resistance, until Childs, Jao, and Soukharev [13] proposed a quantum subexponential algorithm that computes
isogenies between ordinary elliptic curves. Concurrently, Charles, Lauter, and Goren [12] also proposed a new
isogeny-based hash function, this time based on the hardness to compute isogenies between supersingular

elliptic curves in 2009. A few years later in 2011, Jao and De Feo [33] proposed the supersingular isogeny
Diie-Hellman (SIDH) key exchange protocol that was now also protected by the hardness to compute isogenies
between supersingular elliptic curves. Interestingly, the non-commutative nature of the endomorphism ring
of supersingular elliptic curves renders the Childs, Jao, and De Feo [13] isogeny attack unusable. In 2017, the
supersingular isogeny key encapsulation (SIKE) mechanism was submitted as an IND-CCA2 upgrade of SIDH to
the NIST PQC standardization process [5]. In 2022, Castryck and Decru [11] showed that the private key can be
recovered from the public key as long as the endomorphism ring of the starting curve is known. Furthermore,
Maino and Martindale [46] and Robert [53] extended the attack to include any random starting curve.
Throughout the history of SIKE, we have seen many upgrades to the use of isogenies for cryptography. For

instance, we have various investigations of foundational isogeny security [1, 16, 29, 34], public key compression
[6, 14, 50, 52], digital signatures [30, 66], hybrid key exchange [8, 15], and password-authenticated key exchange
[7, 60]. Aside from the hardware implementations we have previously described, there are also a plethora of
software implementations targeting microarchitectures including x86-64 [15, 18, 27], ARM A-processors [42, 58],
and ARM M-processors [3, 57]. Lastly, there have also been works on implementation security, including side-
channel attacks [37, 38] and fault attacks [31, 62]. Overall, these works have greatly strengthened our knowledge of
SIKE implementations through faster performance, better implementation protection, and even more applications.

2.3 SIKE

The supersingular isogeny key encapsulation (SIKE) [4] mechanism is a key encapsulation mechanism (KEM)
based on the hardness of computing isogenies between supersingular elliptic curves. SIKE is the only isogeny-
based candidate in the NIST PQC standardization process, coming with submitters from industry and academia.
As a KEM, SIKE allows two parties, Alice and Bob, to securely establish a shared secret. As is shown in Figure 1,
there are three phases. In this scenario Bob is initiating a secure session with Alice. Bob performs key generation,
by which he generates a secret key and a public key. The public key is then broadcast over a public channel to
Alice. Note that key generation only needs to be performed once by a party. Alice retrieves Bob’s public key and
proceeds by performing key encapsulation, where she generates a ciphertext and a locally stored shared secret.
Alice responds to Bob by sending her ciphertext over a public channel. Bob completes the key establishment by
performing key decapsulation where Bob uses his secret key and Alice’s ciphertext to generate a shared secret.
Assuming nothing went wrong, both parties have now separately generated the same shared secret which can be
used to generate a symmetric key for encrypted communications.
In the SIKE submission, there are eight parameter sets targeting various NIST security levels from 1 to 5.

NIST security level 1 is considered as hard to break as a brute force attack on AES128, NIST security level 2 is
considered as hard to break as inding a hash collision on SHA2-256, and so on. There are SIKE parameter sets at
NIST security levels 1, 2, 3, and 5. Within each security level there are uncompressed and compressed variants

ACM Trans. Embedd. Comput. Syst.

Cryptographic Engineering a Fast and Eficient SIKE in FPGA • 5

Keygen

Encap

Decap

Bob Alice

Public Key

Secret key

Ciphertext

Shared Secret Shared Secret

Fig. 1. SIKE key establishment operations

Table 1. Summary of Uncompressed SIKE Parameter Sets from Azarderakhsh et al. [4]

Security SIKE
Prime Form

As Strong Secret Key Public Key Ciphertext Shared Secret

Level Parameters As Size [B] Size [B] Size [B] Size [B]

NIST level 1 SIKEp434 �434 = 22163137 − 1 AES128 374 330 346 16

NIST level 2 SIKEp503 �503 = 22503159 − 1 SHA256 434 378 402 24

NIST level 3 SIKEp610 �610 = 23053192 − 1 AES192 524 462 486 24

NIST level 5 SIKEp751 �751 = 23723239 − 1 AES256 644 564 596 32

of SIKE. Compressed variants reduce the total communication overhead by slightly less than half, but at the
cost of many more complex computations. This work primarily focuses on accelerating the uncompressed SIKE
parameter sets. We summarize the uncompressed parameter sets of SIKE in Table 1. Each SIKE parameter set’s
name is based on the bitlength of its underlying prime, such as SIKEp434 for the 434-bit prime �434 = 22163137 − 1.
SIKE primes are of the special form � = 2��3�� − 1 for eiciency.

The two primary computations in the uncompressed version of SIKE include the large-degree isogeny as well
as the SHAKE256 hash function. The large-degree isogeny, � : � → �/⟨�⟩ involves irst computing a secret
kernel point by using the party’s secret key, � = � + �� , and then performing a large-degree isogeny over that
kernel by chaining together many small-degree isogenies. At the lowest level, kernel point computation and
large-degree isogeny computation can be broken down into arithmetic over a inite ield, F�2 , which can then
be further broken down into prime ield arithmetic F� . Thus, in Section 3, we discuss our hardware-specialized
method to accelerate these low-level computations. Next, in Section 4, we present our approach for optimizing
the SHAKE256 hash function for use in SIKE. Finally, we present our whole architecture in Section 5, whereby
we eiciently control our inite ield accelerator and SHAKE256 unit to carry out the whole of SIKE.

ACM Trans. Embedd. Comput. Syst.

6 • Elkhatib et al.

Table 2. Summary of F� field addition and multiplication latencies

SIKE Addition/ Multiplication
Parameters Subtraction Interleave Total

SIKEp434

2

10 26
SIKEp503 11 28
SIKEp610 13 32
SIKEp751 16 38

3 PROPOSED FIELD ARITHMETIC UNIT

In this section, we discuss our low-level ield arithmetic unit for the SIKE accelerator. At the lowest level, the
large-degree isogeny computation can be broken down to modular addition and modular multiplication over a F�
prime inite ield. Thus, we present our modular addition and modular multiplication units. Since these functions
are used thousands of times within SIKE, we have carefully optimized them for the Xilinx 7th Generation FPGAs.
Table 2 summarizes the total latency for ield addition and ield multiplication over the SIKE parameter sets.

3.1 Field Addition Unit

Our ield addition unit performs prime ield addition or subtraction and is specially optimized for the SIKE primes.
Given ield elements �, �, � ∈ F� , inite ield addition performs � +� = � , where all values are reduced modulo � . In
a simple addition scenario, if � > � , then a correction must take place to bring � back in the range [0, � − 1]. Since
� and � are already in this range, the reduction � = � − � can be performed. Likewise, for subtraction, � − � = � .
In a simple subtraction scenario, if � < 0, then a reduction must take place by adding � , � = � + � . Thus, inite
ield addition or subtraction both require at most an addition and subtraction.

Our inite ield addition unit closely follows that of [24] to perform a large precision addition/subtraction in a
single cycle with a high frequency. This methodology speciically targets the Manchester carry chain architectures
used in the Xilinx 7th Generation FPGAs. These carry chains are designed for fast addition. As is described
in [24], there are three SIKE-speciic optimizations in this adder/subtractor design including parallel preix
carry-look ahead simpliication, inal propagated carry simpliication, and simultaneous addition/subtraction.
With two pipeline stages, we can achieve a high frequency of around 300 MHz on the Xilinx Virtex-7 FPGA while
performing a ield addition or subtraction in only two cycles.

3.2 Proposed Field Multiplication Unit

The inite ieldmultiplication unit architecture hasmost likely the largest impact on the resulting SIKE performance.
Our multiplier design was speciically optimized for Xilinx 7th Generation FPGAs with the ield adder, Keccak,
and top-level designs in mind to achieve high throughput, high performance, and high frequency, all while using
FPGA resources eiciently.
Given ield elements �, �, � ∈ F� , inite ield multiplication performs � × � = � , where all values are reduced

modulo � . If using standard multiplication, the resulting value for � may be twice the bitlength of the modulus
� , requiring an expensive reduction operation to complete the ield multiplication. This paper focuses on a
new architecture using Montgomery multiplication [48] that includes the multiplication and reduction steps.
Montgomery reduction is very eicient in hardware as it converts expensive division operations to shift operations,
which are essentially free in hardware. Similar to existing multipliers, our proposed multiplier can support two
simultaneous multiplications in its pipelines.

ACM Trans. Embedd. Comput. Syst.

