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Introduction
Weakly electric fish (Fig.1A) have been a leading model system
within sensory neurobiology for many years. More recently, within
this model system community as well as others, the importance of
body mechanics and locomotion for understanding neural systems
has become increasingly recognized (MacIver, 2009; Chiel and
Beer, 1997; Full and Koditschek, 1999; Dickinson et al., 2000). The
result is that there has been significant progress in understanding the
neuromechanics of a host of systems, including the lamprey, flies,
frogs, cats, salamanders, aplysia, rat vibrissal systems, cockroaches
and fish, among others (Chiel et al., 2009; Nishikawa et al., 2007;
Cowan and Fortune, 2007; Collins et al., 2005). This review focuses
first on physical models that incorporate the mechanics of South
American knifefish, and second on artificial electrosense systems
inspired by all weakly electric fish including the African mormyrids.
The mechanics exhibited by mormyrids differs greatly from that of
the knifefish and has largely been left unstudied. There is one
African electric knifefish species, Gymnarchus niloticus, which
possesses a dorsal ribbon fin nearly identical to the ventral fin of
South American knifefish shown in Fig.1A.

Biomimetic and bio-inspired physical models
Models are important tools for investigating the many facets of
animal design, such as mechanics, sensing and neuronal processing
strategies. This review focuses largely on physical models of
weakly electric fish (specifically robotics); however, mathematical

models and simulations are often used in conjuction with physical
models and will be mentioned as appropriate.

One motivation for building physical models is to gain a better
understanding of the biology of the animal in question that may be
difficult or impossible to obtain from live animals (Webb, 2001;
MacIver, 2001). In this case, we refer to the model as ‘biomimetic’.
In the domain of aquatic animals, Ahlborn et al. developed a
physical model of the tail of a fish to examine the vortical structure
of the wake of carangiform swimmers (Ahlborn et al., 1991). An
early fish robot called RoboTuna was designed to mimic the
motions of carangiform swimmers, and the researchers found that
when the robot swam with fish-like movements, characteristics of
the wake generated by the physical model matched that of the actual
fish, resulting in efficient swimming (Triantafyllou and
Triantafyllou, 1995). However, unnatural swimming motions
resulted in inefficient swimming and a very different wake
structure. Such experimental manipulations would be very difficult
to perform in the tuna itself. Similarly, a physical model of the
salamander enabled the testing of hypotheses regarding how central
pattern generators (CPGs) can function to generate locomotion in
water and on land with their vastly different mechanical constraints
(Ijspeert et al., 2007; Karakasiliotis et al., 2012). Similarly, classic
work simulating the neuromechanics of the lamprey (Ekeberg et
al., 1995; Ekeberg and Grillner, 1999) has provided many system-
level insights that continue to be pursued in physiology and
mechanics (Kamali Sarvestani et al., 2012).

Summary
Weakly electric knifefish have intrigued both biologists and engineers for decades with their unique electrosensory system and
agile swimming mechanics. Study of these fish has resulted in models that illuminate the principles behind their electrosensory
system and unique swimming abilities. These models have uncovered the mechanisms by which knifefish generate thrust for
swimming forward and backward, hovering, and heaving dorsally using a ventral elongated median fin. Engineered active
electrosensory models inspired by electric fish allow for close-range sensing in turbid waters where other sensing modalities fail.
Artificial electrosense is capable of aiding navigation, detection and discrimination of objects, and mapping the environment, all
tasks for which the fish use electrosense extensively. While robotic ribbon fin and artificial electrosense research has been
pursued separately to reduce complications that arise when they are combined, electric fish have succeeded in their ecological
niche through close coupling of their sensing and mechanical systems. Future integration of electrosense and ribbon fin
technology into a knifefish robot should likewise result in a vehicle capable of navigating complex 3D geometries unreachable
with current underwater vehicles, as well as provide insights into how to design mobile robots that integrate high bandwidth
sensing with highly responsive multidirectional movement.
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Another motivation for building physical models is developing
improved technology. In this case we call the model ‘bio-inspired’.
Inventors often look to biology for inspiration to help solve
problems that have already been solved in nature. For example,
consider the need to strongly adhere two surfaces together
temporarily. Swiss engineer George de Mestral discovered the
mechanism behind the now ubiquitous Velcro by examining the
hooked structure of seeds that stick to animal fur (Vogel and Davis,
2000). A different solution can be found in nature in the form of
gecko feet (for a review, see Kwak and Kim, 2010), which has
resulted in a dry adhesive mechanism that can hold against
significant weight but can be removed with little effort (Schubert
et al., 2008). Geckos rely on this dry adhesion mechanism to move
vertically. As with the gecko, a frequent source for bio-inspiration
is the efficient and robust locomotion systems that can be found in
animals. Similarly, one motivation for building a swimming robot
inspired by the electric knifefish is the exceptional omnidirectional
agility of the fish (Snyder et al., 2007). Similar to the echolocating
bat, this agility arises in part because of the need to execute
maneuvers to rapidly approach a detected prey under the constraint
that the fish moves through its short active sensory range in
approximately one sensorimotor delay time (Nelson and MacIver,
2006; Snyder et al., 2007), necessitating mechanics that are
extraordinarily responsive to sensory input. As we will review
below, by incorporating some of the electric fish’s mechanical and
sensory principles, new bio-inspired technology may emerge that
significantly outperforms current underwater vehicles for
conditions in which agility is essential or conventional sensory
paradigms are ineffective.

