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Introduction & Related Work

Motivation behind Hybrid Public Key Infrastructure

ECC offers :
• Efficiency in timing, energy, power consumption, and

memory consumption (small key sizes).
• Deployed for key derivation and authentication - ECDH

and ECDSA (EdDSA).
Curve448 (and it birationally equivalent Ed448) offers :

• Higher security level (224-bits).
• Addresses security backdoor issues of NIST curves.

Elliptic Curve Cryptography is well-studied and widely
deployed. However, large scale quantum computers threatens to
break ECDLP in sub-exponential time.
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Introduction & Related Work

Motivation behind Hybrid Public Key Infrastructure

Lattice-based Post-Quantum Cryptography offers :
• Efficiency in timing, energy, power consumption. Relatively

compact key sizes.
• Applicable for many crypto instances (PKE, DSA, Digest,

Identification functions, etc.).
CRYSTALS-Kyber and CRYSTALS-Dilithium are :

• Finalist of the NIST PQ Standardization process.
• Addresses security backdoor issues of NIST curves.

Post-Quantum primitives are believed to be robust against
quantum adversary. However, they fail to fulfill the security
criteria set by the government and industry.
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Introduction & Related Work

Previous Work

• PQ and Hybrid Signatures in TLSv1.2 and TLSv1.3 :
• Hybrid Signatures in X.509 presented in [KPDVG18].
• PQ-only message Signatures in TLSv1.2 are shown in

[SKD20b], [SKD20a].
• PQ-only message and X.509 Signatures in TLSv1.2 are

shown in [MS22].
• PQ and Hybrid Key Exchange in TLS and other protocols :

• Hybrid Key Exchange prototyping and deployment is shown
in [CPS19], [CC19].

• Hybrid Key Exchange in HPKE is presented in [AKM22].
• Library enhancements :

• OQS and OpenSSL libraries integration of PQ-standalone
message and X.509 PKI Signatures [SKD20b].
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Introduction & Related Work

Our Contributions

Present a Fully Hybrid TLSv1.3 based on Curve448 and
Crystals-Kyber1024 and Ed448 and Crystals-Dilithium5 based
OpenSSL & wolfSSL cryptographic libraries :

• We enhance OpenSSL to generate X.509 hybrid
Ed448_Dilithium5 keys and certificates in PEM format.

• We implement Curve448_Kyber1024 hybrid key exchange.
• We upgrade to sign and verify based on hybrid DSS
Ed448_Dilithium5.

• We deploy processing Ed448_Dilithium5 hybrid keys and
certificates.

• We evaluate our hybrid TLSv1.3 based on
Curve448_Kyber1024 and Ed448_Dilithium5 on the
ARMv7 Cortex-M4 STM32F413 microcontroller.
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Mathematical Background Curve448, Ed448, Kyber, Dilithium

Curve448 ECDH & Ed448 DSA

Figure – X448 algorithm. G represents the value of the base point

Figure – Ed448 algorithm [JL17]. H denotes SHAKE256. L represents the order
of Ed448 curve. G represents the value of the base point
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Mathematical Background Curve448, Ed448, Kyber, Dilithium

Crystals-Kyber & Crystals-Dilithium

Figure – Crystals-Kyber algorithm [BDK+18]. Each variable represents (the coefficients
of) a polynomial, bold text style denotes vector of polynomials, capital letter notation denotes
a matrix. enc and dec represents encode/decode, C and D present Compress/Decompress,
respectivel
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Mathematical Background Curve448, Ed448, Kyber, Dilithium

Crystals-Kyber & Crystals-Dilithium

Figure – CRYSTALS-Dilithium algorithm [DKL+18]. Each variable represents a
polynomial, bold text style denotes vector of polynomials, capital letter notation
denotes a matrix
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ARMv7 Target Platforms

Crypto Performance on ARM Cortex-M4
Cortex-M4 Features

• 16 32-bit core registers
• *32 32-bit FP registers
• 1 CC per instruction except

memory accesses

Implementation strategies
• Use the entire register set.
• Operate on larger operand sets.
• Re-organize the instruction flow

for efficient design.

NIST recommended Cortex-M4 WiFi-equipped STM32F413-ZH.

• Features :
• 1.5MB of flash

memory
• 320KB of RAM

• Tools :
• STM32CubeIDE
• wolfSSL library

• Goal :
• Deploy enhanced

Fully Hybrid
wolfSSL TLS1.3
protocol to obtain
performance.
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Hybrid Network Protocol Deployment

Public Key Infrastructure

Figure – The Public Key Infrastructure (PKI) built using classical (Ed448) and
post-quantum (Dilithium5) Digital Signature Algorithm (DSA) techniques. The gray data
refers to the information fields found in the X.509 files. Superscript indicates the owner of the
data, while subscript indicates the type of information
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Hybrid Network Protocol Deployment

Fully Hybrid TLSv1.3

Figure – TLSv1.3 execution
flow graphical representation.
Gray data refers to the
information fields included in
X.509 files, where superscript
indicates the owner of the data
and subscript indicates the type
of information. The compute
stages are represented by solid
box lines, the message flow is
represented by discontinuous
lines, and the certificate file is
represented by scattered box
lines
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Performance Evaluation

wolfSSL Fully Hybrid TLSv1.3 Performance
Evaluation

Work KEX Auth Cert Verify TLS1.3
handshake

TLS1.3 with
AEAD

wolfSSL [wol] X448 Ed448 Ed448 - 44,358,855

Anastasova et al.
[AEKL+23]

X448 Ed448 Ed448 - 46,310,749

This work
X448 & Kyber1024 Ed448 & Dil5 - 97,624,103 106,735,300

X448 & Kyber1024 Ed448 & Dil5 Ed448 & Dil5 114,017,313 123,139,034

Table – Performance of the entirely hybrid TLSv1.3 handshake and the overall TLSv1.3
protocol when a short 15B message is delivered between communication parties. The values are
expressed in terms of clock cycles [CC]
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Conclusions & Future Work

• Conclusions
We propose Fully Hybrid TLSv1.3 based on wolfSSL and
OpenSSL cryptographic libraries :

• We generate Ed448_Dilithium5 hybrid keys and certificates
adapting OpenSSL.

• We deploy high-security Curve448_Kyber1024 hybrid key
exchange in the TLSv1.3 handshake.

• We deploy Ed448_Dilithium5 hybrid message signature.
• We deploy Ed448_Dilithium5 hybrid certificate verification.
• We report ∼×2.43 overhead compared to the classical-only

TLSv1.3 based on the same classical primitives when
certificate verification is omitted, and ∼ 2.67× overhead
when hybrid certificate is transmitted and verified.

• Future Work
• SCA protected Fully Hybrid TLSv1.3.
• Fully Hybrid TLSv1.3 on higher end ARM platforms.
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Thank you for the attention !

If you have any inquiries, please feel free to contact our team :

manastasova2017@fau.edu
razarderakhsh@fau.edu

mehran2@usf.edu

mailto:manastasova2017@fau.edu
mailto:razarderakhsh@fau.edu
mailto:mehran2@usf.edu
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