Cryptographic Engineering a Fast and Eficient SIKE in FPGA • 7

Algorithm 1: Simple explanation of the Montgomery multiplication hardware through an algorithm.

function systolic_Montgomery_multiplication

Parameters:� : digit, � : # of digits, � = � × � ,� = 2��3�� − 1 < 2�−2, � =� + 1, �� = ⌊��/�⌋, �� = � − �� ,

�� = � × �� , �� = � × ��
Input: � < 2�, � < 2�

Output: ��� = MulMont(�, �)

Temporary: � < 2�� , �,�, acc,Mult0,Mult1, Red0, Red1

Note: All out of bound registers are 0

Note: All registers are� bits except � which can be� to� + 2 bits

Note: Cycle indicates current cycle and � indicates current block

1 for cycle← 0 to 2� do

2 # Multiplication lanes

3 for i← 0 to ⌈�/2⌉ do

4 Mult0[cycle][�] = �[cycle − �]� [2�]

5 Mult1[cycle][�] = �[cycle − � − 1]� [2� + 1]

6 # Reduction lanes

7 for i← 0 to ⌈��/2⌉ do

8 Red0[cycle][�] = � [cycle − � − ��]�[2� + ��]

9 Red1[cycle][�] = � [cycle − � − �� − 1]�[2� + �� + 1]

10 � [cycle + 1] = 0

11 � [cycle] = 0

12 for i← 0 to �/2 do

13 acc[�] = Mult0[cycle] [�] +Mult1[cycle] [�] + Red0[cycle] [�] + Red1[cycle] [�] + � [� + 1] +� [�]

14 � [�] = acc[�] % 2�

15 � [�] = ⌊acc[�] / 2�⌋

16 � [cycle] = � [0]

17 ��� [cycle − �] = � [0]

18 return res

3.2.1 Low Level Multiplication Components. Similar to existing Montgomery multiplication approaches, we use
a systolic architecture. The high-level algorithm to explain our Montgomery multiplication operation is shown in
Algorithm 1. We will use a number of the variables listed in this algorithm in our description. For clarity, we
provide a brief description of our variables in Table 3. Most importantly, � is the digit size of the processing
element, � is the number of digits in the systolic architecture, � is the total length of the systolic architecture, and
� is the modulus.

In describing our Montgomery multiplication architecture, we will use a bottom-up approach. At the lowest
level, we have a multiplier lane unit as depicted in Figure 2a that acts as the processing element within our
systolic array. Each multiplier lane performs multiplication of � (� bits) with a large integer � (� ×� bits). This
is similar to the systolic multiplication lanes used in [21, 24].
At the next level up, we have an accumulator unit that is shown in Figure 2b. Each cell of the accumulator

receives the results of one to four multiplication results (each of size 2� bits) and accumulates the results in two
registers: sum � (� bits) and carry� (� to� + 2 bits). The accumulator is also a systolic architecture. The majority
of cells will take four multiplications, but the more signiicant cells in the array can take 3, 2, or 1 multipliers
where the carry register� is� + 2,� + 1, or� bits, respectively. This is again similar to the accumulators used in

ACM Trans. Embedd. Comput. Syst.

8 • Elkhatib et al.

×

×

(a) Multiplier lane that acts as

processing unit in our systolic

architecture

+

*
*

*

* *

*

+

*

*

* *

*

(b) Accumulator unit within our multiplier

Fig. 2. Base cells used in proposed systolic architecture

[21, 24], but we can point out some key diferences. First, the accumulator supports up to four multiplications
instead of two multiplications as the prior art does. Second, the carry � is propagated in place as opposed to
forward propagation. Third, the result (� bits) is retrieved from the irst sum � instead of retrieving from a
diferent sum � . Lastly, we include a star (*) on the registers in Figure 2b to indicate that they can send the
register’s value or a 0. This simply means that there is an additional multiplexer on the output to select between
these values.

3.2.2 Core SystolicMultiplication Architecture. Next, we describe the core functionality of our systolicmultiplication
architecture which is shown in Figure 3. As is shown in this igure, there are four lanes Mult0, Mult1, Red0,
and Red1 along with two accumulators Acc0 and Acc1. In the SIKE scenario, we are performing Montgomery
multiplication on inputs �, � < 2�.
First, we explain the purpose of each of the four lanes. As a systolic architecture, each processing element

performs multiplications or reductions over the inputs. For the �th cycle in a Montgomery multiplication, the
Mult0 lane receives ��� = �[�] sequentially and� = � [0], � [2], � [4], ... in parallel. Similarly, the Mult1 lane receives
��� = �[� − 1] sequentially and � = � [1], � [3], � [5], ... in parallel. There are ceil(�/2) processing elements in Mult0
lane and loor(�/2) processing elements in Mult1 lane. Note that Mult1 lane receives a given � input one cycle

ACM Trans. Embedd. Comput. Syst.

Cryptographic Engineering a Fast and Eficient SIKE in FPGA • 9

Table 3. Summary of multiplication-related variables

Variable Value Description

�� Number of 2-isogenies Alice performs (SIKE parameter)
�� Number of 3-isogenies Bob performs (SIKE parameter)
� 2��3�� − 1 Modulus which is the SIKE prime
� Digit size in the systolic architecture
� ⌈len(�) + 2/�⌉ Number of digits in the systolic architecture
� � × � Total number of bits in the multiplication part

� 2� Radix for Montgomery multiplication
�� ⌊��/�⌋ Number of digits that have all 1’s for modulus
�� � − �� Number of digits that do not have all 1’s for modulus
�� � × �� The number of bits eliminated from the reduction part
�� � × �� The number of bits used in the reduction part
� Array of operand � extended to � bits
� Array of operand � extended to � bits
� Array storing the quotient values for Montgomery multiplicaiton
� � + 1 Adjusted Montgomery modulus to save an adder
� Array stores the low� bits of the sum in the accumulator
� Array stores remaining bits of the sum in the accumulator

Mult0 Array stores Mult0’s lane results
Mult1 Array stores Mult1’s lane results
Red0 Array stores Red0’s lane results
Red1 Array stores Red1’s lane results

delayed from Mult0. Each cell in these two lanes operates for � cycles with each cycle processing one digit of
array �. Once the cells have processed all digits of �, the set of operands for the next F� multiplication can be
pushed to achieve a multiplication interleaving of � cycles.
On the reduction side, Red0 receives ��� = � sequentially and � = �[��], �[�� + 2], �[�� + 4],... in parallel.

Similarly Red1 receives ��� = � sequentially (but delayed 1 cycle from Red0) and� = �[��+1], �[��+3], �[��+5], ...
in parallel. The size of Red0 lane is ceil(��/2), while the size of Red1 lane is loor(��/2).
Next, we have the two accumulators Acc0 and Acc1. Both accumulators perform the same functionality, but

slightly ofset to achieve the multiplication interleaving. Each accumulator is ceil(�/2), or the same size as the
largest lane Mult0. Each processing element of the accumulator receives one multiplication result from each
processing element of the four lanes Mult0, Mult1, Red0, and Red1. Speciically, cell 0 (the least signiicant
processing element) of each accumulator receives the products from cell 0 of the lanes (Mult0, Mult1, Red0, Red1).
Likewise, cell 1 of each accumulator takes from cells 1 of the lanes. This tiling continues until the end where we
will have special cases for the inal cell. For instance, if �� is odd, then cell loor(��/2) where Red1 ends will take
3 multiplier results from 3 lanes (Mult0, Mult1, Red0) and cell ceil(��/2) where Red0 ends will take 2 multiplier
results from (Mult0, Mult1). If �� is even, then cell ��/2 where Red0 and Red1 end will take 2 multiplier results
from (Mult0, Mult1). These 2 multiplier result cells will continue until the very end. If � is odd, then cell loor(�/2)
will only have one multiplier result from lane Mult0, whereas if � is even, then there will be no cells with only
one multiplier result cell. Lastly, the last accumulator cell ceil(�/2) − 1 does not have a next cell, so it does not
have an � as input.

ACM Trans. Embedd. Comput. Syst.

10 • Elkhatib et al.

Mult0 lane
Mult1 lane

Red0 lane
Red1 lane

Delay

Accumulator 0Accumulator 1

res

Fig. 3. Proposed multiplication architecture

The accumulators can also be controlled. In each Montgomery multiplication, the irst time the accumulator
uses � and� , 0 is pushed instead of the value of the register. On cycle 0, inputs � and� of cell 0 are both 0. On the
following cycle, inputs � and � of cell 1 are both 0. This is efectively a resetting mechanism for the accumulator.
The values of operand � are pushed from cycles 0 to � − 1 while the values of the quotient � are pushed from
cycles �� to �� + � − 1. The accumulator takes 2� cycles. Whenever the product of an � × � cell or � × � cell of the
Montgomery multiplication algorithm is 0, a 0 is pushed for that respective lane in the accumulator.

The use of two accumulators also enables multiplication interleaving, whereby we can begin a multiplication
before the current multiplication has inished. Since each cell of the lanes are only used for � cycles while each
cell of the accumulator is used for 2� cycles (the total latency of the Montgomery multiplication), an additional
accumulator is utilized to interleave multiplications. Each cell of the lanes uses � cycles for the irst accumulator
and � cycles for the second accumulator to achieve an � cycle interleave with 2� cycles of multiplication. The

ACM Trans. Embedd. Comput. Syst.

Cryptographic Engineering a Fast and Eficient SIKE in FPGA • 11

Mult0
Mult0
Mult0
Mult1
Mult1
Mult1
Red0
Red0
Red0
Red1
Red1
Red1

Fig. 4. Multiplication timing waveform for �� = 3

result of the accumulator is the quotient � of the Montgomery multiplication. The quotient � is pushed in the
reduction lanes with a delay such that � [0] (the irst quotient) aligns with �[��] in the irst cells of Red0 and Mul0,
respectively. In the second � cycles of the accumulator, the accumulator’s result is the output of the Montgomery
multiplication. Coming back to the Montgomery multiplication, if we accumulate in 2� digits the following:
�[� − 1 : 0] × � [� − 1 : 0] + �[� − 1 : 0] × � [� − 1 : 0], then we will get � in the irst � digits and the Montgomery
multiplication result in the second � digits.

