
Multiprime Strategies for Serial
Evaluations of eSIDH-Like Isogenies

12th July 2023
Jason LeGrow Brian Koziel Reza Azarderakhsh

J. T. LeGrow, B. Koziel, R. Azarderakhsh Multiprime Strategies for Serial Evaluations of eSIDH-Like Isogenies 1/17



Key Establishment

Diffie-Hellman Key Establishment

The goal: Alice and Bob have a public conversation, and leave with a shared secret.

Diffie and Hellman proposed: choose G “ ⟨g⟩ of prime order p and do:

x
$

ÐÝ t0, 1, . . . , p ´ 1u y
$

ÐÝ t0, 1, . . . , p ´ 1u

X Ð g x Y Ð g y

X
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

ÐÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝ
Y

KA Ð Y x KB Ð X y

Correctness: We have KA “ Y x “ g xy “ X y “ KB .

Security: In the quantum setting, completely broken by Shor’s algorithm. We need new
primitives.
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Mathematical Background Elliptic Curves

Elliptic Curves

For my purposes, an elliptic curve is a set of the form

EC {k “ tpx , yq P k
2
: y2 “ x3 ` Cx2 ` xu \ t8u

for some C P kzt2,´2u. This is Montgomery form, and C is the Montgomery coefficient.

I will also care about the k-rational points of a curve:

EC pkq “ tpx , yq P k2 : y2 “ x3 ` Cx2 ` xu \ t8u.
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Mathematical Background Elliptic Curves

Elliptic Curves and the Group Law

Here’s (the real points of) an elliptic
curve:

P

Q

´pP ` Qq

P ` Q

Figure: The curve E3{R : y2 “ x3 ` 3x2 ` x .
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Mathematical Background Elliptic Curves

Elliptic Curves and the Group Law

With this group operation in mind,
I define the m-torsion subgroup of
an elliptic curve as

E rms “ tP P E : rmsP “ 8u.

(here rms is the multiplication-by-m
map).

P

Q

´pP ` Qq

P ` Q

Figure: The curve E3{R : y2 “ x3 ` 3x2 ` x .
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Mathematical Background Elliptic Curves

Ordinary and Supersingular Elliptic Curves

Elliptic curves come in two flavours: ordinary and supersingular.

There are many equivalent
definitions that differentiate these cases; for us, we care about:

‚ E{Fpr is supersingular iff p|ppr ` 1 ´ |E pFpr q|q

‚ E{Fpr is supersingular iff EndpE q is non-commutative.

Fact: If E{k is supersingular and char k “ p, then E is defined over Fp2 .

In classical cryptography, supersingular elliptic curves are not used as platform groups for
Diffie-Hellman, since the discrete logarithm problem can be solved on such curves in
subexponential time.
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Mathematical Background Elliptic Curves

Isogenies

An isogeny between two elliptic curves is a function ψ : E Ñ E 1 which is simultaneously a
group homomorphism and a morphism of varieties.

I will only care about isogenies whose degree is coprime to char k ; such an isogeny is
separable and is defined up to isomorphism by its kernel

kerψ “ tP P E : ψpPq “ 8u.

Given a description of kerψ, we can compute E 1 and ψpPq for any P P E in time polynomial
in degψ using Vélu’s formulas. We will write E 1 “ E{ kerψ.
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Mathematical Background Elliptic Curves

Example: An Isogeny

These curves are related by the isogeny

ψpx , yq “

ˆ

3x3 ` x2 ` x

x2 ` x ` 3
,

y
4x3 ´ 5x2 ´ 3

x3 ´ 4x2 ´ 2x ´ 4

˙

We have degψ “ 3, so as you expect
it is a 3-to-1 map. Its kernel is

kerψ “ t8, p5, 3q, p5, 8qu “ ⟨p5, 3q⟩ .

