
1

Highly optimized Curve448 and Ed448 design in
wolfSSL and side-channel evaluation on Cortex-M4

Abstract—The compact key sizes and the low computational la-
tency of the Elliptic Curve Cryptography (ECC) family of curves
sparked high interest in their integration into network protocols.
The recently suggested Curve448, assuring 224-bit security, is
an ideal curve choice for integrating into cryptographic libraries
according to a late study on backdoors on other ECC instances
compromising their security, which results in the integration of
Curve448 into the TLS1.3 protocol. Curve448 and its birationally
equivalent untwisted Edwards curve Ed448, used for key ex-
change and authentication, respectively, present a perfect fit for
low-end embedded cryptographic libraries due to their minimal
memory requirements. In this work, we present the first adoption
of highly optimized ECDH and EdDSA based on Curve448
and Ed448 into the widely employed IoT-focused cryptographic
library wolfSSL. We evaluate the performance of the newly inte-
grated architectures against the NIST recommended Cortex-M4
STM32F407-DK ARM-based platform. Additionally, we perform
thorough security evaluation of the side-channel robustness of
the implementation via powerful TVLA analysis revealing DPA
data leakage. We integrate countermeasures to protect the design,
evaluate their effectiveness and analyze the latency overhead. We
achieve SCA robust Curve448 and Ed448 at the performance
cost of ∼ 1, 200KCC and ∼ 1.36× the execution time, however,
observe faster results when benchmarking wolfSSL, based on
the WiFi quipped STM32F413-DK microcontroller, due to the
handcrafted assembly implementation.

Keywords: Elliptic Curve Cryptography, Curve448, Side-
Channel Countermeasures, Cortex-M4.

I. INTRODUCTION

In recent years, technology has become more integrated
into our daily lives, increasing the amount of data exchanged
through the Internet. The rapid transmission speed and ease of
getting information on low- or high-end nodes improve quality
of life. Private information cannot be communicated over an
insecure network like the Internet without being compromised.
Cryptographic algorithms and network protocols use challeng-
ing mathematical issues to safeguard our data during transport.

Public Key Cryptography (PKC), also known as asymmet-
ric cryptography, is a major cryptographic primitive because
it ensures data integrity, confidentiality, and authentication
without a common/symmetric secret key. RSA’s and ECC’s
security is based on the mathematical problems of factoring
big numbers and elliptic curve logarithm. The relatively new
ECC provides reduced computational latency and key sizes
compared to RSA, resulting in lower transmission costs for
same security levels. As an optimal solution for key agreement
and digital signature algorithm, ECC has become the most
preferred choice for incorporation into network protocols and
cryptographic libraries. Despite ideal memory requirements
and computational resources, low-end embedded systems with
restricted resources struggle to embrace ECC primitives.

The Elliptic Curve family of schemes consists of curves
featuring differentÂ security level, CPU and storage require-
ments. Yet,Â NIST curves have been a source of concern ow-
ing to newly acknowledged security flaws [?]. Consequently,
a new family of curves was developed addressingÂ the ex-
istingÂ issues. Curve25519 and Curve448, as well as their
birationally equivalent Edwards curves Ed25519 and Ed448,
grew increasing trust byÂ the NIST an are among theÂ rec-
ommended curves for building a cryptosystem basedÂ on an
ECC primitive since both are suitable for key agreement and
digital signature algorithms deployment. In 2018, high security
level Curve448 (224 bits) was incorporated into the TLS
1.3 [?] network protocol, leading to their incorporation into
cryptographic libraries. This work focuses on high-security
Curve448 and Ed448, side-channel analysis protection, and
wolfSSLCrypt. We also perform different experiment based
on the wolfSSL TLS 1.3 implementation based on a USART
server-client communication and report our findings before and
after protecting the design.

To minimize data leakage through physical behavior and en-
able Side-Channel Analysis (SCA), cryptographic system de-
sign is extremely demanding for embedded devices. Resource
consumption may allow an attacker to reveal confidential infor-
mation. In addition to time, electricity use may expose secret
information. Simple Power Analysis (SPA) can reveal key-
dependent power consumption disparities in a cryptographic
method. Differential Power Analysis (DPA) shows a more
complex link between hidden bits and power consumption than
SPA, which may be eliminated by equalizing power usage
independent of input key value. Therefore, further precautions
should be considered to protect the code implementation
against side-channel vulnerabilities. This work presents a
side-channel resistant design of Curve448 and Ed448 that
includes the essential countermeasures at the cost of execution
overhead, which is reported for both cryptographic primitives
and the TLSv1.3 protocol execution. To prove that our coun-
termeasures secure our code, we offer Test Vector Leakage
Assessment (TVLA) statistics and compare the unprotected
design to the side-channel resilient implementation.