To further illustrate the functionality of this multiplication, we have included the waveform shown in Figure 4
to show the order of operations in our lanes. This igure shows the irst 4 digits of operand � and quotient � for
the irst 3 cells in each lane assuming �� = 3 as a function of cycles. The subscript indicates the cell number. As is
shown, in cycle 0 we compute �0�0 in Mult0 cell 0 and in cycle 1 we compute �1�0 in Mult0 cell 1. Also in cycle 1,
we compute �0�1 in Mult 1 cell 0. After �� = 3 cycles are passed, Red0 cell 0 performs �0�3 which aligns with
�3�0 performed by Mult0 cell 0.

To summarize the functionality of the multiplier as is shown in Figure 4, we note that the arrows show the
sum � path inside the accumulator. This indicates that all values along the arrow are added together in the
accumulator. Cells with the same number are added together. Going horizontally along the same cell shows the
carry � path in the accumulator. For example, the carry of �0�0 is added to �1�0 in cell 0.

3.2.3 Multiplication Wrapper. This multiplier can perform two interleaved multiplications. As a result, we have
implemented a higher level wrapper to handle the inputs and outputs. Notably, we have two sets of �-bit registers
to handle two sets of input operands � and �. This wrapper pushes operand � into the multiplier� bits at a time
using a shift register while operand � is pushed in parallel as soon as it is used to achieve the �-cycle interleaving.
The results of our multiplications are retrieved� bits at a time using a separate �-bit shift register from the result
of the accumulator.

For the Xilinx 7 series FPGAs, we chose a digit size� = 48. Thus, a 48×48 unsigned multiplication is performed
among multiple DSPs. The DSP48E on these FPGA boards can perform up to a 24 × 16 unsigned multiplication.
Therefore, to perform a 48 × 48 unsigned multiplication, we tiled 6 DSP48E units in the orientation shown in
Figure 5. One operand’s digit is split into 2 chunks of 24 bits while the other operand is split into 3 chunks of 16
bits. Every combination of these partial products are then pushed to one DSP to give a total of 6 partial results.
The partial results are added together and correctly aligned to complete the 48 × 48 unsigned multiplication.

In order to achieve a high operating frequency, we have introduced six pipelines into our 48 × 48 unsigned
multiplication. There is one pipeline for loading the operands into the DSP multiplier. One pipeline for the DSP

ACM Trans. Embedd. Comput. Syst.

12 • Elkhatib et al.

×

+

24 bits 16 bits

48 bits

Fig. 5. DSP tiling to achieve 48 × 48 multiplications

Table 4. Area and timing results for the proposed standalone multiplier on Virtex-7 FPGA

SIKE Area
Freq (MHz)

Mult Latency
Parameters #FFs #LUTs #DSPs #Slices Interleave Total

SIKEp434 5,929 6,098 84 2,257 282.5 10 26
SIKEp503 6,570 6,585 98 2,478 290.7 11 28
SIKEp610 7,964 7,915 120 2,881 299.4 13 32
SIKEp751 9,758 9,711 146 3,559 301.2 16 38

multiplication. One pipeline for the 6 partial product addition. Two pipelines for the accumulator. Finally one last
pipeline to compute the result. These six pipelines increase the total multiplication cost to 2� + 6 cycles while
keeping the interleave cost at � cycles.

3.2.4 Multiplication Area and Timing Results. We summarize the synthesized area and timing results of these
multipliers on a Xilinx Virtex-7 FPGA in Table 4. These results are post-place and result in a similar fashion as
described in Section 6. As we can see, the total area ranges from 2,257 slices and 84 DSPs for a 434-bit SIKE prime
up to 3,559 slices and 146 slices for a 751-bit prime. Interestingly, the frequency appears to improve as the prime
gets larger. This is attributed to the � delay which ranges from 0 delay cycles for SIKEp434 up to 6 delay cycles
for SIKEp751, which is shown in Figure 3. In terms of latency, we reiterate that this multiplier can accept new
multiplication operations based on the interleave latency and the multiplication result will be ready after the
total latency. For instance, SIKEp434 will be able to perform new multiplications every 10 cycles and the result
will be ready after 26 cycles.

4 SIKE-OPTIMIZED KECCAK

SIKE utilizes the SHAKE256 hash function which is built on top of the Keccak sponge function [10], as deined for
SHA3. Unlike lattice candidates in the NIST PQC standardization process, hashing with SHAKE256 only requires
a small proportion of SIKE’s total execution time. For instance, SIKE’s total execution time for high-performance

ACM Trans. Embedd. Comput. Syst.

Cryptographic Engineering a Fast and Eficient SIKE in FPGA • 13

PreTheta

state ThetaRhoPi

ChiIota tmp

Fig. 6. Proposed Keccak accelerator architecture

hardware is a few million cycles, for which SHAKE256 may require only a few thousand cycles. However, past
works in the literature have targeted SHAKE256 performance/area tradeofs that are not properly aligned. This
paper seeks a better trade-of between Keccak performance and area for SIKE.

For high-performance implementations, most implementations have typically opted to use the Keccak’s team
high-performance Keccak implementation. This implementation performs a Keccak round function in 1 cycle
and a Keccak permutation function in 24 cycles. As is reported in [36], the total size of the Keccak block was
found to be 3,747 LUTs and 2,703 lip-lops on a Xilinx Virtex-7 FPGA. For around 1,000 total cycles of SHAKE256
in SIKE, a few thousand LUTs and lip-lops are required.

On the other hand, some implementations have opted for a minimal proile Keccak, such as [21, 24]. In these
cases, a tiny 32-bit RISC-V processor performs the Keccak operations. This RISC-V processor was the primary
controller, so almost no additional area was required to support Keccak. However, these implementations require
a signiicant number of cycles, as high as 60,000 cycles per permutation, to operate. Even at a million cycles, the
Keccak hashing is adding noticeable latency overhead.

4.1 Keccak Description

Keccak is a family of hash functions that utilize a sponge construction. Notably, there is a large internal state
where data is absorbed into and then the result is eventually squeezed out. All variants of SHA3 have an internal
state of size 1,600 bits. SHAKE256 has a rate of 1,088 bits, which means that data is absorbed or squeezed out in
chunks of 1,088 bits. 1,088 bits of the hash input are absorbed by XORing with the 1,088 least signiicant bits of
the internal state. A squeeze operation simply retrieves the requested number of output bits (up to the rate) from
least signiicance irst. After each absorb and squeeze operation, a Keccak permutation function is performed on
the entire state.
In SHA3-based hash functions, a Keccak permutation function consists of 24 rounds of the Keccak round

function. Each Keccak round function consists of the Theta, Rho, Pi, Chi, and Iota functions. In general, these are
based on simple bit manipulation operations, which are simple to implement in hardware. The Theta function
computes the parity of various columns in the Keccak state. The Rho function computes a bitwise rotate of the
Keccak state. The Pi function performs a state permutation. The Chi function performs a bitwise combination
along the state. Lastly, the Iota function XORs a Keccak round constant into a word of the Keccak state.

4.2 Proposed Keccak Architecture

In this work, we have designed our own Keccak accelerator to achieve a balance between performance and area
in a high-performance SIKE implementation. As is described above, the majority of operations in Keccak are basic
logical operations. A round function is complete when the Theta, Rho, Pi, Chi, and Iota permutations are applied
on the state to obtain a new state. One caveat to implementing the round function is that the Theta function

ACM Trans. Embedd. Comput. Syst.

14 • Elkhatib et al.

Table 5. Summary of SHAKE256 execution time in SIKE parameter sets. Total SIKE encapsulation and decapsulation latency

(E + D) is for our one multiplier architecture.

SIKE # Total Cycles % of SIKE # #
Parameters Permutations [cc×1000] E+D cycles Slices BRAMs

Hardware SHAKE256

SIKEp434 14 21 1.26% 177 1
SIKEp503 16 24 1.15% 177 1
SIKEp610 20 30 0.91% 177 1
SIKEp751 24 36 0.79% 177 1

Software SHAKE256

SIKEp434 14 840 51.10% 0 ~1.7
SIKEp503 16 960 46.47% 0 ~1.7
SIKEp610 20 1,200 36.64% 0 ~1.7
SIKEp751 24 1,440 31.92% 0 ~1.7

requires some computations on a diferent Keccak plane from the other operations. As is speciied by the Keccak
team [10], this operation is known as Pretheta and is typically performed separately.
Our Keccak accelerator architecture is presented in Figure 6. The state size for SHAKE256 is 1,600 bits. We

utilize the łstatež and łtmpž blocks as registers to hold the entire state. These are stored in a 64 x 64 simple dual
port block RAM. 25 addresses in the irst 32 addresses are utilized by the state register while 25 addresses in the
last 32 addresses are utilized by the temporary register.
The Keccak accelerator starts with an initial state stored in the łstatež block. First, a 320-bit PreTheta is

computed in 25 cycles and stored in the łPreThetaž block. The PreTheta value is a parity value that is reused in
the Theta function. Next, the Theta, Rho, and Pi function are applied to the state (łThetaRhoPiž) and stored in
the temporary register, which requires 25 cycles. The round function is then completed after the Chi and Iota
function (łChiIotaž) are applied to the temporary register, requiring 35 cycles. The ChiIota results are stored in
the łstatež block while the łPreThetaž value is simultaneously computed for the next round, which also requires
35 cycles. Overall, we have a 25 cycle initialization time followed by 24 rounds each requiring 60 cycles. There is
additionally a 35 cycle overhead, most of which is coming from the RISC-V controller covered in Section 5, so
this totals to about 1,500 cycles per permutation.
Based on the SIKE Round 3 parameter sets, we can quantify the total number of cycles occupied from the

SHAKE256 hashing. This is summarized in Table 5, where we show how many total permutations are required
for each NIST security level. Furthermore, we also calculate the percentage of time we are hashing for each
security level based on our one multiplier architecture and results. There are a total of 14 permutations in the
smallest parameter set and 24 permutations in the largest parameter set. However, because the large-degree
isogeny computations scale slower than the SHAKE computations, we see that the percentage of total SIKE
encapsulation and decapsulation latency drops from 1.26% for SIKEp434 to 0.79% for SIKEp751. Opting for a faster
SHAKE256 accelerator would have cost signiicantly more LUTs and lip-lops for only a small improvement in
SIKE performance.