Choosing the right level of abstraction
The research described in this review contains examples of
biomimetic and bio-inspired approaches for building physical
models that share characteristics with knifefish mechanics and
electrosense of weakly electric fish. Occasionally the research
combines both of these goals at once with the same model. More
often the two goals of creating new technology inspired by biology
and creating a physical model to study biology require different
levels of abstraction from the original system. For example, to test
the capabilities of a biological electroreceptor, an artificial
electroreceptor might require the same electrical properties and
electric field as is found in the biological case. Alternatively, with
the goal of designing an artificial electrosense system that is useful
for an underwater robot, it may be more convenient to use a simple
conductor and generate a field with higher intensity and a less
complex emission pattern than found in the electric fish. Such an
artificial electrosense system would share all the basic principles of
a biological electrosense system, but be more amenable for use in
an actual robot.

Some of the most interesting aspects of South American
weakly electric fish – for engineers and biologists alike – are its
active electrosense and its high-maneuverability propulsion
system (MacIver et al., 2004). The most obvious goal for the
engineer would be to successfully design a swimming robot able
to navigate using artificial electrosense with ribbon fin-inspired
propulsion. Electric-fish-inspired robotics has largely tackled the
two systems separately, however, with the goal of fusing them
together once basic understandings of underlying principles are
reached for each. The structure of this review similarly divides
discussion regarding knifefish robot mechanics from that of
robotic electrosense, with a final discussion of how to recombine
the two systems.

Mechanics
The biological fin and its bio-inspired mechanical models

The body of research on the mechanics of fish swimming is
extensive. Much attention has been given to several categories of
swimming including forms that are reliant on body undulations,
caudal fin oscillations and pectoral fin swimming (for reviews, see
Triantafyllou et al., 2000; Sfakiotakis et al., 1999; Colgate and
Lynch, 2004). This review focuses on modeling the undulations of
elongated median fins, commonly called ribbon fins, such as those
seen in South American weakly electric fish (Fig.1A), one species
of African weakly electric fish (Gymnarchus niloticus) and
triggerfish, though the mechanics may be similar to elongated
lateral paired fins such as those seen in rays, skates and
cephalopods. The ribbon fin of South American weakly electric
knifefish consists of 100–300 bony rays [see table4 of Albert
(Albert, 2001)], each with a set of agonist and antagonist muscles
capable of bending the rays laterally. The control of these rays is
often coordinated to produce either a single traveling wave along
the length of the ribbon fin or two counter-propagating waves that
start at either end of the fin and meet at some point along the fin.
These waves can have varying amplitude, wavelength, frequency
and waveform shapes (Curet et al., 2011a; Ruiz-Torres et al., 2013).

Some of the first studies on ribbon fin propulsion in fish were
conducted by Blake, who studied the kinematics of ‘balistiform
swimmers’ – fish with ribbon fins along the dorsal and ventral
midline of the body (Blake, 1978) – and the swimming of
knifefishes, which have a single elongated ventral fin along the
midline (Blake, 1983). In addition, Lighthill and Blake (Lighthill
and Blake, 1990) presented an analytical study of elongated fin
propulsion where they found an analytical expression for the thrust
force and swimming speed of an undulating ribbon fin as a function
of few parameters assuming a two-dimensional irrotational flow in
the plane transverse to the fin surface.

In more recent work, Ruiz-Torres et al. (Ruiz-Torres et al., 2013)
measured the kinematics of the ribbon fin in swimming knifefish,
and Shirgaonkar et al. (Shirgaonkar et al., 2008) used a three-
dimensional (3D) computational fluid dynamics (CFD) simulation
to study the hydrodynamics of an undulating ribbon fin.