A. Related Work

Cryptographic primitives, that rely on complex mathemat-
ical problems, require a significant amount of processing
power on low-end devices; hence, several efficient ECC-based
architectures are presentedÂ in the literature, along with the
adoption of side-channel attack countermeasures. Being the
ultimate objective of an optimum and safe implementation
design, its incorporation into cryptographic providers is the
objective of several academic and industry groups.

2

The interest in the relatively new Curve25519 proposed by
Bernstein in [?], and later Curve448 proposed by Hamburg in
[?] derives mostly from its low execution latency and high
security level, respectively. Both curves are useful for key
agreement Elliptic Curve Diffie-Hellman (ECDH), where their
birationally equivalent (un)twisted Edwards curves Ed25519
and Ed448 aid in the execution of the Edwards curve Digital
Signature Algorithm (EdDSA) [?]. Due to their integration into
theÂ TLS 1.3 network protocol standard, theyÂ are already
incorporated most cryptographic libraries and have been the
subject of optimization and security review.

Elliptic Curve Cryptography’s pyramid structure, in which
each layer comprises of numerous invocations of a lower layer
primitive, enables ECC optimization at many levels. Different
algorithms presented in the literature include either low exe-
cution delay (Window method [?], Signed Comb [?] method),
constant time performance (Double-and-Add-always, Mont-
gomery Ladder [?] method), or compact code size (Double-
and-Add [?] method). We base out study onÂ a Montgomery
Ladder scalar multiplication implementation design sinceÂ it
prevents time and SPA attacks and appears to be particularly
effective in eliminating Y coordinate operations, allowing us
to operate solely on the X coordinates.

Optimizations and enhancements were likewiseÂ imple-
mented forÂ the ECC’s bottom layer. When constructing
target-specific hand-crafted assembly code, finite field arith-
metic allows for considerable performance improvements.
The literature provides numerous multi-precision arithmetic
techniques aimed at increasing the efficiency of the algo-
rithms.In [?], Seo provides an efficient design for the 8-
bit AVR and 16-bit MSP platforms, which, to the best of
our knowledge, is the first low-end target-specific design for
Curve448 arithmetic architecture based on Karatsuba multi-
precision multiplication technique. It is worth noting that finite
field arithmetic operations are not only exclusive to classical
schemes, they also provide the foundation of the isogeny-
based post-quantum primitive. As a result, low level pyramid
layer optimizations may be applied to various algorithms and
adopted to their prime field length. Hutter et al. introduced
the implementation ofÂ Operand Caching (OC) in [?], where
later its variants Consecutive- and Refined-OC are presented
by Seo et al. in [?], [?] and [?]. The first customized Curve448
design for the Cortex-M4 ARM CPU is published in [?] by
Seo et al., where the authors deploy the R-OC technique. The
first EdDSA Ed448 deployment on Cortex-M4 is presented
in [?] by Anastasova et al. Future multi-precision arithmetic
solutions are presented by Anastasova et al. in [?]. Recently,
the same team presented a new speed record for the Curve448-
based key agreement and the Ed448 based digital signature
algorithm [?], which we use as a starting point for our work
aiming at analyzing and protecting the time optimal design
while integrating it into the cryptographic library wolfSSL.

The evaluation of ECC algorithms against side-channel
attacks is critical, and it has been a matter of study since
1999, when Kocher introduced the notion of [?]. Current im-
plementations of elliptic curve techniques focus on removing
physical behavior that reveals the secret value through the
deployment of a series of side-channel attack countermeasures.

Point randomization [?] and scalar blinding are two of the most
effective as they ensure constant-time and secret-independent
calculations. The use of DPA countermeasures, on the other
hand, tends to increase the execution time of ECC schemes, as
documented for special form such asÂ curvesÂ Curve25519
[?], [?], [?], [?] and FourQ [?]. Curve448 has not been
well studied on our target platform, thus we focused on
protecting the designs of Curve448 and Ed448 on Cortex-
M4 by employing point randomization and scalar blinding
countermeasures.

B. Contributions

In this paper, we integrate a highly efficient and side-channel
protected architecture for Curve448- and Ed448-based key
derivation and digital signature algorithms into the embedded
device-specific wolfSSL cryptographic library. Our contribu-
tions are as follows:

1) We examine the most recent multi-precision multipli-
cation and squaring approaches designed for the ARM-
based Cortex-M4 architecture forÂ Curve448 and Ed448
ECC primitives. We compare performance gains to prior
research using the NIST-recommended STM32F407-
DK and STM32F413-DK, with an inbuilt WiFi mod-
ule,Â microcontrollers.

