My research is in the area of elliptic curve cryptography and related finite field arithmetic. I am interested in new cryptographic primitives, new algorithms in computational number theory, new protocols, efficient hardware and software implementations, and side-channel attacks and countermeasures.

Post-Quantum Cryptography

pqcPresence of quantum computers is a real threat against the security of currently used public key cryptographic algorithms such as RSA and Elliptic curve cryptography. Post-quantum cryptography refers to research on cryptographic primitives (usually public-key cryptosystems) that are not efficiently breakable using quantum computers. This research investigates design, analysis, and implementation of quantum-safe cryptographic algorithms. For more information refer to PQCryptARM. 



Finite Field Arithmetic

finite-fieldThe arithmetic operations in the finite fields over prime fields and binary extension fields are largely utilized for cryptographic algorithms such as point multiplication in elliptic curve cryptography, exponentiation-based cryptosystems, and coding. This research investigates efficient algorithms and efficient architectures for the computation of finite field operations.



Efficient Implementations of Cryptographic Primitives


Providing security for the emerging deeply-embedded systems utilized in sensitive applications is a problem whose practical mechanisms have not received sufficient attention by the research community and industry alike. This research investigates efficient implementations of elliptic curve cryptography on embedded devices with extremely-constrained environments.




Machine-Level Optimization for the Computation of Cryptographic Pairings


pairingHigh-speed computations of pairing-based cryptography is crucial for both desktop computers and embedded hand-held devices. This research investigates the machine-level and assembly optimizations for the computation of lower level finite field arithmetic used in pairings.




Highly-parallel scalable architectures for Cryptography Computations

Highly-phigh-performancearallel and fast computations of the widely-used cryptographic algorithm is required for high-performance applications. However, a challenge to cope with is that most applications for which parallelism is essential, have significantly large scale that is not commonly supported by today’s algorithms. Therefore, new algorithms are required to investigate parallelization.