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Introduction

Introduction

Public key cryptography is essential for data confidentiality and integrity
of data conveyed across an unsecured channel.

The classical cryptographic protocols, however, such as RSA and ECC
relying on the difficulty of factoring large prime numbers and the Elliptic
Curve Discrete Logarithm Problem (ECDLP), are vulnerable to quantum
attacks.

Thus, a transition to post-quantum robust protocols was initialized by
NIST [9] to offer secure data transmission in the era of large-scale
quantum computers.
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Supersingular Isogeny Key Encapsulation

Supersingular Isogeny Key Encapsulation

Key Generation

Input : -
Output : s, skA,pkA
1. skA ∈R Z/2eAZ 2. ϕA : E0 → EA with
ker(ϕA) = ⟨PA + [skA]QA⟩ 3.
pkA = (EA, ϕA(PB), ϕA(QB)) 4.
s ∈R {0,1}t

Encapsulation

Input : pkA
Output : c, ss
1. m ∈R {0,1}t

2. r = H(m||pkA)mod3eB

3. ϕB : E0 → EB with
ker(ϕB) = ⟨PB + [r ]QB⟩
4. pkB = {EB, ϕB(PA), ϕB(QA)}
5. ϕ′

B : EA → EAB with
ker(ϕ′

B) = ⟨ϕA(PB) + [r ]ϕA(QB)⟩
6. c = (pkB||K (j(EAB))⊕ m)
7. ss = (J(m||c))

Decapsulation

Input : s, skB,pkB, c
Output : ss
1. ϕ′

A : EB → EBA with
ker(ϕ′

A) = ⟨ϕB(PA) + [skA]ϕB(QA)⟩
2. m′ = c1 ⊕ K (j(EBA))
3. r ′ = H(m′||pkA)mod3eB

4. ϕ′′
A : E0 → EB′ with

ker(ϕ′′
A) = ⟨PB + [r ′]QB⟩

5. pk ′
B = {EB′ , ϕ′′

A(PA), ϕ
′′
A(QA)}

6. IF pk ′
B = pkB

ss = (J(m′||c))
ELSE ss = (J(s||c))

Figure – SIKE algorithm [5]. H, K and J denote hash functions. p = 2eA 3eB − 1,
E0/Fp2 , {PA,QA} and {PB ,QB} are public parameters.

The SIKE protocol, which is based on pseudorandom walks on
isomorphic graphs, assures that both communication parties reach a
shared secret based on a curve j−invariant.
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Supersingular Isogeny Key Encapsulation

Related Work

The pyramidal structure of the isogeny-based protocol permits
optimization of its many levels.

As a result, there have been several research and engineering
groups devoted to optimizing the higher-level isogeny
optimizations of the SIKE protocol in order to find an optimal
solution for the calculation of the heavy isogeny maps [3, 2, 4, 10].

Focusing on the lowest layer of the computational pyramid of SIKE,
there are several implementations, targeting resource constrained
devices.

The authors in [1, 7] provide implementation solutions for the
low-level finite filed arithmetic of SIKE and achieve a record
speedup on the target platform, running the SIKE protocol in
139MCCs for security Level I.
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Target Platform

ARM Cortex-M4

NIST recommended microcontroller for benchmarking.

Features
ARMv7-M architecture
16 32-bit core registers
32 32-bit FP registers

1 CC per instruction except
memory accesses

Implementation strategies

Use the entire register set.

Operate on larger operand sets.

Re-organize the instruction flow for efficient design.
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Proposed Finite Field Design

Proposed Design - Notation
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Figure – Deployed list of inner multi-precision loop execution flows along
with the associated assembly instruction set.
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Proposed Finite Field Design

Multi-precision Multiplication
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Figure – Proposed architecture for multi-precision multiplication.
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Proposed Finite Field Design

Multi-precision Squaring

2

S0S26
1

A132A0

A PS A/2A

PS

2

1
S0S31

A152A0

A PS A/2A

PS

2

1
S0S31

A192A0

A
PS

A/2A

PS
Stack

2

1
S0S31

A232A0

A
PS

A/2A

PS
Stack

(a) P434.