2) We present a side-channel-resistant design for Curve448
and Ed448 by including Differential Power Analy-
sis (DPA)Â countermeasures. After employing point
randomization and scalar blinding, we obtain a side
channel-resistant architecture at ∼ 1.38× execution time
for Curve448 ECDH and ∼ 1.37× and ∼ 1.22× perfor-
mance increase for Ed448 key generation and signature.

3) We confirm the efficacy of the countermeasures by
supplying TVLA traces. We provide the outcomes of
a practical method for detecting leaks in an unprotected
design.

4) We implement the Curve448 and Ed448 primitives into
the wolfSSL cryptographic library and report an im-
proved performance of ∼ 0.88× time the original TLS
1.3 client, as compared to the unprotected architecture,
where we benchmark the timing results via a USART
connection among the embedded device and a computer.
We conduct our experiment using the STM32F413-DK
board.

The remaining sections are grouped as follows. In ?? we
discuss the mathematical problems, base of X448 and Ed448
DSA algorithms, present the platform specifications, and re-
sume the side-channel analysis considerations. ?? presents
the multi-precision arithmetic architecture for Curve448 and
Ed448. ?? shows the main features of the emerging TLS 1.3
protocol and the optimal wolfSSL cryptographic library. In ??
we show the side-channel analysis setup and countermeasures,
the basis of the applied TVLA leakage detection method, and
the obtained results after evaluating our protected design. ??
shows the integration of our design into wolfSSL and the
performance improvements as a standalone primitive execution
inside the library and as part of the TLS 1.3 network protocol.
Finally, we conclude our work in ??.

3

Algorithm 1 Montgomery ladder

Input: P = (XP : ZP), k =
∑l−1

i=0 ki2
i where kl−1 = 1

Output: R = k · P
1: R← (XR, ZR) = (1, 0)
2: Q← (XQ, ZQ) = (XP , 1)
3: for (i = 447; i >= 0; i−−) do
4: if ki = 0 then
5: (R,Q) = ladderstep(XP , R,Q)
6: else
7: (Q,R) = ladderstep(XP , Q,R)
8: end if
9: end for

10: return xR = XR/ZR

II. PRELIMINARIES

This section reviews the mathematical background of ECC
and in particular the Montgomery and Edwards representation
of Curve448–Goldilocks. Finally, we summarize the target
specifications and the side-channel analysis evaluation and
considered countermeasures.

A. ECC Mathematical Background

Untwisted Edwards Curve448–Goldilocks was proposed by
Hamburg in [?] and shortly after was chosen as a NIST
recommendation for ECC instantiation and is claimed to be
preferred over NIST curves. Edwards curve are defined as:
EEd/Fp : ax2+ y2 = 1+ dx2y2 where Curve448–Goldilocks
features the parameter set of d = −39081 and a = 1 and
prime number p = 2448−2224−1 defining the finite field Fp.
Edwards and Montgomery curves are birationally equivalent,
thus Curve448–Goldilocks can be described as: EM/Fp : v2 ≡
u3 + 156326u2 + u. This allows to simplify and optimize
the implementation of scalar multiplication by dropping the
Edwards representation and execute a Montgomery Ladder.

Montgomery Ladder ?? is an efficient constant time algo-
rithm for computing the group operation point multiplication
P = [k] · Q where the secret value is decomposed and
processed in a bit-by-bit fashion. Opposite to other point
multiplication algorithms, Montgomery Ladder prevents SPA
due to the execution of point doubling and point addition
independently of the processed bit value. Besides timing and
SPA, when adapting adequate countermeasures such as scalar
blinding and point randomization to eliminate the data depen-
dency in the swap step, the Montgomery Ladder algorithm
becomes robust agains DPA.

Additional advantage of applying Montgomery Ladder is
the reduced computational latency based on projective coordi-
nates point representation and X−only formula. The mapping
between projective and affine coordinates consists of x, y =
(X · Z−1, Y · Z−1), which is performed at the end of the
Montgomery Ladder execution. Thus, Montgomery Ladder,
efficient and resistant to side-channel analysis attacks, is a
preferred choice in many ECC implementation architectures
and presents the base of this work.

Algorithm 2 X448 algorithm. G represents the value of the
base point

Alice Bob
Input: - Input: -
Output: skA, pkA Output: skB , pkB
skA ∈R Z/Fp skB ∈R Z/Fp

pkA = [skA] ·G pkB = [skB] ·G
Input: skA, pkB Input: skB , pkA
Output: ssA Output: ssB
ssA = [skA] · pkB ssB = [skB] · pkA
ssA = [skA] · skB ·G ssB = [skB] · skA ·G

B. X448 and Ed448

Elliptic Curve Diffie-Hellman and Edwards curve Digital
Signature Algorithm have as a core operation the point mul-
tiplication, where the signature integrates additionally hash
functions due to the nature of the arbitrary length message
authentication.