Physical models have also contributed enormously to the study
of undulatory fin propulsion. However, the design, construction and
control of such devices is far from simple in most cases. Below we
present a selection of physical model research that has varying
levels of abstraction from biological undulatory ribbon fins.

Physical models
There have been various independent efforts to design and build
robots that mimic the kinematics of elongated undulatory fins found
in swimming animals. Sfakiotakis et al. (Sfakiotakis et al., 2001)
developed an undulating ribbon fin consisting of eight fin actuators
interconnected with a fin membrane. The fin rays were actuated by
pneumatic parallel bellows which bend similarly to the bones in a
fish fin, but the diameter-to-length ratio of the pneumatic rays was
much larger compared with the bony rays. MacIver et al. (MacIver
et al., 2004) built a robotic undulating fin consisting of 13 rays that
pivot about a common axis, with each ray actuated by a dedicated
servo motor. Willy and Low (Willy and Low, 2005) designed a
modular ribbon fin mechanism that can be oriented either laterally
as a pair of pectoral fins, or medially as a ventral ribbon fin. In this
mechanism the fin membrane is composed of discrete rigid acrylic
segments to reduce energy lost in stretching an elastic membrane.
To facilitate the operation of a fin made of rigid material, the 10
fin rays do not pivot about an axis but translate with respect to the
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mid-plane to keep the rays parallel to each other during their
sinusoidal motion. Even though this design avoids the drawbacks
of dealing with a highly compliant membrane, the kinematics of
the fin rays and the membrane material depart considerably from
actual biological undulatory ribbon fins. An updated version of this
design, called the NKF-II (Fig.1C), has eight fin rays attached to
a submersible body containing a tank, allowing for buoyancy
control (Low, 2009).

The progress of the work of MacIver et al. (MacIver et al., 2004)
led to the design and construction of an undulatory robotic fin
model with the goal of understanding the interconnection between
hydrodynamics of ribbon fin propulsion and the electrosensory
system of electric fish (Epstein, 2006; Epstein et al., 2006; Curet
et al., 2011a; Curet et al., 2011b). The first version of the undulating
ribbon fin model was composed of rigid fin rays actuated by eight
servo motors, and a fin membrane made of a latex sheet. The
undulating fin was the only part of the robot submersible in the
water (Epstein, 2006; Epstein et al., 2006). The most recent
iteration of these models is the Ghostbot shown in Fig.1B (Curet
et al., 2011a). The Ghostbot has 32 rays covered by a 32cm Lycra
fin attached to a submersible body, which houses all of the motors.
The body is torpedo shaped and is mounted and tethered as it
receives control signals and power from outside of the water.

There are numerous other examples of undulating ribbon fin
models. Hu et al. (Hu et al., 2009) developed a motor-driven
undulating fin actuator to model the kinematics of G. niloticus, the

one African weakly electric fish that uses a dorsal median ribbon
fin, and to analyze its propulsion mechanics with respect to multiple
fin parameters. Shang et al. (Shang et al., 2012) designed and built
a biomimetic underwater vehicle with two lateral undulating fins
(Fig.1D). Liu et al. (Liu et al., 2010) built an undulating ribbon fin
with only two actuators, one at either end of the fin, to validate
computational results on thrust generation. Lauder et al. (Lauder et
al., 2011) used a flexible foil actuated by a single degree of freedom
to study undulatory locomotion in fishes. Research endeavors using
these bio-inspired robots share the common goals of developing a
more maneuverable underwater vehicle and understanding the
basic underlying mechanical principles of undulatory locomotion
in fishes.

Measuring force, velocities and flow fields
Once a physical model of the fin has been built, there are a number
of different ways to analyze the underlying mechanics. Often the
first step is to allow the robot to swim given a set of kinematics
closely matching what is observed in nature. Measurements of
steady-state swimming velocity include motion capture of a freely
swimming fin (Low and Willy, 2006; Low, 2007), or matching the
speed of a flow tunnel to the freely swimming speed of a robot
(Curet et al., 2011b). Also, forces of a fixed fin can be measured
by placing a load cell between the robotic fin and mechanical
ground, a measurement that is difficult or impossible to do in
biology, especially in fish (Sfakiotakis et al., 2001; Curet et al.,
2011b). Flow and force measurement can be combined to estimate
drag in either a flow tunnel or a tow tank (MacIver et al., 2010;
Curet et al., 2011b). Finally, flow measurement techniques such as
particle image velocimetry (PIV) are used to determine the velocity
vector fields of the wake generated by the robotic fin (Shirgaonkar
et al., 2008; Curet et al., 2011a), from which important features
such as vorticity and momentum flux can be derived. While PIV is
usually performed on a plane, recent work has performed 3D
velocity field measurements using volumetric flow techniques
applied to the mechanics of underwater robotics and live animals
(Flammang et al., 2011). For most measurements, the kinematics
of the fin have been idealized into simple traveling waves
consisting of three or four parameters such as frequency,
wavelength, amplitude and length-to-height ratio. A robotic fin
model allows for systematic exploration through the reduced
kinematic parameter space – an impossibility when studying live
fish.