To further express the need for a hardware SHAKE256 accelerator, we include the % of SIKE computations when
a bare-bones RISC-V software processor performs the hash operations. To fully perform the Keccak operations
across the 1,600 bit state, we require about 1.7 BRAMs. For SIKEp434, the hashing takes just above 50% of the total
SIKE encapsulation + decapsulation latency. This is lower for larger parameter sets as the arithmetic becomes
much more expensive, costing 32% of the total SIKE operation time for the NIST Level 5 SIKEp751. Even though

ACM Trans. Embedd. Comput. Syst.

Cryptographic Engineering a Fast and Eficient SIKE in FPGA • 15

Isogeny Accelerator

Processor chip

Code
RAM CPU

Buffer

Subroutine
Memory

Instruction Controller

RAM ALUAPB
Bridge

Subroutine
ControllerBuffer

Keccak
AcceleratorSRAM

mode
di_valid
di_data
di_ready

do_valid
do_data

do_ready

IO
status

Fig. 7. High-level view of our SIKE design

the hardware accelerator is 40 times faster than the RISC-V implementation, we found that the area cost is similar
between the two. The 177 slices needed for SHAKE256 are roughly equivalent to a BRAM, which is now needed
by the software processor for the large internal state. Thus, the small SHAKE256 hardware module is extremely
area-time eicient for the SIKE application.

5 A RISC-V TOP-LEVEL CONTROLLER

In this section, we discuss the top-level components of our SIKE design which is depicted in Figure 7. The goal
of the top-level design is to eiciently control our isogeny accelerator and Keccak unit to facilitate the SIKE
operation. Similar to [21, 24], we utilize a RISC-V processor as our top-level controller. Our primary diference is
that all isogeny functions and subroutines have been moved into the hardware. These isogeny subroutines and
functions cover a core set of basic elliptic curve group operations such as a small degree isogeny, point doubling,
or point addition. Higher level algorithms and control are performed by the software. The RISC-V processor
performs the following:

• Memory management: Simplifying loading and unloading data between the memories of the diferent
hardware accelerators (Keccak accelerator and isogeny accelerator) as well as the IO.
• Programlow (transitioning between the diferent isogeny subroutines, looping through isogeny subroutines).
• Loading special cases for some isogeny subroutines:
– Copying data between addresses in the isogeny RAM
– Selecting pivot points in the large-degree isogeny
– Selecting between two points in the three-point ladder
– Selecting multiplication value in the F� inversion sliding window method
• Modular correction to ensure the arithmetic result is between 0 and�, which is required at the end of each
isogeny operation.
• Perform the comparison needed for key decapsulation.

The highlight of this RISC-V controller is that it greatly reduces the time needed to implement control logic at
the cost of a slight increase in area compared to a pure hardware implementation.

ACM Trans. Embedd. Comput. Syst.

16 • Elkhatib et al.

RAM1instr RAM2 instr
add

ADD1 ADD2 write add

instr
mult

stage 1
counter

stage 2
counter

stage 3
counter

write mult
stage 1
counter

stage 2
counter

stage 3
counter

Multipliers

Fig. 8. Field arithmetic unit pipeline

5.1 Isogeny Accelerator

The isogeny accelerator is the primary computational workhorse in our SIKE architecture. There are two
input/output bufers for the isogeny accelerator. The irst is to receive subroutines from the master APB bus.
Essentially, upon receiving a speciic subroutine, the subroutine controller will retrieve the instructions from
the subroutine memory and execute the instructions one by one. These subroutines represent a block of code
that is executed through a series of F� addition and F� multiplication operations. Although SIKE performs F�2

operations such as F�2 addition, multiplication, squaring, or inversion, these can be broken down into F� addition,
subtraction, and multiplication.

The isogeny accelerator subroutines were created by breaking down each isogeny operation into a combination
of F� addition, F� subtraction, and F� multiplication and then using the scheduling algorithm from Farzam et al.
[25]. This is a greedy scheduling algorithm that schedules the isogeny formulas using contraint programming to
ensure a high throughput with various computing resources. A simple custom assembly language was created
that had a strong correspondence to to the isogeny accelerator machine code instructions. The isogeny accelerator
supports 3 assembly instructions:

(1) FPADD OUTPUT INPUT1 INPUT2 - Performs OUTPUT = INPUT1 + INPUT2 mod�
(2) FPSUB OUTPUT INPUT1 INPUT2 - Performs OUTPUT = INPUT1 - INPUT2 mod�
(3) FPMUL OUTPUT INPUT1 INPUT2 - Performs OUTPUT = INPUT1 × INPUT2 mod�

Likewise, the subroutine memory also holds the complex subroutines needed for large-degree isogenies. Our
implementation uses the fastest known isogeny and scalar point multiplication formulas, which can be found
in the SIKE submission [4]. These same formulas are found in the majority of the state-of-the-art hardware
implementations. We summarize our formulas in Table 6 for our latencies with a one multiplier SIKEp434
implementation. Notably, the large-degree isogeny is performed by chaining together many small isogeny
computations (GET2_ISO, GET3_ISO, GET4_ISO), evaluations (EVAL2_ISO, EVAL3_ISO, EVAL4_ISO), and scalar
point multiplications (xDBL, xTPL, xQUAD), which accounts for about 80% of SIKE operations. The three-point
diferential ladder as proposed by Faz-Hernández et al. [27] is also used to generate a kernel point via an elliptic
curve scalar point multiplication by using diferential point arithmetic (xDBLADD) similar to the Montgomery
powering ladder [49]. Lastly, the F� inversion (INV) is composed of many F� addition andmultiplication operations
in a sliding window fashion.
The isogeny accelerator’s ALU contains an F� addition unit and one or many F� multiplication units. More

multiplication units can take advantage of parallelism in some subroutines, resulting in a speedup at the cost of

ACM Trans. Embedd. Comput. Syst.

Cryptographic Engineering a Fast and Eficient SIKE in FPGA • 17

Table 6. Summary of isogeny accelerator subroutines. Latency for SIKEp434 implementation with 1 multiplier.

SIKE Latency
Algorithm Description

Subroutine [cc]

xDBL 206 Large-degree isogeny Double a point, � = 2�
xTPL 401 Large-degree isogeny Triple a point, � = 3�

xQUAD 414 Large-degree isogeny Quadruple a point, � = 4�
GET2_ISO 67 Large-degree isogeny Compute a 2-isogeny, �2 : �/⟨�2⟩

GET3_ISO 188 Large-degree isogeny Compute a 3-isogeny, �3 : �/⟨�3⟩

GET4_ISO 108 Large-degree isogeny Compute a 4-isogeny, �4 : �/⟨�4⟩

EVAL2_ISO 174 Large-degree isogeny Push a point through a 2-isogeny, � ′ = �2 (�)

EVAL3_ISO 235 Large-degree isogeny Push a point through a 3-isogeny, � ′ = �3 (�)

EVAL4_ISO 273 Large-degree isogeny Push a point through a 4-isogeny, � ′ = �4 (�)

xDBLADD 349 Kernel generation Double and add a point, � = 2� +�

INV 14,964
Large-degree isogeny

Perform an F� inversion, �−1
Coeient Recovery

more resources. Figure 8 illustrates our pipelines for ield addition and ield multiplication. Field addition is a
simple linear process by which there are 2 cycles to fetch the instruction operands and 2 cycles to perform the
arithmetic. The ield multiplication pipeline has a three stage pipeline for each supported multiplier. The stage
1 counter is � cycles which indicates the number of cycles before a new multiplication can be interleaved. The
stage 2 counter is an additional � cycles to complete the multiplication. Lastly, the stage 3 counter is 8 cycles to
keep track of the 6 cycle pipeline from the multiplier as well as 2 cycles from fetching the instruction operands.
Both operations require 1 cycle to store the result during which fetching new instructions is halted.

5.2 RISC-V SIKE Controller

The RISC-V processor acts as the top-level brains of our SIKE accelerator. Inside the RISC-V SIKE accelerator, we
have connected the CPU’s data bus and instruction bus using VexRiscV’s native interface1. Speciically, the code
RAM block is connected through both the data bus and the instruction bus while the SRAM and APB bridges are
only connected through the data bus. The code RAM is designed to hold the text and data sections of the codes,
which totals to 8 KB for all security levels. The SRAM holds the Keccak state and temporary registers as well as
the BSS, heap (unused), and stack sections of the code. The SRAM is a 4 KB simple dual port RAM at all security
level. This SRAM is actually implemented as two simple dual port RAMs of size 512 × 32. From the perspective of
the CPU, it sees it as a single port RAM of size 1024 × 32. In a two-word aligned address, the irst word maps
to the irst RAM and the second word maps to the second RAM. However, from the perspective of the Keccak
accelerator, it sees this as a dual port RAM of size 512 × 64.
The APB bridge is used to connect the RISC-V processor to the isogeny accelerator, Keccak accelerator, and

IO. For the isogeny accelerator, it controls both data and instruction interfaces of the isogeny accelerator. The
data interface is implemented as a shift-register bufer to transfer data to and from the isogeny accelerator RAM.
The instruction interface is used to send subroutines to the isogeny accelerator. This is bufered to increase
throughput. To reduce the amount of instructions that need to be stored in the subroutine memory, we also
send special addresses that are used in copying data between addresses in the RAM, selecting pivot points in
the large-degree isogeny, selecting between two points in the three-point ladder, and multiplication in the F�
inversion sliding window method.

