
Side-Channel Analysis and Countermeasure Design for
Implementation of Curve448 on Cortex-M4

HASP 2022

Mojtaba Bisheh-Niasar1, Mila Anastasova1, Abubakr Abdulgadir2, Hwajeong Seo3, and Reza Azarderakhsh1,2

1CEECS Department, Florida Atlantic University, FL, USA
2PQSecure Technologies, LLC, Boca Raton, FL, USA

3Hansung University, South Korea

October 1, 2022

Bisheh-Niasar et. al. HASP 2022 1 / 15

Outline

1 Introduction

2 Proposed Architecture

3 Implementation Results and Comparison

4 SCA Evaluation

5 Conclusion

Bisheh-Niasar et. al. HASP 2022 2 / 15

Introduction

k Motivation
Complexities of Curve448 with extended field size on IoT devices
Secure implementation challenges due to SCA leakages
Importance of hybrid cryptosystems to transition to PQC
Lack of Curve448 implementation

k Curve448 Protected Implementation
Addressing backdoor issues in other ECC constructions [1]
Considering Safe-Curve policies [2]
Offering 224-bit security for applications at a higher security level

[1] D. J. Bernstein and T. Lange. 2011. Security dangers of the NIST curves. https://www.hyperelliptic.org/tanja/vortraege/20130531.pdf
[2] D. J. Bernstein and T. Lange. 2016. SafeCurves: choosing safe curves for elliptic-curve cryptography.

Bisheh-Niasar et. al. HASP 2022 3 / 15

Background

k Curve448 architecture on Cortex-M4 by Seo et. al. [1]
Performed 26 scalar multiplications per second at 168 MHz
Utilized extended affine and projective coordinates

Investigated constant-time algorithms

k Curve448 implementations
FPGA implementations and SCA evaluation by Sasdrich et. al.
and Bisheh-Niasar et. al.
Ed448 implementation on AVR, MSP by Seo et. al.
Ed448 implementation on FPGA by Bisheh-Niasar et. al.

Improve field arithmetic with careful
memory management
Employ efficient restricted-X coordinates
Embed advanced security mechanisms to
avoid DPA attacks

[1] Hwajeong Seo and Reza Azarderakhsh. Curve448 on 32-Bit ARM Cortex-M4. In Information Security and Cryptology - ICISC 2020

Bisheh-Niasar et. al. HASP 2022 4 / 15

Our Contributions

k Optimize low-level field arithmetics:

Carry/borrow catcher technique

Refined-Operand Caching method

Interleaved reduction technique

k Exploit the special form of Curve448 prime

k Implement and evaluate side-channel and fault
injection (FI) countermeasures

Reduce memory access

18% low-level speedup

40% total speedup

Prevent leakage at the cost of 8%-22%
overhead

A trade-off between performance and
required protection

Bisheh-Niasar et. al. HASP 2022 5 / 15

Our Contributions

k Optimize low-level field arithmetics:

Carry/borrow catcher technique

Refined-Operand Caching method

Interleaved reduction technique

k Exploit the special form of Curve448 prime

k Implement and evaluate side-channel and fault
injection (FI) countermeasures

Reduce memory access

18% low-level speedup

40% total speedup

Prevent leakage at the cost of 8%-22%
overhead

A trade-off between performance and
required protection

Bisheh-Niasar et. al. HASP 2022 5 / 15

Our Contributions

k Optimize low-level field arithmetics:

Carry/borrow catcher technique

Refined-Operand Caching method

Interleaved reduction technique

k Exploit the special form of Curve448 prime

k Implement and evaluate side-channel and fault
injection (FI) countermeasures

Reduce memory access

18% low-level speedup

40% total speedup

Prevent leakage at the cost of 8%-22%
overhead

A trade-off between performance and
required protection

Bisheh-Niasar et. al. HASP 2022 5 / 15

Cortex-M4 Platform

k NIST recommended STM32F407-VG platform:

ARMv7-M architecture

16 32-bit core registers

32 32-bit FP registers
1 cycle per instruction except memory access

Implementation strategies:

Use the entire register set.
Operate on larger operand sets.
Re-organize the instruction flow for efficient
design.

STM32F407-VG Discovery board

Bisheh-Niasar et. al. HASP 2022 6 / 15

Modular Addition/Subtraction

k Implement a carry/borrow catcher technique
k Use reduced instruction set
k Two arithmetic operations on long integers in parallel
k Alternate the add/sub blocks
k Reduce the number of memory accessing instructions

A B

SBC

Carry/
Borrow
Catcher

Carry/
Borrow
Catcher

R

Carry/
Borrow
Catcher

= 0x0
= 0xF

when carry/borrow not active
when carry/borrow active

A B

RSBC

when CBC = 0x0
when CBC = 0xF

 = 0
 = 1

Carry/Borrow
Flag

Carry/
Borrow
Catcher #0

Bout

Carry/Borrow Catcher

Alternating the add/sub blocks

Bisheh-Niasar et. al. HASP 2022 7 / 15

Modular Multiplication

k Refined-Operand Caching method

k Multi-precision multiplication achieved by
UMAAL instruction

k Reduce the number of pipeline stalls by
removing the interdependency

k Caching width = 4 words (128-bit)

A = (A[13], ...,A[1],A[0])
B = (B[13], ...,B[1],B[0])
C = (C [27], ...,C [1],C [0])

A[0]B[0]

A[0]B[13]

A[13]B[13]

C[0]C[13]C[26]

1

A[13]B[0]

2

3

4

.