The sole operation for the performance of ECDH is scalar
multiplication where both communication parties need two
invocations of the so called X448 function. At the end of the
execution of the entire algorithm ??, both parties should reach
a common shared secret ss = skA · skB ·G = skB · skA ·G,
which upon success would allow a symmetric key derivation
and the application of an efficient encryption cipher.

The key agreement, however, cannot ensure the authenticity
of the communication parties. Therefore, in network protocols,
an additional cryptographic algorithm is needed, referred to
as digital signature. Similar to real-life signatures, the sender
should place a unique sign which will allow the recipient to
authenticate the addresser of the message. The EdDSA consist
of three main functions - Key Generation, Sign and Verify
??. The execution of key generation is similar to the ECDH
step, integrating a deterministic random number generation
based on an additional hashing function. Based on the variable
(and unbounded) length of the message being transmitted, the
signature involves a hash function. At the end of the algorithm,
the verifier obtains a true or false output, depending on the
success of the authentication.

C. Target Architecture

ARM embedded devices are a target platform for experi-
mental setup and performance assessment due to their high
deployment rate in real-time IoT systems owing to their low
power and energy consumption. Instruction pipelining without
data dependencies or structural hazard stalls is possible using
the Reduced Instruction Set Computer (RISC) architecture.
For cryptographic algorithm evaluation, NIST recommends the
low-end STM32F407VG microcontroller based on Cortex-M4.
Using the provided platform, this study reports side-channel
analysis countermeasures. Due to the network protocol focus
of this work, particularly the wolfSSL cryptographic library
and the TLS 1.3 protocol, we choose the Cortex-M4 ARM
platform STM32F413-DK, which has a WiFi module for easy
network connection and adoption into IoT real-time systems.

4

Algorithm 3 Ed448 algorithm [?]. H denotes SHAKE256.
L represents the order of Ed448 curve. G represents the value
of the base point

Key Generation
Input: seed

Output: (p, s), pkA

skA ∈seedR Z/Fp

(p, s)← H(skA)

pkA ← encode([s] ·G)

Sign
Input: pkA, (p, s),M

Output: sign ≡ R||S
r ← (H(p||M))(modL)
R← encode([r] ·G)
k ← (H(R||pkA||M))(modL)

S ← encode((r+k ∗s)(modL))

Verification
Input: pkA,M,R||S
Output: [S] ·G == R+ [k] ·A
k ← H(R||pkA||M)(modL)

A← decode(pkA)

ARMv7-M 32-bit architecture features 16 General-Purpose
Registers (GPRs) R0-R15 and optionally another 32 32-bit
Floating-Point Registers (FPRs) S0-S31. The optimal imple-
mentation design relies not only on efficient and scheduled
register utilization but also on Multiply ACcumulate (MAC)
instruction which perform long accumulative multiplication in
a single clock cycle [CC].

The CPU fetches an instruction every cycle where a stall is
only produced due to data dependencies while accessing the
memory when proper instruction scheduling is missing.
D. Side-Channel Countermeasures and TVLA Analysis

Constant execution time is a primary anti-SPA countermea-
sure since the system should not show relationship between the
secret value being processed and the physical behavior. More
complex analysis, such as DPA, might be used to derive a
correlation between these two. To ensure that no data is leaked,
a set of countermeasures must be added to a cryptographic
architecture. In this paper, we use two countermeasures and
demonstrate via TVLA that they eliminate the power consump-
tionÂ dependency with theÂ secret input value.

Point randomization is a DPA countermeasure approach
that allows the scalar value to be protected when performing
point multiplication. The approach masks the coordinates of
the static base point G usingÂ a randomly generated value
λ which is bounded by the bit-length of the prime number
defining the finite field. The 448-bit λ is then multiplied by the
coordinates of the point, where after converting into projective
coordinates the base point becomes defined as Gr = (λ·xp, λ).
After executing the scalar multiplication and obtaining the
result, a conversion back to affine representation is executed.
In this step the value of λ is being reduced while retrieving
the xp = X · Z−1 = X/Z = λX/λZ.

Scalar Blinding is another DPA countermeasure that re-
quires the generation of a random number r to conceal the
value of the secret scalar. This technique relies on the fact
that base point G added to itself l times, where l is the group
order, results in the point at infinity: l · G = O. Thus, any
multiple of l, e.g. r · l, will also end up at O. In particular,
when multiplying the value of r · l and adding it to the secret
scalar, the resulting point R will remain the same such as
R = (sk+ r · l) ·G = sk ·G+ r · l ·G = sk ·G+O = sk ·G.