1https://github.com/SpinalHDL/VexRiscv

ACM Trans. Embedd. Comput. Syst.

18 • Elkhatib et al.

Table 7. Summary of BRAM usage across our implementations

SIKE Isogeny Accelerator Controller
Parameters #BRAM #BRAM

SIKEp434 12.5 5
SIKEp503 14 5
SIKEp610 17 5
SIKEp751 21 5

The APB bridge’s connection to the Keccak accelerator is only used to control the instruction interface of the
Keccak accelerator as the data interface is handled by the SRAM block.
The APB bridge’s connection to the IO is used for top-level SIKE control. Here, each signal indicates parts of

an operation. The mode indicates whether to load constants, perform keygen, perform key encapsulation, or
perform key decapsulation. The status indicates if the SIKE accelerator is ready to receive any data after the mode
is changed. The di and do signals are used as a bus to exchange data, byte by byte. In the load constant mode,
constants are loaded through di. In the keygen mode, we load Bob’s secret key sk� through di and return the
resulting public key through do. In key encapsulation mode, we load the Alice’s secret message msg� followed
by Bob’s public key through di and get the resulting ciphertext followed by the shared secret through do. In key
decapsulation mode, we load Bob’s secret key followed by Alice’s ciphertext through di and get the resulting
shared secret through do.

5.3 Total BRAM Usage

Across each parameter set, we use ive Xilinx 7th generation BRAMs (36k) for our top-level control. One BRAM
is used for the CPU register ile. Two BRAMs are used for the code RAM. One BRAM is used for SRAM. One
last BRAM is used for the isogeny subroutine memory. Then, our remaining BRAMs are used in the isogeny
accelerator’s RAM to hold intermediate values as a register ile in the SIKE computations. This total BRAM sizes
are summarized in Table 7.

6 FPGA IMPLEMENTATION RESULTS

6.1 Summary of Results

In this section, we present and discuss the results of our FPGA implementation. In general, our code is written
in SpinalHDL, a high-level HDL that can generate a Verilog implementation. The only exceptions are the
highly optimized adder, multiplier, and Keccak blocks which are written in SystemVerilog. The architecture is
implemented in Xilinx Virtex-7 xc7vx690tfg1157-3 as well as the Xilinx Artix-7 xc7a200tfg 1156-3 as these are
used by the majority of SIKE implementations found in the literature. All results obtained are post-place and
route.
Tables 8 and 9 summarize the timing and area results of our architecture, respectively. Speciically, we

synthesized our designs on the Virtex-7 and Artix-7 FPGA platforms. Some other SIKE implementations include
Xilinx UltraScale+ results, but our design was specially crafted to run on the Virtex-7/Artix-7 FPGA’s carry chain
and DSP units. Each implementation targets and supports only one parameter set. For instance, the NIST security
level 1 implementations only support the SIKEp434 parameter set and the NIST security level 5 implementations
only support the SIKEp751 parameter set. The multiplier and adder could be made generic to support all smaller
parameter sets, but this would require additional control logic as well as arithmetic logic, resulting in extra area
overhead as well as a slowdown. Within each security level, we also feature two implementations, targeting one
or two replicated multipliers. More multipliers enable additional parallelism to achieve a speedup. An additional

ACM Trans. Embedd. Comput. Syst.

Cryptographic Engineering a Fast and Eficient SIKE in FPGA • 19

Table 8. Timing results of SIKE accelerator in selected FPGA devices

Security # Freq. #CC (×106) Total time
Level Multipliers [MHz] Keygen Encap Decap E+D E+D [ms]

Virtex-7 FPGA

1
1 275.5 0.502 0.796 0.869 1.664 6.04
2 274.0 0.367 0.611 0.654 1.264 4.62

2
1 283.3 0.636 0.997 1.092 2.089 7.37
2 273.2 0.459 0.763 0.815 1.578 5.78

3
1 284.1 0.921 1.627 1.677 3.304 11.63
2 279.3 0.618 1.167 1.171 2.338 8.37

5
1 284.1 1.375 2.175 2.371 4.546 16.00
2 279.3 0.906 1.483 1.595 3.078 11.02

Artix-7 FPGA

1
1 189.8 0.502 0.796 0.869 1.664 8.77
2 186.6 0.367 0.611 0.654 1.264 6.78

2
1 186.9 0.636 0.997 1.092 2.089 11.18
2 185.5 0.459 0.763 0.815 1.578 8.51

3
1 180.2 0.921 1.627 1.677 3.304 18.34
2 185.5 0.618 1.167 1.171 2.338 12.60

5
1 186.6 1.375 2.175 2.371 4.546 24.37
2 178.6 0.906 1.483 1.595 3.078 17.24

Table 9. Area results of SIKE accelerator on selected FPGA devices

Security # Freq. Area Total time
Level Multipliers [MHz] #FFs #LUTs #DSPs #BRAMs #Slices E+D [ms]

Virtex-7 FPGA

1
1 275.5 10,700 10,915 84

17.5
3,857 6.04

2 274.0 17,047 17,371 168 5,978 4.62

2
1 283.3 12,430 11,584 98

19.0
4,152 7.37

2 273.2 18,505 18,616 196 6,541 5.78

3
1 284.1 15,219 13,790 120

22.0
4,962 11.63

2 279.3 21,638 22,382 240 8,000 8.37

5
1 284.1 17,765 16,325 146

26.0
5,730 16.00

2 279.3 27,015 26,837 292 9,556 11.02

Artix-7 FPGA

1
1 189.8 10,755 10,412 84

17.5
3,721 8.77

2 186.6 16,743 16,703 168 5,964 6.78

2
1 186.9 11,812 11,030 98

19.0
4,011 11.18

2 185.5 18,374 18,040 196 6,499 8.51

3
1 180.2 14,489 12,972 120

22.0
4,754 18.34

2 185.5 22,241 21,599 240 7,669 12.60

5
1 186.6 16,829 15,472 146

26.0
5,568 24.37

2 178.6 26,383 25,776 292 9,340 17.24

ACM Trans. Embedd. Comput. Syst.

20 • Elkhatib et al.

Table 10. Area breakdown of SIKEp434 with 1 multiplier on Virtex-7 FPGA

Design Unit #FFs #LUTs #DSPs #BRAMs #Slices

Keccak 597 500 0 0.0 177
RISC-V CPU 614 982 0 1.0 347
CPU Code RAM - - - 2.0 -
CPU/Keccak Shared RAM - - - 1.0 -
- Isogeny Accelerator 9,324 9,240 84 13.5 3,273
- Isogeny RAM 72 1,089 0 12.5 384
- Isogeny Subroutine Controller 137 47 0 1.0 41
- Isogeny Instruction Controller 139 455 0 0.0 269
- Isogeny Multiplier 5,821 5,973 84 0.0 2,373
- Isogeny Adder 2,663 1,291 0 0.0 902
Total 10,700 10,915 84 17.5 3,857

replicated multiplier speeds up the execution time by about 25% for the smallest parameter set SIKEp434 and by
about 33% for the largest parameter set SIKEp751. However, the additional replicated multiplier also increases the
total area by about 33% more slices and 100% more DSPs.
Table 10 provides an area breakdown for our SIKEp434 implementation with one multiplier on the Virtex-7

FPGA device. As we can see, the isogeny accelerator accounts for approximately 85% of the total slices. This is to
be expected as a high-speed 434-bit modular addition or multiplication operation requires a signiicant usage of
resources. The multiplier is the only block that requires DSPs and uses a total of 84 DSPs to eiciently perform
the multiplications needed for Montgomery multiplication and reduction. Note that in the isogeny accelerator
that some subcomponents share slices. As we have mentioned in the previous section, this design attempts to
minimize large BRAM blocks and keeps to only 17.5 BRAMs.

6.2 Comparison to State-of-the-Art

Table 11 shows a detailed area and timing comparison among state-of-the-art SIKE implementations. Unfortunately,
many of these implementation papers target various optimization metrics, making a fair comparison diicult.
Nevertheless, this work’s implementation shines as the fastest known implementation for SIKEp434, SIKEp503,
and SIKEp610. This FPGA with 2 multipliers is about 2 milliseconds faster than the next best work for SIKEp434
and just under 4 milliseconds faster than the next best work for SIKEp610. For SIKEp751, only the work of Tian
et al. [64] outperforms this work by 1.7 ms, however, at the cost of about three times as many resources.
This work’s implementations, both the 1 and 2 multiplier variants, achieve the highest area-time product

compared to the state-of-the-art. In order to equalize the impact of the various FPGA resources to area, we have
used the equivalence 1 DSP = 100 Slices and 1 BRAM = 200 Slices. With this conversion, we can add up the
equivalent number of slices for each of these implementations and multiply them by the SIKE execution time
in milliseconds to get an area-time product. This area-time product is listed in the inal column of Table 11. As
we can see, the 1 multiplier implementation has a slightly better area-time product, but both implementations
outperform all other implementations by at least 30%.
Across SIKE implementations, our implementations generally achieve the second highest frequency of 275

MHz, only losing out to Elkhatib et al. [24] by about 25 MHz. We attribute this high frequency as a result of using
an incredibly optimized addition and multiplication unit. Most other implementations chose to use an addition
unit with a larger critical path, slowing down their entire implementation.