E0{F11 : y
2

“ x3
` x E6{F11 : y

2
“ x3

` 6x2
` x
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Mathematical Background SIDH

SIDH: Protocol Description

Global parameters:

‚ A prime p “ ℓeAA ℓ
eB
B ´ 1 for small primes ℓA ‰ ℓB ;

‚ A supersingular elliptic curve E{Fp2 with |E pFp2q| “ pp ` 1q2; and,

‚ Torsion bases tPA,QAu Ď E pFp2q for E rℓeAA s, tPB ,QBu Ď E pFp2q for E rℓeBB s.
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We can show that

E rℓeAA s,E rℓeBB s Ď E pFp2q

E rℓeAA s – ZℓeAA ‘ ZℓeAA
E rℓeBB s – ZℓeBB ‘ ZℓeBB

This only works because E is supersingular and because of the special form of p.
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SIDH: Protocol Description

Global parameters:

‚ A prime p “ ℓeAA ℓ
eB
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‚ Torsion bases tPA,QAu Ď E pFp2q for E rℓeAA s, tPB ,QBu Ď E pFp2q for E rℓeBB s.

x
$

ÐÝ t0, 1, . . . , ℓ
eA
A ´ 1u y

$
ÐÝ t0, 1, . . . , ℓ

eB
B ´ 1u

kerψA “ xPA ` xQAy kerψB “ xPB ` yQBy

X“pEA“E{ kerψA,ψApPB q,ψApQB qq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

ÐÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝ
Y“pEB“E{ kerψB ,ψB pPAq,ψB pQAqq

KA Ð

jp

EB{xψBpPAq ` xψBpQAqy

q

KB Ð

jp

EA{xψApPBq ` yψApQBqy

q
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Algorithmic Aspects SIDH

SIDH: Computing the Required Isogenies

Let’s think about ψA; it has degree ℓ
eA
A , and we know its kernel is ⟨PA ` xQA⟩.

It decomposes as
ψA “ ψA,eA ˝ ψA,eA´1

˝ ¨ ¨ ¨ ˝ ψA,1

whose kernels are given by

kerψA,i “ x

QA,i
hkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkj

rℓeA´i
A s ¨ ψA,i´1 ˝ ¨ ¨ ¨ ˝ ψA,1pPA ` xQAqy

Running SIDH quickly ðñ finding the QA,i quickly.
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Algorithmic Aspects Strategies

A Common Thread: Strategies

‚ There is an obvious way for Alice to
compute her QA,i :

‚ Set RA “ PA ` xQA
‚ In the i th round:

‚ Compute QA,i “ rℓ
eA´i
A sRA

‚ Update RA Ð ψA,i pRAq

‚ We can represent this pictorially:
‚ Vertices ðñ Points on curves
‚ Horizontal edges ðñ rℓAs

‚ Vertical edges ðñ ℓA-isogeny

‚ There are some “unused edges”:
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Algorithmic Aspects Strategies

Optimal Strategies

How do we choose the strategy to use?

We want the one that will run the fastest.

Each edge corresponds to a known algorithm (scalar multiplication or isogeny evaluation)
whose “cost” we can measure. The total cost of the algorithm is the sum of the edge costs.

Cycle count

+ Corresponds “directly” to running time

´ Algorithm must be implemented first!

´ Platform-dependent

Field multiplication count

+ Can “read off” from algorithm description

´ Clock time depends on field arithmetic
speed ùñ hard to compare across fields

For SIKEp434 (i.e., for the prime p “ 22163137 ´ 1):

‚ Multiplication by 3 takes 2965 cycles/11 field multiplications

‚ 3-isogeny evaluation takes 1478 cycles/5.6 field multiplications
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Algorithmic Aspects Strategies

Strategies in Weighted Graphs for SIDH

We can redraw the graph so that it
better depicts the algorithm’s cost;
in this drawing, the total length of
solid edges is (a proxy for) running
time:

For the cost model (11,5.6) from be-
fore, this strategy is optimal.

De Feo–Jao–Plût (2011) construct
optimal strategies for SIDH using
a recursive decomposition/dynamic
programming technique.

QA,7

QA,6

QA,5

QA,4

QA,3

QA,2

QA,1

RA

ψA,1

ψA,2

ψA,3

ψA,4

ψA,5

ψA,6

rℓAs rℓAs rℓAs rℓAs rℓAs rℓAs

ψA,5

ψA,1

ψA,2

ψA,3

ψA,1

rℓAs rℓAs

rℓAs

Figure: A weighted strategy for ℓA “ 3 and eA “ 7.