3
A[13]B[13]

A[0]B[0]

S0

S13

S26

2

1

An+2Bm
Low High

AnBm+1
Low High

+

+

+
+

Tn+m+2Rn+m+1 Tn+m+4Tn+m+3 Tn+m+5

An+4Bm
Low High

An+1Bm
Low High

An+3Bm
Low High

A[13]B[0]

An+4Bm+1
AnBm+2

An+3Bm+1

An+2Bm+1

An+1Bm+1

An+4Bm+2
AnBm+3

An+3Bm+2

An+2Bm+2

An+1Bm+2

An+4Bm
AnBm+1

An+3Bm

An+2Bm

An+1Bm

…

Figure 1. Hybrid2 architecture for 448-bit multi-precision multiplication.
Black lines denote inner loop execution flow. Each black box presents the
instructions executed per black line. The white boxes define the instructions
executed per white dot.

Algorithm 4 Multi-precision multiplication inner loop execu-
tion flow. The horizontal space denotes the PS-like execution
flow and the vertical UMAAL instructions show OS-fashion
execution flow.
VMOV R0, S12 // R12
UMAAL R0, R10, R2, R6 // a6b6

UMAAL R11, R10, R3, R6 // a7b6
UMAAL R12, R10, R4, R6 // a8b6

UMAAL R14, R10, R5, R6 // a9b6
LDR R7, [R8, #4*7] // b7
UMAAL R0, R9, R1, R7 // a5b7
VMOV S12, R0 // R12

The recommended value for the blinding factor is around half
of the secret scalar bit length ∼ |sk|/2.

To ensure that our countermeasure design is effective and,
in deed, prevents DPA attacks, we use Test Vector Leakage
Assessment (TVLA) leak detection mechanism. We perform
different measurements and report the graphs based on 10,000
traces.

III. FIELD ARITHMETIC ARCHITECTURE

This work is based on the latest finite field architecture
for Curve448 arithmetic targeting Cortex-M4 [?]. The authors
of the paper show significant optimization of the X448 and
Ed448 performance results by proposing a new multi-precision
multiplication and squaring functions.

A. Multi-precision Multiplication

The first mixed multi-precision multiplication is the hybrid
variant [?] where the inner loop deploys PS and the outer pro-
cesses in an OS-like fashion. Later, more optimal variants have
been presented in the literature such as the Operand Caching
(OC) [?], where the inner loop execution flow changes to

5

Algorithm 5 Multi-precision squaring inner loop execution
flow. The horizontal space denotes the PS-like execution flow.
VMOV R0, S12 // R12
LDR R7, [R0, #4*12] // a12
ADCS R7, R7, R7 // 2a12
UMAAL R10, R8, R1, R7 // 2a0a12

UMAAL R12, R8, R2, R7 // 2a1a12
UMAAL R9, R8, R3, R7 // 2a2a12

UMAAL R14, R8, R4, R7 // 2a3a12
UMAAL R11, R8, R5, R7 // 2a4a12

VMOV S12, R10 // R12

ensure maximum utilization of the loaded operand limbs. A
Consecutive- and Refined-OC (R-OC) [?], [?] were suggested
in the literature again modifying the execution flow for more
optimal results.

The first implementation design to combine both multi-
precision multiplication strategies inside the scope of the inner
loop is the one presented by Anastasova et al. in [?].

The multi-precision multiplication of this double-hybrid (or
hybrid2) strategy (double since it applies hybrid design -
R-OC, first to the entire multiplication, similar to previous
implementations, and second to the inner multiplication loop)
relies on the idea of boosting the inner multiplication loop
by increasing the row size (i.e., the number of accumulatively
computed 32 × 32-bit multiplications in each iteration of the
inner loop).

Visual representation of the described steps is presented in
?? where the rows are highlighted in grey color and the inner
loop execution flow is denoted by a bolded back line, where
each line dotes a single iteration of the loop. The execution
flow and the instruction scheduling per inner loop iteration
is presented in ??. A more detailed representation of the
computational execution flow is shown in the upper side of
??, where each one of the k + 1, with k = 4, 32 × 32-bit
multiplication per inner loop iteration are shown.

B. Multi-precision square

Multi-precision squaring is also a fundamental building
component for ECC calculation. It has similar qualities to
multiplication; however, when a number is multiplied by itself,
the limbs of both operands coincide. As a consequence, many
of the 32× 32-bit multiplications may be removed simply by
doubling the results (i.e., the accumulative multiplication of
limb n and m of the operand, when m = n, is going to the
the double of only one of the multiplications, or shifting right
by 1). As a result, squaring may be implemented at a far lower
cost than multi-precision multiplication.

