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Introduction

k Motivation
Complexities of Curve448 with extended field size on IoT devices
Secure implementation challenges due to SCA leakages
Importance of hybrid cryptosystems to transition to PQC
Lack of Curve448 implementation

k Curve448 Protected Implementation
Addressing backdoor issues in other ECC constructions [1]
Considering Safe-Curve policies [2]
Offering 224-bit security for applications at a higher security level

[1] D. J. Bernstein and T. Lange. 2011. Security dangers of the NIST curves. https://www.hyperelliptic.org/tanja/vortraege/20130531.pdf
[2] D. J. Bernstein and T. Lange. 2016. SafeCurves: choosing safe curves for elliptic-curve cryptography.
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Background

k Curve448 architecture on Cortex-M4 by Seo et. al. [1]
Performed 26 scalar multiplications per second at 168 MHz
Utilized extended affine and projective coordinates

Investigated constant-time algorithms

k Curve448 implementations
FPGA implementations and SCA evaluation by Sasdrich et. al.
and Bisheh-Niasar et. al.
Ed448 implementation on AVR, MSP by Seo et. al.
Ed448 implementation on FPGA by Bisheh-Niasar et. al.

Improve field arithmetic with careful
memory management
Employ efficient restricted-X coordinates
Embed advanced security mechanisms to
avoid DPA attacks

[1] Hwajeong Seo and Reza Azarderakhsh. Curve448 on 32-Bit ARM Cortex-M4. In Information Security and Cryptology - ICISC 2020
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Our Contributions

k Optimize low-level field arithmetics:

Carry/borrow catcher technique

Refined-Operand Caching method

Interleaved reduction technique

k Exploit the special form of Curve448 prime

k Implement and evaluate side-channel and fault
injection (FI) countermeasures

Reduce memory access

18% low-level speedup

40% total speedup

Prevent leakage at the cost of 8%-22%
overhead

A trade-off between performance and
required protection
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Cortex-M4 Platform

k NIST recommended STM32F407-VG platform:

ARMv7-M architecture

16 32-bit core registers

32 32-bit FP registers
1 cycle per instruction except memory access

Implementation strategies:

Use the entire register set.
Operate on larger operand sets.
Re-organize the instruction flow for efficient
design.

STM32F407-VG Discovery board
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Modular Addition/Subtraction

k Implement a carry/borrow catcher technique
k Use reduced instruction set
k Two arithmetic operations on long integers in parallel
k Alternate the add/sub blocks
k Reduce the number of memory accessing instructions

A B
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Carry/
Borrow 
Catcher

Carry/
Borrow 
Catcher

R

Carry/
Borrow 
Catcher

= 0x0 
= 0xF

when carry/borrow not active
when carry/borrow active
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RSBC

when CBC = 0x0
when CBC = 0xF

 = 0 
 = 1

Carry/Borrow 
Flag

Carry/
Borrow 
Catcher #0

Bout

Carry/Borrow Catcher

Alternating the add/sub blocks
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Modular Multiplication

k Refined-Operand Caching method

k Multi-precision multiplication achieved by
UMAAL instruction

k Reduce the number of pipeline stalls by
removing the interdependency

k Caching width = 4 words (128-bit)

A = (A[13], ...,A[1],A[0])
B = (B[13], ...,B[1],B[0])
C = (C [27], ...,C [1],C [0])

A[0]B[0]

A[0]B[13]

A[13]B[13]

C[0]C[13]C[26]

1

A[13]B[0]

2

3

4

. . . . . .

448-bit wise multi-precision multiplication.
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Memory Managment

Reserved
SRAM
(16KB)
SRAM

(112KB)

Reserved

0x2001 C000 
 0x2001 FFFF

0x2000 0000 
 0x2001 BFFF

512MB 
Block 1 SRAM

512MB 
Block 0 Code

0x2000 0000 

 0x3FFF FFFF

0x0000 0000 

 0x1FFF FFFF

CCM data RAM 
(64KB data SRAM)

0x1000 0000 
 0x1000 FFFF

Aliased memory

...