Synergy between simulations and physical models of knifefish
As discussed in the Introduction, physical models and simulation
are two important modeling approaches within science and
engineering, as they both provide a method to integrate large
amounts of knowledge into physical or computational artifacts for
further study and manipulation. A challenge for the physical model
approach, however, is that iterations are costly and time consuming
(Bongard et al., 2006). Iteration within simulation is relatively
quick. The discovery of a downward jet through counter-
propagating waves along the robot ribbon fin (Curet et al., 2011a),
discussed below, was preceded by high fidelity fluid and fin
simulations that predicted the occurrence of this jet. Both of these
have preceded the measurement of the jet in live animals, as yet
unpublished, although the occurrence and kinematics of the
corresponding counter-propagating waves are in the literature
(Ruiz-Torres et al., 2013; Sefati et al., 2012). Similarly, key
relationships between ribbon fin kinematics and force generation
were simulated (Shirgaonkar et al., 2008) before they were
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Fig.1. The black ghost knifefish, Apteronotus albifrons, and a few physical
models of ribbon fins. Scale bars are estimates. (A)Photograph courtesy of
Per Erik Sviland. (B)The Ghostbot and its mechanical ribbon fin. The
Ghostbot is both laterally and longitudinally symmetric. (C)The NKF-II
submersible robot. The fin uses uses crank-slider linkages to create a
traveling wave with parallel fin rays and uses a buoyancy tank for depth
control. Reprinted with permission from Low (Low, 2009). (D)Lateral
ribbon-fin robot. Two bilaterally symmetric ribbon fins propel the robot and
allow turning using counter-propagating waves on the two fins. Image used
with permission (Shang et al., 2012).
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measured (Curet et al., 2011b). The challenge of simulating the
complex fluid–structure interactions of the ribbon fin has spawned
the development of new approaches for accurately simulating the
swimming of aquatic animals (Curet et al., 2010; Shirgaonkar et
al., 2009; Bhalla et al., 2012).

Decomposing the thrust generated by the fin
Previous studies have shown that the knifefish is capable of moving
omnidirectionally over time spans of around half of a second (e.g.
Snyder et al., 2007). Motion capture data of prey capture behavior
for one weakly electric knifefish, the black ghost (Apteronotus
albifrons), was analyzed in Postlethwaite et al. (Postlethwaite et al.,
2009). As shown in Fig.2, the fish’s movements can mostly be
broken down into motion primatives including swimming forward
and backward, called positive and negative surge, respectively, as
well as upward (in the dorsal direction), called positive heave. They
are also capable of rapidly rolling their bodies (MacIver et al.,
2001). This allows them to attack laterally positioned prey by first
rolling their body so that the prey is normal to the dorsal midline,
and then executing a heave maneuver to close the gap. However,
while the ribbon fin is the primary propulsor, the fish also uses its
pectoral fins and body bends to achieve high agility (MacIver et
al., 2001). Therefore, testing a mechanical model of a fin attached
to a rigid body distills select capabilities of the fin from the full
mechanical complexity of the fish.

Free-swimming velocity measurements were first measured by
the Low research group with the various iterations of their robotic
fins (Low and Willy, 2006; Low, 2007). The primary parameter of
the waveform kinematics varied was the wavelength of the
traveling wave. The researchers found that when the wavelength
was longer than the length of the fin (equivalently, there is less than
one spatial period along the length of the fin) there were periodic
oscillations around the mean forward velocity with corresponding
oscillations in the yaw and roll angles of the fin. As the wavelength
decreased, the forward velocity became steady and the oscillations
in roll and yaw diminished.