ACM Trans. Embedd. Comput. Syst.

Cryptographic Engineering a Fast and Eficient SIKE in FPGA • 21

Table 11. Comparison of area and timing results in Virtex-7 FPGA

Reference
Time

Area E+D AT
#FFs #LUTs #Slices #DSPs #BRAMs Freq [MHz] [�� × 106] [ms] (×10−3)

SIKEp434 (NIST Level 1)

Koziel et al. [36] 23,819 21,059 8,121 240 26.5 168.4 1.91 11.3 422.9
Elkhatib et al. [22] 18,271 12,818 5,527 195 32.0 249.6 1.99 8 251.4

Massolino et al. [47] (S) 7,132 10,937 3,415 57 21.0 152.2 7.67 50.4 671.1
Massolino et al. [47] (F) 13,657 21,210 7,408 162 38.0 142.2 3.46 24.3 758.4

Elkhatib et al. [21] - - 4,611 78 34.5 243.6 4.68 19.2 370.8
Farzam et al. [26] 31,869 25,317 9,855 264 45.5 198.1 1.41 7.1 323.4
Elkhatib et al. [24] 14,666 7,604 3,942 78 29 303 4.39 14.5 254.4

Ni et al. [51] 30,327 29,468 9,578 108 23 251 1.65 6.6 164.1
This work (1 mult) 10,700 10,915 3,857 84 17.5 275.5 1.66 6.0 95.2

This work (2 mults) 17,047 17,371 5,978 168 17.5 274.0 1.26 4.6 121.4

SIKEp503 (NIST Level 2)

Koziel et al. [36] 27,609 23,746 8,907 264 33.5 165.9 2.35 14.1 592.3
Elkhatib et al. [22] 19,935 13,963 6,163 225 34.0 243.7 2.65 10.9 386.5

Massolino et al. [47] (S) 7,132 10,937 3,415 57 21.0 152.2 9.06 59.5 792.2
Massolino et al. [47] (F) 13,657 21,210 7,408 162 38.0 142.2 4.08 28.7 895.7

Elkhatib et al. [21] - - 4,611 78 34.5 243.6 6.11 25.1 484.7
Farzam et al. [26] 36,731 27,148 10,707 312 47 197.9 1.72 8.68 445.3
Elkhatib et al. [24] 14,666 7,604 3,942 78 29 303 5.81 19.2 336.8

Ni et al. [51] 36,200 34,255 12,478 192 25 227 1.92 8.45 309.9
This work (1 mult) 12,430 11,584 4,152 98 19 273.2 2.09 7.37 130.8

This work (2 mults) 18,505 18,616 6,541 196 19 284.1 1.578 5.78 173.1

SIKEp610 (NIST Level 3)

Koziel et al. [36] 33,297 28,217 10,675 312 39.5 165.8 3.59 21.6 1075.1
Elkhatib et al. [22] 26,757 16,226 7,461 270 38.5 239 4.26 17.8 750.5

Massolino et al. [47] (S) 7,132 10,937 3,415 57 21.0 152.2 16.3 107.2 1427.4
Massolino et al. [47] (F) 13,657 21,210 7,408 162 38.0 142.2 7.37 51.8 1616.6

Elkhatib et al. [21] - - 4,611 78 34.5 243.6 9.43 38.7 747.3
Farzam et al. [26] 44,753 30,562 12,848 384 50 183.4 2.40 13.1 801.1
Elkhatib et al. [24] 14,666 7,604 3,942 78 29 303 9.04 29.8 522.8

Ni et al. [51] 37,331 40,769 13,566 243 27.5 206 2.53 12.3 532.5
This work (1 mult) 15,219 13,790 4,962 120 22 284.1 3.30 11.6 248.4

This work (2 mults) 21,638 22,382 8,000 240 22 279.3 2.34 8.37 304.7

SIKEp751 (NIST Level 5)

Koziel et al. [36] 50,079 39,953 15,834 512 43.5 163.1 4.55 27.8 2105.4
Farzam et al. [25]** - - 15,336 512 45.0 160.9 3.88 24.1 1820.4
Elkhatib et al. [22] 39,339 20,207 11,136 452 41.5 232.7 5.24 22.5 1454.3

Massolino et al. [47] (S) 7,132 10,937 3,415 57 21.0 152.2 27.34 179.6 2391.4
Massolino et al. [47] (F) 13,657 21,210 7,408 162 38.0 142.2 8.65 60.8 1897.4

Tian et al. [64]* 68,695 90,940 27,286 834 73.5 155.8 1.44 9.3 1166.1
Elkhatib et al. [21] - - 4,611 78 34.5 243.6 13.40 55.0 1062.1
Farzam et al. [26] 54,121 37,502 15,246 456 54 182.3 3.31 18.2 1301.1
Elkhatib et al. [24] 14,666 7,604 3,942 78 29 303 12.94 42.7 749.0

Ni et al. [51] 50,941 44,604 16,834 432 33 178 2.98 16.7 1115.5
This work (1 mult) 17,765 16,325 5,730 146 26 284.1 4.55 16.0 408.5

This work (2 mults) 27,015 26,837 9,556 292 26 279.3 3.08 11.0 484.4

∗ SIDH
∗∗ SIKE Round 1 Parameters

When considering memory eiciency, our implementation notably uses the fewest number of BRAM units for
SIKEp434 and SIKEp503. Only the small implementation of Massolino et al. [47] requires fewer BRAM blocks
for SIKEp610 and SIKEp751. This shows that our implementation minimizes the impact of memory storage in
multiple places, including program ROM, isogeny accelerator RAM, and isogeny accelerator instructions.

7 CONCLUSION

In this paper, we designed and implemented a fast and eicient FPGA implementation of SIKE. Although SIKE is
slower than most of its competitors, SIKE’s speed continues to improve and SIKE shines with its extremely small
public key sizes. Our hardware implementation achieves new speed records across most of SIKE’s parameter
sets while still maintaining an eicient area proile. With new area-time product records, eicient deployment of
SIKE becomes more feasible. Our future work will involve exploring eicient implementation of compressed
SIKE, for which no hardware implementation yet exists.

ACM Trans. Embedd. Comput. Syst.

22 • Elkhatib et al.

At the time of completing this work, SIKE was shown to be secure as detailed in Sections 1 and 2. However,
recent attacks [11, 46, 53] have shown that SIKE is not secure and should not be used as a cryptosystem in the
current state. This work might be beneicial for implementation of signatures based on isogenies such as SQISign
by De Feo et al. [19].

8 ACKNOWLEDGMENT

The authors would like to thank the reviewers for their comments. This work is supported in parts by NSF grant
2101085.

REFERENCES

[1] Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domínguez, Alfred Menezes, and Francisco Rodríguez-Henríquez. 2018. On

the Cost of Computing Isogenies Between Supersingular Elliptic Curves. Cryptology ePrint Archive, Report 2018/313. https:

//eprint.iacr.org/2018/313

[2] Gorjan Alagic, Jacob Alperin-Sherif, Daniel Apon, David Cooper, Quynh Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene

Peralta, Ray Perlner, Angela Robinson, and Daniel Smith-Tone. 2020. Status Report on the Second Round of the NIST Post-Quantum

Cryptography Standardization Process. (2020). NIST IR 8309.

[3] Mila Anastasova, Reza Azarderakhsh, and Mehran Mozafari Kermani. 2021. Fast Strategies for the Implementation of SIKE Round 3 on

ARM Cortex-M4. IEEE Transactions on Circuits and Systems I: Regular Papers (2021), 1ś13. https://doi.org/10.1109/TCSI.2021.3096916

[4] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Aaron Hutchinson, Amir Jalali, David Jao, Koray

Karabina, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Geovandro Pereira, Joost Renes, Vladimir Soukharev, and

David Urbanik. 2020. Supersingular Isogeny Key Encapsulation. Submission to the NIST Post-Quantum Standardization Project.

https://sike.org/

[5] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Amir Jalali, David Jao, Brian Koziel, Brian LaMacchia,

Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, and David Urbanik. 2017. Supersingular Isogeny Key Encapsulation.

Submission to the NIST Post-Quantum Standardization Project. https://sike.org/

[6] Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel, and Christopher Leonardi. 2016. Key Compression for Isogeny-Based

Cryptosystems. In Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography (Xi’an, China). 1ś10.

[7] Reza Azarderakhsh, David Jao, Brian Koziel, Jason T. LeGrow, Vladimir Soukharev, and Oleg Taraskin. 2020. How Not to Create an

Isogeny-Based PAKE. In Applied Cryptography and Network Security - 18th International Conference, ACNS 2020, Rome, Italy, October

19-22, 2020, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 12146), Mauro Conti, Jianying Zhou, Emiliano Casalicchio, and

Angelo Spognardi (Eds.). Springer, 169ś186. https://doi.org/10.1007/978-3-030-57808-4_9

[8] Reza Azarderakhsh, Rami El Khatib, Brian Koziel, and Brandon Langenberg. 2021. Hardware Deployment of Hybrid PQC. Cryptology

ePrint Archive, Report 2021/541. https://ia.cr/2021/541.