The authors of [?] offer the first and, to our knowledge,
quickest multi-precision squaring design. The architecture is
built on a process similar to Product Scanning. However, they
combine it with the notion of Refined-OC for execution flow
backward, therefore their design still includes the curve in the
square’s midpoint.

The design mixes two separate row-types, one of which is
implemented in a sub-squaring way and the other in a sub-
multiplication form, similar to [?]. The sub-squaring blocks

Figures/ECC448 SideChannel Graphs/ECC448_nomitigation/1st-order-tvla-10000-nomitigation-eps-converted-to.pdf

(a) TVLA t-test.

Figures/ECC448 SideChannel Graphs/ECC448_nomitigation/100000-samples-1st-order-tvla-10000-eps-converted-to.pdf

(b) Magnified t-test values for 100,000 samples.

Figure 2. TVLA graphs showing data leak for the unprotected Montgomery
Ladder execution using 10,000 traces.

6

Figures/ECC448 SideChannel Graphs/ECC448_pointrandom/1st-order-tvla-10000-pointrandom-eps-converted-to.pdf

Figure 3. TVLA graphs showing data leak for the protected Montgomery
Ladder design based on point randomization DPA countermeasure using
10,000 traces.

Figures/ECC448 SideChannel Graphs/ecc-448-SB-10000-eps-converted-to.pdf

Figure 4. TVLA graphs showing data leak for the protected Montgomery
Ladder design based on scalar blinding DPA countermeasure using 10,000
traces.

Figures/ECC448 SideChannel Graphs/ecc-448-both-10000-eps-converted-to.pdf

(a) TVLA t-test.

Figures/ECC448 SideChannel Graphs/ECC448_scalarblinding_and_pointrandom/100000-samples-1st-order-tvla-10000-both-eps-converted-to.pdf

(b) Magnified t-test values for 100,000 samples.

Figure 5. TVLA graphs showing data leak for the protected Montgomery
Ladder design based on point randomization and scalar blinding DPA coun-
termeasure using 10,000 traces.

7

Table I
CURVE25519 AND CURVE448 ECDH AND EDDSA SCA UNPROTECTED

VS. PROTECTED IMPLEMENTATIONS [KCC]

Work Freq. X448 Ed448 KeyGen Ed448 Sign Ed448 Verify Protected[MHz]
FourQ1 543 - - - U

Curve255192 84 894 390 544 1,331 U

Curve255193 16 625 - - - U168 656 - - -
Curve255194 24 2,339 - - - F

Curve4485 24 6,218 - - - UU168 6,286 - - -

Ed4486 24 - 4,069 6,571 8,452 U168 - 4,195 6,699 8,659

Curve4487 24 3,221 3,536 6,038 7,404 U168 3,975 4,282 6,787 8,854

This work

24
3,503 3,826 6,328 7,404 PR
4,151 4,510 7,012 7,404 SB
4,465 4,841 7,343 7,404 F

168
4,344 4,669 7,173 8,854 PR
5,128 5,472 7,975 8,854 SB
5,538 5,913 8,417 8,854 F

Refer to:1 [?],2 [?],3 [?],4 [?], 5 [?], 6 [?], 7 [?]

are placed at the start and end of each row and continue until
the row reaches its maximum length. Following that, the sub-
multiplication block is used, and the result is added to the
sub-squaring block result.

The implementation of multi-precision multiplication and
squaring in [?] shows significant speed record and, thus, is
focus of this work adding the required SCA countermeasures
and benchmarking into wolfSSL TLS 1.3.

IV. TLS 1.3 AND WOLFSSL

Transport Layer Security (TLS) is the most frequently used
network protocol for creating secure communication, and it
is implemented and supported by every major cryptographic
library. The protocol’s widespread adoption opened gap for
many attacks to the TLS1.2. The Internet Engineering Task
Force (IETF) standardized the next 1.3 version [?] of the
protocol in 2018, which modified the execution paradigm,
increased security, modularity, and execution speed.

Thus, most cryptographic libraries provide TLS 1.3 which
simplifies and cleans up the existing TLS 1.2 version, boosting
security and implementation strength while drastically reduc-
ing computational and communicational delay due to the one
round trip required for the full handshake. TLS 1.3, most
crucially in the context of this study, supports Curve448 and
Ed44.

Key exchange, server parameters, and authentication are
the three steps of TLS 1.3, sometimes known as the TLS
handshake. During the key exchange, the client sends a
ClientHello message with session and feature informa-
tion. The server learns the highest available TLS version
from \texttt{ClientHello}. Finally, the client offers a list of
supported preferred ciphersuites. It’s important to note that
the server can bypass ciphersuites if they are not preferred
and proceed with others.