Curet et al. (Curet et al., 2011b) also measured average free-
swimming velocities of the Ghostbot ribbon fin, which is able to
reproduce shorter wavelength waveforms due to the higher number
of actuated rays. The heave axis of the robot was fixed, so only
surge velocities could be measured and are shown in Fig.3. In the
same study, the forces generated by the fixed robot in still water were
also measured and are shown in Fig.3. These measurements give an
estimate of impulsive thrust, or the forces the fin is capable of
generating when starting from rest. For single-traveling wave
kinematics, the fin of the Ghostbot produced non-zero forces along
both the longitudinal axis of the fin, called the surge axis, and the
dorsoventral axis, called the heave axis. Consequently, a truly free-
swimming Ghostbot would move diagonally at some pitch angle. No
heave movements were recorded in the NKF-II from Low (Low,
2007), likely because the NKF-II rays remain parallel to each other
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but for rotational velocities. Adapted with permission from Postlethwaite et
al. (Postlethwaite et al., 2009).
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while the rays of the Ghostbot and the biological knifefish oscillate
about a pivot.

Angled thrust
While the fluid mechanics underlying the thrust generated by
knifefish are not yet fully understood, comparisons between the
kinematics of median ribbon fins and the kinematics of other forms
of swimming may provide some insight. First, the longitudinal
undulations of the fin are similar to body undulations of eels or
lamprey. Therefore, similar mechanisms are likely responsible for
the surge component of the thrust, and the wake of the ribbon fin
might contain similar patterns to the wake generated by swimming
eels (Tytell and Lauder, 2004). However, the kinematics of a single
transverse section of the fin are oscillatory, as the rays bend back
and forth laterally. Many fish, such as trout, oscillate their caudal
fins to efficiently propel through the fluid. These oscillations
produce a reverse von Kármán vortex street in the wake, which is
a pattern closely tied with efficient swimming (Sfakiotakis et al.,
1999; Triantafyllou et al., 2004). Preliminary Ghostbot data show
reverse von Kármán streets shed downwards off the fin in certain
cross-sectional views. Also, Liu et al. (Liu et al., 2010) described
flow features showing propulsion along the longitudinal axis of
undulation as well as the perpendicular heave axis. Thus, the
mechanism of thrust generated by the ribbon fin could be
potentially explained by remembering that the fin ‘surges like an
eel’ while ‘heaving like a trout surges’.

An important aspect of the angled thrust generated by the fin is
the body morphology of the fish. If the fin of the fish was aligned
with the axis of the body as it is with the Ghostbot, the fish’s fin
would produce an upward force during normal forward swimming.
The fish would have to produce counteracting forces or tightly
control buoyancy to balance this force to maintain constant depth
while swimming forward, thus wasting energy. Knifefish have a

body plan such that the fin is at an angle to the body, so that the thrust
generated by the fin is more aligned with the central axis of the body.
Thus, the fish is presumed to achieve maximal thrust while
encountering minimal drag as it swims forward through the fluid.
There is a striking consistency of fin insertion angle of approximately
10deg across many species of knifefish, including both ventral and
dorsal ribbon fin species (M.A.M., unpublished observations).

Asymmetry in forward and backward movement becomes a control
issue for the fish
While the electric knifefish seems to be optimized for forward
swimming, it also swims backward at high speed for certain
behaviors, such as prey capture and refuge tracking (MacIver et al.,
2001; Rose and Canfield, 1993; Heiligenberg, 1973; Cowan and
Fortune, 2007). Because of the asymmetry of the fin along the
longitudinal axis, backward swimming mechanics differ from
forward swimming mechanics. During backward swimming, the
angle of thrust with respect to the body axis now includes both the
10deg insertion angle described above as well as the 10deg angle
between the fin and the direction of thrust. The longitudinally
symmetric Ghostbot does not have this problem, which may have
many benefits for simplifying control of an underwater vehicle
using ribbon fin propulsion. Hu et al. (Hu et al., 2009) measured
differently shaped waveforms in forward and backward swimming
in knifefish, indicating asymmetry in the kinematics may be
important for backward swimming.