[9] U. Banerjee, S. Das, and A. P. Chandrakasan. 2020. Accelerating Post-Quantum Cryptography using an Energy-Eicient TLS Crypto-

Processor. In 2020 IEEE International Symposium on Circuits and Systems (ISCAS). 1ś5. https://doi.org/10.1109/ISCAS45731.2020.9180550

[10] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny Van Keer. 2012. Keccak Implementation Overview.

https://keccak.team/iles/Keccak-implementation-3.2.pdf

[11] Wouter Castryck and Thomas Decru. 2022. An eicient key recovery attack on SIDH (preliminary version). Cryptology ePrint Archive,

Paper 2022/975. https://eprint.iacr.org/2022/975 https://eprint.iacr.org/2022/975.

[12] Denis X. Charles, Kristin E. Lauter, and Eyal Z. Goren. 2009. Cryptographic Hash Functions from Expander Graphs. Journal of Cryptology

22, 1 (01 Jan 2009), 93ś113. https://doi.org/10.1007/s00145-007-9002-x

[13] Andrew M. Childs, David Jao, and Vladimir Soukharev. 2014. Constructing Elliptic Curve Isogenies in Quantum Subexponential Time.

Journal of Mathematical Cryptology 8, 1 (2014), 1ś29.

[14] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and David Urbanik. 2017. Eicient compression of SIDH public

keys. In Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer, 679ś706.

[15] Craig Costello, Patrick Longa, and Michael Naehrig. 2016. Eicient Algorithms for Supersingular Isogeny Diie-Hellman. In Advances

in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference. 572ś601.

[16] Craig Costello, Patrick Longa, Michael Naehrig, Joost Renes, and Fernando Virdia. [n. d.]. Improved Classical Cryptanalysis of the

Computational Supersingular Isogeny Problem. Cryptology ePrint Archive, Report 2019/298. https://eprint.iacr.org/2019/298.

[17] Jean-Marc Couveignes. 2006. Hard Homogeneous Spaces. Cryptology ePrint Archive, Report 2006/291.

[18] Luca De Feo, David Jao, and Jérôme Plût. 2014. Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies.

Cryptology ePrint Archive, Report 2011/506. Journal of Mathematical Cryptology 8, 3 (Sep. 2014), 209ś247.

ACM Trans. Embedd. Comput. Syst.

https://eprint.iacr.org/2018/313
https://eprint.iacr.org/2018/313
https://doi.org/10.1109/TCSI.2021.3096916
https://sike.org/
https://sike.org/
https://doi.org/10.1007/978-3-030-57808-4_9
https://ia.cr/2021/541
https://doi.org/10.1109/ISCAS45731.2020.9180550
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://doi.org/10.1007/s00145-007-9002-x
https://eprint.iacr.org/2019/298

Cryptographic Engineering a Fast and Eficient SIKE in FPGA • 23

[19] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin Wesolowski. 2020. SQISign: compact post-quantum

signatures from quaternions and isogenies. In International Conference on the Theory and Application of Cryptology and Information

Security. Springer, 64ś93.

[20] Rami El Khatib, Reza Azarderakhsh, and Mehran Mozafari-Kermani. 2019. Optimized Algorithms and Architectures for Montgomery

Multiplication for Post-quantum Cryptography. In International Conference on Cryptology and Network Security. Springer, 83ś98.

[21] Rami Elkhatib, Reza Azarderakhsh, and Mehran Mozafari Kermani. 2021. Accelerated RISC-V for SIKE. In 28th IEEE Symposium on

Computer Arithmetic, ARITH 2021, Lyngby, Denmark, June 14-16, 2021. IEEE, 131ś138. https://doi.org/10.1109/ARITH51176.2021.00035

[22] R. Elkhatib, R. Azarderakhsh, and M. Mozafari-Kermani. 2020. Highly Optimized Montgomery Multiplier for SIKE Primes on FPGA. In

2020 IEEE 27th Symposium on Computer Arithmetic (ARITH). 64ś71. https://doi.org/10.1109/ARITH48897.2020.00018

[23] Rami Elkhatib, Reza Azarderakhsh, and Mehran Mozafari-Kermani. 2021. High-Performance FPGA Accelerator for SIKE. IEEE Trans.

Comput. (2021), 1ś1. https://doi.org/10.1109/TC.2021.3078691

[24] Rami Elkhatib, Brian Koziel, Reza Azarderakhsh, and Mehran Mozafari Kermani. 2022. Accelerated RISC-V for SIKE (extended version).

IEEE Transactions on Circuits and Systems I: Regular Papers (2022). https://doi.org/10.1109/TCSI.2022.3162626

[25] Mohammad-Hossein Farzam, Siavash Bayat-Sarmadi, and Hatameh Mosanaei-Boorani. 2020. Implementation of Supersingular Isogeny-

Based Diie-Hellman and Key EncapsulationUsing an Eicient Scheduling. IEEE Transactions on Circuits and Systems I: Regular Papers

(2020).

[26] Mohammad-Hossein Farzam, Siavash Bayat-Sarmadi, Hatameh Mosanaei-Boorani, and Armin Alivand. 2021. Hardware Architecture

for Supersingular Isogeny Diie-Hellman and Key Encapsulation Using a Fast Montgomery Multiplier. IEEE Transactions on Circuits and

Systems I: Regular Papers 68, 5 (2021), 2042ś2050. https://doi.org/10.1109/TCSI.2021.3062871

[27] Armando Faz-Hernández, Julio López, Eduardo Ochoa-Jiménez, and Francisco Rodríguez-Henríquez. 2017. A faster software

implementation of the supersingular isogeny Diie-Hellman key exchange protocol. IEEE Trans. Comput. 67, 11 (2017), 1622ś1636.

[28] Luca De Feo. 2017. Mathematics of Isogeny Based Cryptography. CoRR abs/1711.04062 (2017). http://arxiv.org/abs/1711.04062

[29] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. 2016. On the Security of Supersingular Isogeny Cryptosystems. In

Advances in Cryptology - ASIACRYPT 2016. 63ś91. https://doi.org/10.1007/978-3-662-53887-6_3

[30] Steven D. Galbraith, Christophe Petit, and Javier Silva. 2017. Identiication Protocols and Signature Schemes Based on Supersingular

Isogeny Problems. In Advances in Cryptology – ASIACRYPT 2017. Cham, 3ś33.

[31] Alexandre Gélin and Benjamin Wesolowski. 2017. Loop-Abort Faults on Supersingular Isogeny Cryptosystems. In Post-Quantum

Cryptography : 8th International Workshop, PQCrypto 2017. 93ś106. https://doi.org/10.1007/978-3-319-59879-6_6

[32] Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth Annual ACM

Symposium on Theory of Computing (Philadelphia, Pennsylvania, USA) (STOC 1996). Association for Computing Machinery, New York,

NY, USA, 212ś219. https://doi.org/10.1145/237814.237866

[33] David Jao and Luca De Feo. 2011. Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies. In Post-

Quantum Cryptography: 4th International Workshop, PQCrypto 2011. 19ś34. https://doi.org/10.1007/978-3-642-25405-5_2

[34] Samuel Jaques and John M. Schanck. [n. d.]. Quantum cryptanalysis in the RAM model: Claw-inding attacks on SIKE. Cryptology

ePrint Archive, Report 2019/103. https://eprint.iacr.org/2019/103.

[35] A. Karmakar, S. Roy, F. Vercauteren, and I. Verbauwhede. [n. d.]. Eicient Finite Field Multiplication for Isogeny Based Post Quantum

Cryptography. In International Workshop on the Arithmetic of Finite Fields, WAIFI 2016. to appear.

[36] B. Koziel, A. Ackie, R. El Khatib, R. Azarderakhsh, and M. M. Kermani. 2020. SIKE’d Up: Fast Hardware Architectures for Supersingular

Isogeny Key Encapsulation. IEEE Transactions on Circuits and Systems I: Regular Papers (2020), 1ś13.

[37] Brian Koziel, Reza Azarderakhsh, and David Jao. 2018. An Exposure Model for Supersingular Isogeny Diie-Hellman Key Exchange. In

Topics in Cryptology - CT-RSA 2018 - The Cryptographers’ Track at the RSA Conference 2018. 452ś469. https://doi.org/10.1007/978-3-319-

76953-0_24

[38] Brian Koziel, Reza Azarderakhsh, and David Jao. 2018. Side-Channel Attacks on Quantum-Resistant Supersingular IsogenyDiie-Hellman.

In Selected Areas in Cryptography – SAC 2017, 24th International Conference. 64ś81.

[39] Brian Koziel, Reza Azarderakhsh, and Mehran Mozafari Kermani. 2018. A high-performance and scalable hardware architecture for

isogeny-based cryptography. IEEE Trans. Comput. 67, 11 (2018), 1594ś1609.

[40] Brian Koziel, Reza Azarderakhsh, and Mehran Mozafari-Kermani. 2016. Fast Hardware Architectures for Supersingular Isogeny

Diie-Hellman Key Exchange on FPGA. In Progress in Cryptology – INDOCRYPT 2016: 17th International Conference on Cryptology in

India. 191ś206.