The server sends a ServerHello message with a nonce
and legacy version. This message’s ciphersuite, which encrypts
transmission, is very important. Extensions include server

name, supported groups, signature techniques and certificates,
CAs, pre-shared keys, etc. TLS 1.3 encrypts anything after
the ClientHello. Thus, some extensions send their Server
Parameters phase data in ciphertext.

The ServerHello message initiates authentication by
transmitting its own certificate and possibly requesting client
authentication. It’s worth noting that the server’s signature
covers the entire handshake message set, not just the certifi-
cate. This stage sends a completion message, which includes
a MAC of the complete data length, giving key confirmation
or authentication in PSK mode, and the application data may
begin to be sent from server to client. The client completes
the authentication by checking the server’s certificate and, if
necessary, submitting its own. Following that, a completion
message is sent, and both communication parties can safely
share application data.

WolfSSL is a popular cryptography library for low-end
embedded devices with limited computation, memory, battery
life, and bandwidth. Due to its portable C implementations,
wolfSSL reduces execution delay and optimizes code size.
Client programs benefit from the library’s straightforward
APIs, rich documentation, and current crypto primitives. Wolf-
SSL supports TLS 1.3 and experimental post-quantum and
hybrid ciphersuites. Other efforts [?] have improved crypto-
graphic algorithm time (Curve25519) and side-channel safety
for low-end devices.

This article is the first to combine side-channel protection,
TVLA analysis of countermeasure efficacy, and handcoded
ARMv7 assembly implementation of Curve448 arithmetic. We
propose secure Curve448 and Ed448 at a lower cost than
the original wolfSSL design, but at the risk of non-portable
platform specific assembly implementation.
V. SCA COUNTERMEASURES, TVLA AND PERFORMANCE

IMPACT

Side-channel analysis (SCA) is based on observing a rela-
tion between physical behavior of a system and the secret
value. Data leak may be produced by non uniform execu-
tion time, power consumption, or electromagnetic emissions.
Based on the processor resource utilization, a malicious party
could recover secret information about a communication party.
Therefore, careful analysis should be performed even when
constant time implementation is promised.
A. Setup

This study examines the latest Montgomery Ladder-based
implementation of the Curve448 key agreement and Ed448
digital signature technology, which use constant-time multi-
precision multiplication and squaring. We collected power use
data and used TVLA based on t-statistic to assess distin-
guishability to study the implementation design and potential
DPA threats. Welch’s t-test calculates a t-statistic from TVLA
traces’ mean and standard deviation, where a threshold indi-
cates information leakage. We cautiously adjusted the cutoff
value at 6 based on [?] and [?] to reduce false positive values.

For the setup of the system we use NewAE CW308T-
STM32F board, which features the target Cortex-M4 platform,
along with NewAE CW308 UFO. The configuration is linked
to a NewAE Chipwhisperer Lite board, which allows the target

8

Table II
CURVE448 ECDH AND EDDSA SCA UNPROTECTED VS. PROTECTED

IMPLEMENTATIONS IN WOLFSSL BENCHMARK TEST AND AS PART OF THE
TLS 1.3 HANDSHAKE.

Work
Operation Curve448 ECDH Ed448DSA

Protectedkeygen agree keygen sign verify

wolfSSL1

ops 3 4 6 6 2

U
sec 1.278 1.706 1.071 1.142 1.020

avg ms 426.000 426.500 178.500 190.333 510.000
ops/sec 2.347 2.345 5.602 5.254 1.961

TLS 1.3 Client 3.411987 [ms] / 57911551 [CCs]

Curve4482

ops 5 6 5 6 2

U
sec 1.051 1.255 1.063 1.491 1.141

avg ms 210.200 209.167 212.600 248.500 570.500
ops/sec 4.757 4.781 4.704 4.024 1.753

TLS 1.3 Client 2.996094 [ms] / 50802387 [CCs]

This work

ops 5 6 5 4 2

PR
sec 1.146 1.365 1.153 1.067 1.142

avg ms 229.200 227.500 230.600 266.750 571.000
ops/sec 4.363 4.396 4.337 3.749 1.751

TLS 1.3 Client 3.043091 [ms] / 51524459 [CCs]

This work

ops 4 4 4 4 2

SB
sec 1.012 1.008 1.020 1.165 1.149

avg ms 253.000 252.000 255.000 291.250 574.500
ops/sec 3.953 3.968 3.922 3.433 1.741

TLS 1.3 Client 3.067017 [ms] / 51940135 [CCs]

This work

ops 4 4 4 4 2

F
sec 1.086 1.082 1.094 1.236 1.150

avg ms 271.500 270.500 273.500 309.000 575.000
ops/sec 3.683 3.697 3.656 3.236 1.739

TLS 1.3 Client 3.110107 [ms] / 52738762 [CCs]
Refer to:1 [?],2 [?]