448-bit wise multi-precision multiplication.

Bisheh-Niasar et. al. HASP 2022 8 / 15

Memory Managment

Reserved
SRAM
(16KB)
SRAM

(112KB)

Reserved

0x2001 C000
 0x2001 FFFF

0x2000 0000
 0x2001 BFFF

512MB
Block 1 SRAM

512MB
Block 0 Code

0x2000 0000

 0x3FFF FFFF

0x0000 0000

 0x1FFF FFFF

CCM data RAM
(64KB data SRAM)

0x1000 0000
 0x1000 FFFF

Aliased memory

...

...

Cortex-M4 memory map

Features 1MB of flash and 192KB of RAM - 128KB SRAM and 64KB CCM RAM.

The 128KB of SRAM - not enough to run Curve448 scalar multiplication.

Reserve a region inside the CCM RAM to place part of the large data structures, residing into the stack.

Bisheh-Niasar et. al. HASP 2022 9 / 15

Implementation Results

k Implementation results for Curve448 scalar multiplication on STM32F4 platform:

Work Freq Memory Latency Time Throughput Improvement
[MHz] [B] [CC×106] [ms] [op/sec] [%]

Seo et. al. [1] - 6.218 259 3.9 -
Double-and-always-Add 24 564 5.269 219 4.6 15.2

Montgomery ladder 788 3.740 155 6.4 39.8
Seo et. al. [1] - 6.286 37.4 26.7 -

Double-and-always-Add 168 564 5.532 32.9 30.4 12.0
Montgomery ladder 788 3.917 23.3 42.9 37.6

k Montgomery ladder:
29% performance improvement over the restricted X -coordinate
40% memory utilization penalty

k 1.6× speedup (43 scalar multiplications per second) at 168 MHz
[1] Hwajeong Seo and Reza Azarderakhsh. Curve448 on 32-Bit ARM Cortex-M4. In Information Security and Cryptology - ICISC 2020

Bisheh-Niasar et. al. HASP 2022 10 / 15

Implementation Results

k Implementation results on embedded processors:

Algorithm pre/post Cortex Freq Latency Time Throughput
quantum [MHz] [CC×103] [ms] [op/sec]

Curve25519 [Fujii et. al.] pre M4 48 907 18.9 52.9
Secp256r1 [Lenngren] pre M4 64 994 15.5 64.3

FourQ [Liu et. al.] pre M4 168 511 3.0 328.8
Secp384r1 [Tschofenig et. al.] pre M3 100 20,200 202 4.9
Secp521r1 [Tschofenig et. al.] pre M3 100 35,100 351 2.8
SIKEp434 [Anastasova et. al.] post M4 24 68,260 2,844 0.3

Curve448 [Ours] pre M4 168 3,917 23.3 42.9

k Higher security levels come with a performance penalty

k Possibility of algorithmic improvements to reduce the required computation to break ECC.
k Moving to a higher security level to keep a margin against unknown attack improvements

Bisheh-Niasar et. al. HASP 2022 11 / 15

SCA-Protected Performance Results
k Protected Cortex-M4 implementation results:

Countermeasure Freq Latency Time Throughput Cost
[MHz] [CC×106] [ms] [op/sec] [%]

Unprotected

168

3.917 23.3 42.9 -
Point Randomization 4.222 25.1 39.8 7.8

Scalar Blinding 4.417 26.3 38.0 12.7
Both countermeasures 4.789 28.5 35.1 22.2

Montgomery ladder: countermeasure against timing, SPA, and sign change fault attacks
Base point randomization: add one multiplication per ladder step
Scalar blinding:

Countermeasure to avoid DPA, cross-correlation, safe-error, and differential fault analysis attacks
Extend the number of ladder step iterations

Flow-counter countermeasure: protection against FI loop-abort attacks with negligible latency overhead

Bisheh-Niasar et. al. HASP 2022 12 / 15

SCA Evaluation

NewAE CW308T-STM32F

Cortex-M4 at 25 MHz

Capturing power traces via Picoscope 3000

Sampling rate of 125 MS/s

TVLA with pool of 10,000 traces

α = x1−x2√
σ2

1
n1

+
σ2

1
n2

Leakage detection test on Curve448 after applying TVLA
with a pool of 10,000 measurements:
(Up) t-test values for an unprotected implementation,
(Down) t-test values by enabling both countermeasures

0 20000 40000 60000 80000 100000
Sample No.

30

20

10

0

10

20

30

t-v
al

ue

0 20000 40000 60000 80000 100000
Sample No.

8

6

4

2

0

2

4

6

8

t-v
al

ue

Bisheh-Niasar et. al. HASP 2022 13 / 15

Conclusion and future works

k Conclusion:

Implementing a secure design of Curve448 targeting a 224-bit security level for the 32-bit ARM
Cortex-M4 architecture

Reducing the latency of scalar multiplication to 23 milliseconds at 168 MHz

Embedding different effective countermeasures at the cost of 8%-22% overhead

Evaluating our SCA protection with TVLA over 10,000 power measurements

k Future work:

Extending the design by fault attack countermeasures

Applying the method on Ed448

Bisheh-Niasar et. al. HASP 2022 14 / 15

Thanks for your attention.

Bisheh-Niasar et. al. HASP 2022 15 / 15