...

Cortex-M4 memory map

Features 1MB of flash and 192KB of RAM - 128KB SRAM and 64KB CCM RAM.

The 128KB of SRAM - not enough to run Curve448 scalar multiplication.

Reserve a region inside the CCM RAM to place part of the large data structures, residing into the stack.
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Implementation Results

k Implementation results for Curve448 scalar multiplication on STM32F4 platform:

Work Freq Memory Latency Time Throughput Improvement
[MHz] [B] [CC×106] [ms] [op/sec] [%]

Seo et. al. [1] - 6.218 259 3.9 -
Double-and-always-Add 24 564 5.269 219 4.6 15.2

Montgomery ladder 788 3.740 155 6.4 39.8
Seo et. al. [1] - 6.286 37.4 26.7 -

Double-and-always-Add 168 564 5.532 32.9 30.4 12.0
Montgomery ladder 788 3.917 23.3 42.9 37.6

k Montgomery ladder:
29% performance improvement over the restricted X -coordinate
40% memory utilization penalty

k 1.6× speedup (43 scalar multiplications per second) at 168 MHz
[1] Hwajeong Seo and Reza Azarderakhsh. Curve448 on 32-Bit ARM Cortex-M4. In Information Security and Cryptology - ICISC 2020
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Implementation Results

k Implementation results on embedded processors:

Algorithm pre/post Cortex Freq Latency Time Throughput
quantum [MHz] [CC×103] [ms] [op/sec]

Curve25519 [Fujii et. al.] pre M4 48 907 18.9 52.9
Secp256r1 [Lenngren] pre M4 64 994 15.5 64.3

FourQ [Liu et. al.] pre M4 168 511 3.0 328.8
Secp384r1 [Tschofenig et. al.] pre M3 100 20,200 202 4.9
Secp521r1 [Tschofenig et. al.] pre M3 100 35,100 351 2.8
SIKEp434 [Anastasova et. al.] post M4 24 68,260 2,844 0.3

Curve448 [Ours] pre M4 168 3,917 23.3 42.9

k Higher security levels come with a performance penalty

k Possibility of algorithmic improvements to reduce the required computation to break ECC.
k Moving to a higher security level to keep a margin against unknown attack improvements
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SCA-Protected Performance Results
k Protected Cortex-M4 implementation results:

Countermeasure Freq Latency Time Throughput Cost
[MHz] [CC×106] [ms] [op/sec] [%]

Unprotected

168

3.917 23.3 42.9 -
Point Randomization 4.222 25.1 39.8 7.8

Scalar Blinding 4.417 26.3 38.0 12.7
Both countermeasures 4.789 28.5 35.1 22.2

Montgomery ladder: countermeasure against timing, SPA, and sign change fault attacks
Base point randomization: add one multiplication per ladder step
Scalar blinding:

Countermeasure to avoid DPA, cross-correlation, safe-error, and differential fault analysis attacks
Extend the number of ladder step iterations

Flow-counter countermeasure: protection against FI loop-abort attacks with negligible latency overhead
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SCA Evaluation

NewAE CW308T-STM32F

Cortex-M4 at 25 MHz

Capturing power traces via Picoscope 3000

Sampling rate of 125 MS/s

TVLA with pool of 10,000 traces

α = x1−x2√
σ2

1
n1

+
σ2

1
n2

Leakage detection test on Curve448 after applying TVLA
with a pool of 10,000 measurements:
(Up) t-test values for an unprotected implementation,
(Down) t-test values by enabling both countermeasures
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Conclusion and future works

k Conclusion:

Implementing a secure design of Curve448 targeting a 224-bit security level for the 32-bit ARM
Cortex-M4 architecture

Reducing the latency of scalar multiplication to 23 milliseconds at 168 MHz

Embedding different effective countermeasures at the cost of 8%-22% overhead

Evaluating our SCA protection with TVLA over 10,000 power measurements

k Future work:

Extending the design by fault attack countermeasures

Applying the method on Ed448
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Thanks for your attention.
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