ARM platform to interact with the PC. The test results are
based on USB3 oscilloscope Picoscope 3000. To carefully
measure the implementation, we operate the target board at
25MHz. To guarantee that the traces are indistinguishable, we
randomly choose between using a fixed input scalar value or
a random scalar.

When the implementation is unprotected, as seen in [?], we
publish the gathered TVLA graphs based on the t-test in ??.
It is simple to discover that the obtained traces indicate data
leak. We gather another 10,000 traces after applying the point
randomization SCA countermeasure and display the TVLA
result in ??. The data leak is visually reduced, but not elimi-
nated; so, this single countermeasure is insufficient to secure
the design. We incorporate scalar blinding protection into the
design and publish the TVLA findings in ??, where, as with
point randomization, the effort is insufficient to guarantee the
user a SCA protected implementation, however, it is noticeable
that the design is better protected. Finally, we provide the
gathered data base on the integrated countermeasure design
??, which enables full SCA protected architecture. As can
be seen, there is no association between data processing and
power usage in the observed numbers.

Only after securing the design, we could proceed to the
integration of the code into the cryptographic library wolfSSL
since deploying code in industry requires exhaustive security
analysis of the design.

B. Protected Design Performance

To evaluate the performance impact of our adopted coun-
termeasure, we test our design on the SMT32F407-DK mi-

crocontroller running @24MHz in order to provide precise
latency eliminating false stalls produces by memory control
unit stalls. We also report out results @168MHz in order to
provide a real scenario boosting the speed to the maximum
board frequency.

We report the obtained results in ??, where we report other
implementation for comparison purposes. We notice that the
short prime Curve25519 and FourQ show much more effi-
cient implementation (orders of magnitudes especially when
comparing the unprotected design with out protected design).
However, we should notice that Curve448 operates on almost
double size integers and provides much higher security level.
Therefore, this discrepancy is expected.

We observe ∼ 300KCC, ∼ 900KCC, and ∼ 1, 200KCC
of execution overhead when considering X448 running
@24Mhz applying scalar blinding, point randomization and
full SCA countermeasure protection to the design. For Ed448
key generation we observe similar number of clock cycle
overhead and ∼ 1.08× , ∼ 1.28×, and ∼ 1.36× increased
performance for the three SCA countermeasure scenarios,
respectively. Signing SCA protection comes at a similar cost.

VI. WOLFSSL TLS 1.3 PERFORMANCE EVALUATION

In this work, we report our results after integrating the the
unprotected code in the wolfCrypt cryptographic engine, we
analyze the performance and compare it with their previous
design. Afterwards, we add the proposed countermeasures and
again measure the performance.

?? show the benchmarking results when running the wolf-
SSL test on STM32F413-DK microcontroller. We notice that
the results obtained after integrating the Curve448 and Ed448
arithmetic operations from [?] result in reduced latency, thus,
allow more operations to execute in the same tame slot. We
notice that the X448 performance shows x2 optimized imple-
mentation. The execution of Ed448 does not simply rely on
point multiplication but rather integrates other cryptographical
primitives such as hashing, therefore, is not impacted as much
as the Curve448 ECDH computational latency.

After applying point randomization we observe that the
design of X448 drops by ∼ 19ms, in both the key generation
and the agreement. Additionally, the Ed448 point randomiza-
tion also comes at the same cost ∼ 18ms for both the key
generation and the signing functions. The stand alone adoption
of scalar blinding requires around additional ∼ 40ms per
function. Finally, the fully protected design comes at a relative
cost of ∼ 60ms per function.

We increase the implementation time of X448, Ed448 key
generation and signature with ∼ 1.29× for all the functions.
However, we provide protected design for the highly deployed
in the IoT world Cortex-M4 platform.

Finally, we report the timing and the number of clock cycles
required per TLS 1.3 handshake roundtrip, running the client
of the STM32F413-DK board and the server on the PC. We
use the USART serial connection as a communication channel,
therefore, the results are higher then expected, based on the
communication latency.

9

VII. CONCLUSION

In this paper, we examine the most recent Curve448 and
Ed448 Montgomery Ladder-based architectures for ECDH
and EdDSA, with a focus on the Cortex-M4 ARM platform
and side-channel analysis attacks. To assess leakage in the
unprotectedÂ scheme, we set up an experimental scenario and
conductÂ the TVLA test. We secure the Curve448 by using
scalar blinding and point randomization DPA countermeasures
and analyzing the TVLA findings to confirm that our design
is secure. Finally, we incorporate our protected assembly
versions of Curve448 and Ed448 into wolfSSL and test their
performance as a standalone primitive and as part of the TLS
1.3 protocol.

