Side-Channel Analysis and Countermeasure Design for

Implementation of Curve448 on Cortex-M4
HASP 2022

Mojtaba Bisheh-Niasarl, Mila Anastasoval, Abubakr Abdulgadirz, Hwajeong Seo3, and Reza Azarderakhshl’2

1CEECS Department, Florida Atlantic University, FL, USA
2P(})Secure Technologies, LLC, Boca Raton, FL, USA

3Hansung University, South Korea

October 1, 2022

Bisheh-Niasar et. al. HASP 2022 1/15

@ Introduction
@ Proposed Architecture

© Implementation Results and Comparison
@ SCA Evaluation

© Conclusion

Bisheh-Niasar et. al. HASP 2022 2/15

Introduction

(J Motivation
@ Complexities of Curve448 with extended field size on loT devices
@ Secure implementation challenges due to SCA leakages
@ Importance of hybrid cryptosystems to transition to PQC
@ Lack of Curve448 implementation

(1 Curve448 Protected Implementation
@ Addressing backdoor issues in other ECC constructions [1]
@ Considering Safe-Curve policies [2]
@ Offering 224-bit security for applications at a higher security level

[1] D. J. Bernstein and T. Lange. 2011. Security dangers of the NIST curves. https://www.hyperelliptic.org/tanja/vortraege/20130531.pdf
[2] D. J. Bernstein and T. Lange. 2016. SafeCurves: choosing safe curves for elliptic-curve cryptography.

Bisheh-Niasar et. al. HASP 2022 3/15

Background

U Curve448 architecture on Cortex-M4 by Seo et. al. [1]
@ Improve field arithmetic with careful

@ Performed 26 scalar multiplications per second at 168 MHz
memory management

@ Utilized extended affine and projective coordinates - . .
pro) @ Employ efficient restricted-X coordinates

@ Investigated constant-time algorithms @ Embed advanced security mechanisms to
avoid DPA attacks

O Curvesas implementations

@ FPGA implementations and SCA evaluation by Sasdrich et. al.
and Bisheh-Niasar et. al.

@ Ed448 implementation on AVR, MSP by Seo et. al.
@ Ed448 implementation on FPGA by Bisheh-Niasar et. al.

[1] Hwajeong Seo and Reza Azarderakhsh. Curve448 on 32-Bit ARM Cortex-M4. In Information Security and Cryptology - ICISC 2020

Bisheh-Niasar et. al. HASP 2022 4/15

Our Contributions

Q Optimize low-level field arithmetics:
@ Carry/borrow catcher technique
@ Refined-Operand Caching method
@ Interleaved reduction technique

| Exploit the special form of Curve448 prime

| Implement and evaluate side-channel and fault

injection (FI) countermeasures

Bisheh-Niasar et. al. HASP 2022 5/15

Our Contributions

Q Optimize low-level field arithmetics:

@ Carry/borrow catcher technique @ Reduce memory access
@ Refined-Operand Caching method @ 18% low-level speedup
@ Interleaved reduction technique @ 40% total speedup

| Exploit the special form of Curve448 prime

| Implement and evaluate side-channel and fault

injection (FI) countermeasures

Bisheh-Niasar et. al. HASP 2022 5/15

Our Contributions

Q Optimize low-level field arithmetics:

@ Carry/borrow catcher technique @ Reduce memory access
@ Refined-Operand Caching method @ 18% low-level speedup
@ Interleaved reduction technique @ 40% total speedup

| Exploit the special form of Curve448 prime

| Implement and evaluate side-channel and fault
injection (FI) countermeasures @ Prevent leakage at the cost of 8%-22%

overhead

@ A trade-off between performance and
required protection

Bisheh-Niasar et. al. HASP 2022 5/15

Cortex-M4 Platform

(L NIST recommended STM32F407-VG platform:

@ ARMv7-M architecture
@ 16 32-bit core registers

@ 32 32-bit FP registers

@ 1 cycle per instruction except memory access

Implementation strategies:
@ Use the entire register set.
@ Operate on larger operand sets.

@ Re-organize the instruction flow for efficient

) STM32F407-VG Discovery board
design.

Bisheh-Niasar et. al. HASP 2022 6/15

Modular Addition/Subtraction

U Implement a carry/borrow catcher technique

U Use reduced instruction set

U Two arithmetic operations on long integers in parallel
Q) Alternate the add/sub blocks

U Reduce the number of memory accessing instructions

A, B, As Pi Ao Bo
' | | | i i
A B carry _|o A B Borrow_|, A B
Catcher | ™" Catcher | "
R Sub R Add R Sub
P B, Po
| i i
A B e Carry A B B, |, Borrow ‘A B
"["Activator ot "I"Activator o
R Add : g Sub R Add
R, Ry Ro
Bisheh-Niasar et. al. HASP 2022

Carry/ Carry/
Borrow Borrow
Catcher Catcher

A B
g SBC
|

Carry/ ‘
Borrow =0x0 when carry/borrow not active

Catcher = OxF when carry/borrow active

Carry/Borrow Catcher

Alternating the add/sub blocks

Modular Multiplication

() Refined-Operand Caching method

Q Multi-precision multiplication achieved by
UMAAL instruction

) Reduce the number of pipeline stalls by
removing the interdependency

U Caching width = 4 words (128-bit)

o A= (A[13],..., A[1], A[0])
e B =(B[13],..., B[1], B[0])
e C=(C[27],..., C[1], C[0])

Bisheh-Niasar et. al.

e
A. #V AV(S)

o
ey
’ AVAVAV’ AVAY
. AVAVAY . AVAYAY
. AV AVAVA
\/\ #VAVAV
\VAYAV
’ AVAV/
20
AVAVAY

DWAVAVAY,
AN/
X)

\V,

(8
AVAY
\/
AV

AVAVAN
Vi
\/

Auv’
VAV’
AVAYA

A

AVAVAN
\/
!