J. T. LeGrow, B. Koziel, R. Azarderakhsh Multiprime Strategies for Serial Evaluations of eSIDH-Like Isogenies 12/17



Algorithmic Aspects Strategies

Strategies in Weighted Graphs for SIDH

We can redraw the graph so that it
better depicts the algorithm’s cost;
in this drawing, the total length of
solid edges is (a proxy for) running
time:

For the cost model (11,5.6) from be-
fore, this strategy is optimal.
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Algorithmic Aspects Strategies

eSIDH

In Extended SIDH (eSIDH), Bob uses isogenies of non-prime-power degree ℓ
eB,1
B,1 ¨ ¨ ¨ ℓ

eB,m
B,m .

In the first round, Bob computes
m isogenies using m different
strategies—this saves a lot of edges!

But each “small” strategy requires a
torsion basis to construct the root...
So in the second round, these must be
constructed using costly scalar multi-
plications.
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rℓB,2s rℓB,2s rℓB,2s

ψB,1

ψB,2
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ψB,2
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rℓB,2s
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Algorithmic Aspects Strategies

Multiprime Strategies in Serial eSIDH

Note that if E rℓ
eB,1
B,1 s “ ⟨P1,Q1⟩ and E rℓ

eB,2
B,2 s “ ⟨P2,Q2⟩ then for any β1, β2 there exists an

integer β˚ such that

⟨P1 ` β1Q1,P2 ` β2Q2⟩
loooooooooooooomoooooooooooooon

Bob does this in eSIDH

“ ⟨P1 ` P2 ` βpQ1 ` Q2q⟩
loooooooooooooomoooooooooooooon

Bob could do this instead

Righthand side needs a single strategy of size eB,1 ` eB,2, where different edges use different
primes (ℓB,1 or ℓB,2).

Interestingly: I don’t have to do all ℓB,2 edges and then all ℓB,1 edges; I can interweave
them—multiprime strategies.

I don’t just need to optimize the strategy, but the permutation too.
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Algorithmic Aspects Further Optimizations

On the (Permutation, Strategy) Problem

The dream: an algorithm ℓ⃗ ÞÑ pΣ, Sq of minimal cost.

The reality: for fixed ℓ⃗,

‚ Given Σ, we can find the optimal S (dynamic programming à la De Feo-Jao-Plût);

‚ Given S , we can find the optimal Σ (linear programming);

‚ Stochastic search yields pΣ,Sq which improves upon the state-of-the-art.
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Algorithmic Aspects Further Optimizations

Optimizing the Permutation

Let the cost model be pµ⃗, ι⃗q (for multiplication and isogeny evaluation, respectively).

We construct a matrix CS,µ⃗,⃗ι such that
〈
CS ,µ⃗,⃗ι,Σ

〉
F
is the cost of the algorithm.

Thus we get the program

Minimize xCS,µ⃗,⃗ι,ΣyF

Subject to Σ1 “ 1

1TΣ “ 1T

Σ ě 0
Σ P Znˆn

We can drop Σ P Znˆn because the feasible polytope is integral. Then solve an LP for Σ.
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Algorithmic Aspects Further Optimizations

eSIDH Timing Estimates

Scheme Operation
Timings (Mcycles)

Improvement
Split Prime Multiprime

p443 “ 2222373545 ´ 1

eSIDH
Bob R1 7.44 7.75 -4.03%
Bob R2 7.00 6.47 8.24%

eSIKE
Keygen 7.43 7.74 -4.01%
Decap 13.71 13.17 4.10%

p765 “ 23913119581 ´ 1

eSIDH
Bob R1 27.14 28.37 -4.34%
Bob R2 25.56 23.90 6.96%

eSIKE
Keygen 27.14 28.39 -4.42%
Decap 50.47 48.83 3.36%

Table: eSIDH/eSIKE timing results on Intel i7-8650u processor.
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