[41] Brian Koziel, Reza Azarderakhsh, Mehran Mozafari-Kermani, and David Jao. 2017. Post-Quantum Cryptography on FPGA Based on

Isogenies on Elliptic Curves. IEEE Transactions on Circuits and Systems I: Regular Papers 64, 1 (Jan 2017), 86ś99. https://doi.org/10.1109/

TCSI.2016.2611561

[42] Brian Koziel, Amir Jalali, Reza Azarderakhsh, David Jao, and Mehran Mozafari-Kermani. 2016. NEON-SIDH: Eicient Implementation of

Supersingular Isogeny Diie-Hellman Key Exchange Protocol on ARM. In Cryptology and Network Security: 15th International Conference,

CANS 2016. 88ś103. https://doi.org/10.1007/978-3-319-48965-0_6

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.1109/ARITH51176.2021.00035
https://doi.org/10.1109/ARITH48897.2020.00018
https://doi.org/10.1109/TC.2021.3078691
https://doi.org/10.1109/TCSI.2022.3162626
https://doi.org/10.1109/TCSI.2021.3062871
http://arxiv.org/abs/1711.04062
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-319-59879-6_6
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-642-25405-5_2
https://eprint.iacr.org/2019/103
https://doi.org/10.1007/978-3-319-76953-0_24
https://doi.org/10.1007/978-3-319-76953-0_24
https://doi.org/10.1109/TCSI.2016.2611561
https://doi.org/10.1109/TCSI.2016.2611561
https://doi.org/10.1007/978-3-319-48965-0_6

24 • Elkhatib et al.

[43] Chunyang Liu, Jian Ni, Weiqiang Liu, Zhe Liu, and Máire O’Neill. 2018. Design and Optimization of Modular Multiplication for SIDH. In

2018 IEEE International Symposium on Circuits and Systems (ISCAS). 1ś5. https://doi.org/10.1109/ISCAS.2018.8351082

[44] Weiqiang Liu, Jian Ni, Zhe Liu, Chunyang Liu, and Máire O’Neill. 2019. Optimized Modular Multiplication for Supersingular Isogeny

Diie-Hellman. IEEE Trans. Comput. 68, 8 (2019), 1249ś1255. https://doi.org/10.1109/TC.2019.2899847

[45] W. Liu, Z. Ni, J. Ni, C. Raferty, and M. O’Neill. 2020. High Performance Modular Multiplication for SIDH. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 39, 10 (2020), 3118ś3122. https://doi.org/10.1109/TCAD.2019.2960330

[46] Luciano Maino and Chloe Martindale. 2022. An attack on SIDH with arbitrary starting curve. Cryptology ePrint Archive, Paper

2022/1026. https://eprint.iacr.org/2022/1026 https://eprint.iacr.org/2022/1026.

[47] Pedro Maat C Massolino, Patrick Longa, Joost Renes, and Lejla Batina. 2020. A Compact and Scalable Hardware/Software Co-design of

SIKE. IACR Transactions on Cryptographic Hardware and Embedded Systems (2020), 245ś271.

[48] Peter L. Montgomery. 1985. Modular Multiplication without Trial Division. Math. Comp. 44, 170 (1985), 519ś521.

[49] Peter L. Montgomery. 1987. Speeding the Pollard and Elliptic Curve Methods of Factorization. Math. Comp. (1987), 243ś264.

[50] Michael Naehrig and Joost Renes. 2019. Dual Isogenies and Their Application to Public-Key Compression for Isogeny-Based Cryptography.

In Advances in Cryptology – ASIACRYPT 2019, Steven D. Galbraith and Shiho Moriai (Eds.). Springer International Publishing, Cham,

243ś272.

[51] Ziying Ni, Dur-e-Shahwar Kundi, Máire O’Neill, and Weiqiang Liu. 2022. A High-Performance SIKE Hardware Accelerator. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems (2022), 1ś13. https://doi.org/10.1109/TVLSI.2022.3152011

[52] Geovandro C. C. F. Pereira and Paulo S. L. M. Barreto. 2021. Isogeny-Based Key CompressionWithout Pairings. In Public-Key Cryptography

– PKC 2021, Juan A. Garay (Ed.). Springer International Publishing, Cham, 131ś154.

[53] Damien Robert. 2022. Breaking SIDH in polynomial time. Cryptology ePrint Archive, Paper 2022/1038. https://eprint.iacr.org/2022/1038

https://eprint.iacr.org/2022/1038.

[54] Alexander Rostovtsev and Anton Stolbunov. 2006. Public-Key Cryptosystem Based on Isogenies. Cryptology ePrint Archive, Report

2006/145.

[55] Debapriya Basu Roy, Tim Fritzmann, and Georg Sigl. 2020. Eicient Hardware/Software Co-Design for Post-Quantum Crypto Algorithm

SIKE on ARM and RISC-V based Microcontrollers. In 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD). 1ś9.

[56] Debapriya Basu Roy and Debdeep Mukhopadhyay. 2019. Post Quantum ECC on FPGA Platform. Cryptology ePrint Archive, Report

2019/568. https://eprint.iacr.org/2019/568.

[57] Hwajeong Seo, Mila Anastasova, Amir Jalali, and Reza Azarderakhsh. 2020. Supersingular Isogeny Key Encapsulation (SIKE)Round 2 on

ARM Cortex-M4. IEEE Trans. Comput. (2020), 1ś1. https://doi.org/10.1109/TC.2020.3023045

[58] Hwajeong Seo, Pakize Sanal, Amir Jalali, and Reza Azarderakhsh. 2020. Optimized Implementation of SIKE Round 2 on 64-bit ARM

Cortex-A Processors. IEEE Trans. Circuits Syst. I Regul. Pap. 67-I, 8 (2020), 2659ś2671. https://doi.org/10.1109/TCSI.2020.2979410

[59] PeterW. Shor. 1994. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In 35th Annual Symposium on Foundations

of Computer Science (FOCS 1994). 124ś134.

[60] Oleg Taraskin, Vladimir Soukharev, David Jao, and Jason T. LeGrow. 2021. Towards Isogeny-Based Password-Authenticated Key

Establishment. Journal of Mathematical Cryptology 15, 1 (2021), 18ś30. https://doi.org/doi:10.1515/jmc-2020-0071

[61] The National Institute of Standards and Technology (NIST). 2017ś2018. Post-Quantum Cryptography Standardization. https:

//csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization.

[62] Yan Bo Ti. 2017. Fault Attack on Supersingular Isogeny Cryptosystems. In Post-Quantum Cryptography : 8th International Workshop,

PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017, Proceedings. Springer International Publishing, Cham, 107ś122. https:

//doi.org/10.1007/978-3-319-59879-6_7

[63] Jing Tian, Jun Lin, and Zhongfeng Wang. 2019. Ultra-Fast Modular Multiplication Implementation for Isogeny-Based Post-Quantum

Cryptography. In 2019 IEEE International Workshop on Signal Processing Systems (SiPS). 97ś102. https://doi.org/10.1109/SiPS47522.2019.

9020384

[64] Jing Tian, Bo Wu, and Zhongfeng Wang. 2021. High-Speed FPGA Implementation of SIKE Based on an Ultra-Low-Latency Modular

Multiplier. IEEE Transactions on Circuits and Systems I: Regular Papers 68, 9 (2021), 3719ś3731. https://doi.org/10.1109/TCSI.2021.3094889

[65] Jacques Vélu. 1971. Isogénies Entre Courbes Elliptiques. Comptes Rendus de l’Académie des Sciences Paris Séries A-B 273 (1971),

A238śA241.

[66] Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir Soukharev. 2017. A Post-quantum Digital Signature Scheme Based

on Supersingular Isogenies. In Financial Cryptography and Data Security: 21st International Conference, FC 2017. Springer International

Publishing, Cham, 163ś181. https://doi.org/10.1007/978-3-319-70972-7_9

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.1109/ISCAS.2018.8351082
https://doi.org/10.1109/TC.2019.2899847
https://doi.org/10.1109/TCAD.2019.2960330
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
https://doi.org/10.1109/TVLSI.2022.3152011
https://eprint.iacr.org/2022/1038
https://eprint.iacr.org/2022/1038
https://eprint.iacr.org/2019/568
https://doi.org/10.1109/TC.2020.3023045
https://doi.org/10.1109/TCSI.2020.2979410
https://doi.org/doi:10.1515/jmc-2020-0071
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://doi.org/10.1007/978-3-319-59879-6_7
https://doi.org/10.1007/978-3-319-59879-6_7
https://doi.org/10.1109/SiPS47522.2019.9020384
https://doi.org/10.1109/SiPS47522.2019.9020384
https://doi.org/10.1109/TCSI.2021.3094889
https://doi.org/10.1007/978-3-319-70972-7_9

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Isogeny Fundamentals
	2.2 Isogeny-Based Cryptosystems
	2.3 SIKE

	3 Proposed Field Arithmetic Unit
	3.1 Field Addition Unit
	3.2 Proposed Field Multiplication Unit
	3.2.1 Low Level Multiplication Components
	3.2.2 Core Systolic Multiplication Architecture
	3.2.3 Multiplication Wrapper
	3.2.4 Multiplication Area and Timing Results

	4 SIKE-Optimized Keccak
	4.1 Keccak Description
	4.2 Proposed Keccak Architecture

	5 A RISC-V Top-Level Controller
	5.1 Isogeny Accelerator
	5.2 RISC-V SIKE Controller
	5.3 Total BRAM Usage

	6 FPGA Implementation Results
	6.1 Summary of Results
	6.2 Comparison to State-of-the-Art

	7 Conclusion
	8 Acknowledgment
	References