¥
N
BRAVAVAVAN

= N
VAV,

PAVAVA
vev

IAVA
EVAVAYA
A\

BRAVAVAY
AVAVAYAN

BAVAVAVAY

AVAY
AVAV/
AVAVAVAY

448-bit wise multi-precision multiplication.

HASP 2022 8/15

Memory Managment

N

Reserved

0x2001 FFFF

Ox3FFF FFFF

512MB
33001 coop
Ox1FFF FFFF Ox2000 0000
512MB
Block 0 Code Reserved

0x0000 0000

0x1000 FFFF
0x1000 0000

Aliased memory

Cortex-M4 memory map

@ Features 1MB of flash and 192KB of RAM - 128KB SRAM and 64KB CCM RAM.

@ The 128KB of SRAM - not enough to run Curve448 scalar multiplication.

@ Reserve a region inside the CCM RAM to place part of the large data structures, residing into the stack.

Bisheh-Niasar et. al. HASP 2022 9/15

Implementation Results

D Implementation results for Curve448 scalar multiplication on STM32F4 platform:

Work Freq | Memory | Latency | Time | Throughput | Improvement
[MHZ] [B] [CCx10°] | [ms] | [op/sec] [%]
Seo et. al. [1] - 6.218 259 3.9 -
Double-and-always-Add | 24 564 5.269 219 4.6 15.2
Montgomery ladder 788 3.740 155 6.4 39.8
Seo et. al. [1] - 6.286 37.4 26.7 -
Double-and-always-Add | 168 564 5.532 329 30.4 12.0
Montgomery ladder 788 3.917 23.3 429 37.6

| Montgomery ladder:

@ 29% performance improvement over the restricted X-coordinate

@ 40% memory utilization penalty

D i16x speedup (43 scalar multiplications per second) at 168 MHz

[1] Hwajeong Seo and Reza Azarderakhsh. Curve448 on 32-Bit ARM Cortex-M4. In Information Security and Cryptology - ICISC 2020

Bisheh-Niasar et. al. HASP 2022 10/15

Implementation Results

| Implementation results on embedded processors:

Algorithm pre/post | Cortex | Freq Latency | Time | Throughput
quantum [MHz] | [CCx10%] | [ms] [op/sec]

Curve25519 [Fujii et. al.] pre M4 48 907 18.9 52.9
Secp256r1 [Lenngren] pre M4 64 994 15.5 64.3

FourQ [Liu et. al] pre M4 168 511 3.0 328.8
Secp384rl [Tschofenig et. al.] pre M3 100 20,200 202 49
Secp521r1 [Tschofenig et. al.] pre M3 100 35,100 351 2.8
SIKEp434 [Anastasova et. al.] post M4 24 68,260 | 2,344 0.3
Curve448 [Ours] pre M4 168 3,917 233 42.9

| Higher security levels come with a performance penalty

| Possibility of algorithmic improvements to reduce the required computation to break ECC.

| Moving to a higher security level to keep a margin against unknown attack improvements

Bisheh-Niasar et. al. HASP 2022 11/15

SCA-Protected Performance Results

(1 Protected Cortex-M4 implementation results:

Countermeasure Freq Latency | Time | Throughput | Cost
[MHz] | [CCx10°] | [ms] [op/sec] [%]

Unprotected 3.917 23.3 42.9 -
Point Randomization 168 4.222 25.1 39.8 7.8
Scalar Blinding 4.417 26.3 38.0 12.7
Both countermeasures 4.789 28.5 35.1 22.2

@ Montgomery ladder: countermeasure against timing, SPA, and sign change fault attacks
@ Base point randomization: add one multiplication per ladder step
@ Scalar blinding:

@ Countermeasure to avoid DPA, cross-correlation, safe-error, and differential fault analysis attacks
@ Extend the number of ladder step iterations

@ Flow-counter countermeasure: protection against Fl loop-abort attacks with negligible latency overhead

Bisheh-Niasar et. al. HASP 2022 12 /15

SCA Evaluation

@ NewAE CW308T-STM32F

@ Cortex-M4 at 25 MHz

t-value

@ Capturing power traces via Picoscope 3000

@ Sampling rate of 125 MS/s

@ TVLA with p00| of 10,000 traces 0 20000 40000 60000 80000 100000
Sample No
_ 6
X1—X;
a = 1—X2
L
Tt
1 2

t-value

Leakage detection test on Curve448 after applying TVLA
with a pool of 10,000 measurements:
(Up) t-test values for an unprotected implementation,

(Down) t-test values by enabling both countermeasures 20000 T 50000 700000
ample No.

Bisheh-Niasar et. al. HASP 2022 13/15

Conclusion and future works

U Conclusion:

@ Implementing a secure design of Curve448 targeting a 224-bit security level for the 32-bit ARM
Cortex-M4 architecture

@ Reducing the latency of scalar multiplication to 23 milliseconds at 168 MHz
@ Embedding different effective countermeasures at the cost of 8%-22% overhead

@ Evaluating our SCA protection with TVLA over 10,000 power measurements

Q Future work:
@ Extending the design by fault attack countermeasures

@ Applying the method on Ed4438

Bisheh-Niasar et. al. HASP 2022 14 /15

Thanks for your attention.

HASP 2022