2

S0S26
1

A132A0

A PS A/2A

PS

2

1
S0S31

A152A0

A PS A/2A

PS

2

1
S0S31

A192A0

A
PS

A/2A

PS
Stack

2

1
S0S31

A232A0

A
PS

A/2A

PS
Stack

(b) P503.

2

S0S26
1

A132A0

A PS A/2A

PS

2

1
S0S31

A152A0

A PS A/2A

PS

2

1
S0S31

A192A0

A
PS

A/2A

PS
Stack

2

1
S0S31

A232A0

A
PS

A/2A

PS
Stack

(c) P610.

2

S0S26
1

A132A0

A PS A/2A

PS

2

1
S0S31

A152A0

A PS A/2A

PS

2

1
S0S31

A192A0

A
PS

A/2A

PS
Stack

2

1
S0S31

A232A0

A
PS

A/2A

PS
Stack

(d) P751.

Figure – Proposed architecture for the implementation of
multi-precision squaring for all SIKE primes.
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Proposed Finite Field Design

Multi-precision Reduction
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Figure – Proposed architecture for the implementation of
multi-precision reduction for all SIKE primes.
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Performance Results

Results Subroutine Latency

Table – SIKE finite field arithmetic latency targeting STM32F407VG

Implementation
Latency [CC]

Fpmul Fpsqr Fpmul Fpsqr Fpmul Fpsqr Fpmul Fpsqr

SIKEp434 SIKEp503 SIKEp610 SIKEp751

SIDH v3.3 [6] 17,964 17,964 23,364 23,364 35,047 35,047 49,722 49,722

Seo et al. [8] 1,110 981 1,333 1,139 - - 2,744 2,242

Seo et al. [8] 1,011 889 1,221 1,024 1,869 1,535 2,577 2,066

Anastasova et al. [1] 769 594 952 734 1,506 1,171 2,103 1,543

This work 702 563 895 684 1,435 997 2,062 1,444
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Performance Results

Performance Results @24MHz

Table – Report of SIKE timing results in terms of clock cycles and
speedup percentage on STM32F407 running @24MHz

Implementation
Timing [cc×106]

KeyGen Encaps Decaps Total KeyGen Encaps Decaps Total

SIKEp434 SIKEp503

SIDH v3.3 [6] 650 1,065 1,136 2,202 985 1,623 1,726 3,350

Seo et al. [8] 74 122 130 252 104 172 183 355

Seo et al. [8] 54 87 94 181 74 121 129 250

Anastasova et al. [1] 41 67 72 139 58 96 102 197

This work 39.0 63.6 68.0 131.6 55.9 91.8 97.7 189.5
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Performance Results

Performance Results @24MHz

Table – Report of SIKE timing results in terms of clock cycles and
speedup percentage on STM32F407 running @24MHz

Implementation
Timing [cc×106]

KeyGen Encaps Decaps Total KeyGen Encaps Decaps Total

SIKEp610 SIKEp751

SIDH v3.3 [6] 1,819 3,348 3,368 6,716 3,296 5,347 5,742 11,089

Seo et al. [8] - - - - 282 455 491 946

Seo et al. [8] 131 241 243 484 225 365 392 757

Anastasova et al. [1] 106 195 196 391 182 295 317 613

This work 102.5 188.1 189.3 377.4 179.4 290.5 312.1 602.7
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Conclusions

Conclusions

We observe 8.71%, 5.99%, 4.46%, and 2.04% of latency reduction for
the execution of modular multiplication based on prime lengths of 434-,
503-, 610-, and 751-bits, respectively. We achieve 5.38%, 6.43%,
14.64%, and 6.42% of speedup compared to the counterparts in [1] for
the modular squaring routine.

We integrate the suggested multi-precision multiplication, squaring and
reduction routines in the SIKE implementation and we obtain more than
5.6% of speedup for SIKEp434. We report 3.93%, 3.48%, and 1.61% of
latency reduction for SIKEp503, SIKEp610, and SIKEp751, respectively.
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Conclusions
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