COLLEGE OF ENGINEERING & COMPUTER SCIENCE Florida Atlantic University

Abstract & Introduction

Public Key Cryptography (PKC) protects data confidentiality when transmitting it through an unsecured channel, such as the Internet. We present an efficient design for both Curve448 Elliptic Curve Diffie-Hellman (ECDH) and Ed448 Edwards-curves Digital Signature Algorithm (EdDSA) algorithms:

- We implement ARMv7 highly optimized low-level finite field arithmetic.
- Our design outperforms previous ECDH implementations by more than 48%.
- Our Ed448 DSA shows a speedup of 11%, requiring 6 and 7.4 MCCs for sign and verify.

Curve448 & Ed448

A Montgomery Elliptic Curve Curve448 over a finite field \mathbb{F}_p is defined by: $E_M/\mathbb{F}_p: v^2 \equiv u^3 + Au^2 + u$

where the value of A is defined as 156326 and $p = 2^{448} - 2^{224} - 2^{24} - 2^{24$ 1. Montgomery curves have their birationally analogue Edwards curves, where Curve448 can be represented by the solutions to the equation:

$$E_{Ed}/\mathbb{F}_p: ax^2 + y^2 = 1 + dx^2y^2$$

with d = -39081 and a = 1. The core of Curve448 and Ed448 is the scalar-point multiplication where $P = [k] \cdot Q$ is the addition of point Q to itself k times.

ARMv7-M Architecture

The ARM Cortex-M4 processor's architecture delivers a set of powerful instructions that are devoid of structural hazards. Table 1. ARMv7-M ISA for memory access and MAC instructions

Instruction	Functionality					
	$\mathtt{R}_n \gets \texttt{memory}$					
(V)LDR/ (V)STR	$\texttt{memory} \gets \texttt{R}_n$					
	$\mathtt{S}_n \gets \mathtt{memory}$					
	$\texttt{memory} \gets \texttt{S}_n$					
VMOV	$\mathtt{R}_n \gets \mathtt{S}_{\mathtt{m}}$					
	$\mathtt{S}_{\mathtt{m}} \gets \mathtt{R}_{\mathtt{n}}$					
UMULL	$\texttt{Rd}_1\text{, }\texttt{Rd}_2\leftarrow\texttt{R}_n\ \times\ \texttt{R}_m$					
UMAAL	$\texttt{Rd}_1\text{, }\texttt{Rd}_2\leftarrow\texttt{R}_n\ \times\ \texttt{R}_m\ +\ \texttt{Rd}_1\ +\ \texttt{Rd}_2$					

Time-Efficient Finite Field Microarchitecture Design for Curve448 and Ed448 on Cortex-M4

Mila Anastasova¹, Reza Azarderakhsh¹, Mehran Mozaffari Kermani², and Lubjana Beshaj³

Computer and Electrical Engineering and Computer Science Department and I-SENSE at Florida Atlantic University, Boca Raton, FL, USA (manastasova2017, razarderakhsh)@fau.edu

> Computer Engineering and Science Department at University of South Florida, Tampa, FL, USA, mehran2@usf.edu

> > United States Military Academy West Point, West Point, NY, USA, lubjana.beshaj@westpoint.edu

Proposed Design for Field Arithmetic

We present a novel technique for multi-precision multiplication and squaring, with an emphasis on increasing row (inner loop) size and hence decreasing memory accesses for partial value accumulation.

Figure 1. Proposed architecture for 448-bit multi-precision multiplication. Black lines denote inner loop execution.

Figure 2. Proposed architecture for 448-bit multi-precision squaring. Red line denotes additional simulated lane for increased word size of the doubled operand.

Performance Evaluation & Conclusions

We compare our work with the best-known counterparts in the literature targeting the same platform for Curve448- and Ed448based algorithms and we present the latency results in number Table 2. Finite field operations for Curve448/Ed448 targeting ARMv7-M

	Arithmetic Performance Evaluation									
Ref.		Fp		Group						
	Mul	Sqr	Inv	Add &	Double	Multiply				
	Curve448									
Seo et al. [4]	821	821	363,485	6,566	6,567	6,218,135				
This work	613	532	247,707	6,640(total)	3,220,682				
	25.33%	35.20%	6 31.85%	49.4	4%	48.21%				
	Ed448									
Anastasova et al. [1]	705	705	325,997	8,465(total)	3,703,755				
This work	613	532	247,934	7,323(total)	3,259,379				
	13.05%	24.54%	6 23.95%	13.4	9%	12.00%				

number of clock cycles in Tables 2 and 3. We mark around 48.2% and 36.8% of speedup for X448 @24MHz and @168MHz, respectively. We report a speedup of 13.1%, 8.1%, and 12.4% for Ed448 EdDSA.

Table 3. Curve 25519 and Curve448 key exchange and digital signature computational latency on IoT platforms

Work	Platform	Freq. [MHz]	X448	Ed448 KeyGen	Ed448 Sign	Ed448 Verify
Curve25519 [2]	Cortex-M4	84	894	390	544	1,331
Curve448 [3]	AVR	32	103,229	_	-	_
	MSP	25	73,478	_	-	-
Curve448 [4]	Cortex-M4	24	6,218	_	_	_
		168	6,286	_	-	-
Ed448 [1]	Cortex-M4	24	_	4,069	6,571	8,452
		168	-	4,195	6,699	8,659
This work	Cortex-M4	24	3,221	3,536	6,038	7,404
		168	3,975	4,282	6,787	8,854

In this work, we present a novel design for time-efficient finite field arithmetic over Curve448 and Ed448.

[1] Mila Anastasova, Mojtaba Bisheh-Niasar, Hwajeong Seo, Reza Azarderakhsh, and Mehran Mozaffari Kermani. Efficient and Side-Channel Resistant Design of High-Security Ed448 on ARM Cortex-M4. In 2022 IEEE International Symposium on Hardware Oriented Security and *Trust (HOST)*, pages 93–96. IEEE, 2022.

[2] Hayato Fujii and Diego F Aranha. Curve25519 for the Cortex-M4 and beyond. In International Conference on Cryptology and Information Security in Latin America, pages 109–127. Springer, 2017.

[3] Hwajeong Seo. Compact implementations of Curve Ed448 on low-end IoT platforms. ETRI Journal, 41(6):863–872, 2019.

Cryptology, pages 125–139. Springer, 2020.

References