Optimal wavelength matches observed kinematics of the fish fin
Some trends associated with varying the kinematic parameters of a
traveling wave are very intuitive. As both frequency and amplitude
increase, both free-swimming speed and fixed fin force increase as
indicated in Fig.3, and a freely swimming knifefish shows similar
trends (Ruiz-Torres et al., 2013). The trend associated with varying

0

0.2

0.4

0.6

0.8

S
ur

ge
 fo

rc
e 

(N
)

 

No. waves=2
θ=30 deg f=4 Hz

=30 degθ No. waves=2
f=4 Hz

B C
Ghostbot Shirgaonkar et al. Lighthill and Blake

0

10

20

30

S
w

im
m

in
g 

ve
lo

ci
ty

 
(U

, c
m

 s
–1

)

0 1 2 3 4 5 6
Frequency (Hz)

0 1 2 3 4
No. of waves

10 20 30 40
θ (deg)

Ueq

~10 cm 27 cm

Free motion
Xeq

X

Low friction
air bearing

Force sensor
Linear slide

Low friction
air bearing

Mechanical
ground

A
D

HGFE

Fig.3. Free-swimming velocities and fin force measurements for the Ghostbot. (A)Schematic of experimental setup to measure surge and heave forces.
(B–D) Fin force measurements for single traveling wave kinematics. Green and red lines indicate estimations from models presented in Shirgaonkar et al.
(Shirgaonkar et al., 2008) and Lighthill and Blake (Lighthill and Blake, 1990), respectively. Surge force and swimming speed were measured as a function of
(B) frequency (f), (C) number of waves (or undulations along the fin) and (D) maximum angular excursion (θ). (E)Schematic of experimental setup to
measure free-swimming velocities. (F–H) Similar to B–D, but free-swimming velocities were measured. Adapted with permission from Curet et al. (Curet et
al., 2011b).

THE JOURNAL OF EXPERIMENTAL BIOLOGY



2506

spatial wavelength is much less intuitive. According to experiments
with both the Ghostbot and the Low fin, there exists some optimal
wavelength where swimming velocity is maximized (Curet et al.,
2011b; Low and Willy, 2006; Low, 2007). Interestingly, the
optimal fin length to wavelength ratio for the Ghostbot matches the
naturally occurring kinematics in freely swimming knifefish
despite the difference in size (Blake, 1983; Ruiz-Torres et al.,
2013). Research is ongoing to uncover the mechanism underlying
this particular kinematic parameter in the robotic fin and whether
there exists an optimal kinematic invariant for fins of different
aspect ratios (Bale et al., 2012).

Varying mechanical properties of the ribbon fin
The various physical models described above are characterized by
a large range of mechanical properties for the fin material used in
their construction. Low (Low, 2009) implements rigid acrylic links
whereas most other robotic fin designs use a flexible material. The
Ghostbot uses a Lycra fin with a Young’s modulus of 0.2MPa,
similar to fin membrane measured in another species of fish (Curet
et al., 2011b). Hu et al. (Hu et al., 2009) compared two fin
materials, a material stiffer than Lycra with a Young’s modulus less
than 1GPa (low density polyethylene) and an even harder material
with a Young’s modulus between 1.2 and 1.5GPa (polypropylene).
While the swimming velocity of the fins of the two materials did
not vary significantly, the researchers did find an increase in
efficiency in a few cases for the softer material. The robotic ribbon
fin model used in Liu et al. (Liu et al., 2010) relies on the flexibility
of the fin material to produce traveling wave undulations, as the fin
is only actuated at the ends.

It is clear that few conclusions can be made about the effects of
varying mechanical properties of the fin from these robotic ribbon
fin models. However, similar work in undulating flapping foils
(Lauder et al., 2011), though generally related to body undulations
of body/caudal fin swimming, may elucidate important
dependencies of ribbon fin thrust on mechanical properties of the
fin such as stiffness. Lastly, the bony rays of the fish are flexible
and actually bend (Lauder, 2006) rather than simply rotate like the
rigid rays used in many of the robotic ribbon fin models. Research
in flexible rays in other fins, for example caudal fins (Esposito et
al., 2012), will hopefully inspire similar work in future ribbon fin
models to better match biological ribbon fin kinematics. This will
facilitate additional progress in zeroing in on their mechanical
impact on fish swimming.

Inward counter-propagating waves
Generating increased heave
So far discussion of ribbon fin mechanics has focused on single
traveling waves along the ribbon fin, which generate thrust at an
angle to the fin. While knifefish can generate both rostral to caudal
and caudal to rostral traveling waves, they can also generate waves
in both directions at the same time. These inward counter-
propagating waves originate at either end of the fin, and during
hovering, meet somewhere in the middle of the fin at a location called
the nodal point (Ruiz-Torres et al., 2013). Knifefish use these
kinematics for station-keeping in still or slow-moving (one body
length per second or less) water (Sefati et al., 2012; Ruiz-Torres et
al., 2013), similar to how a triggerfish will generate traveling waves
in opposing directions on its ventral and dorsal ribbon fins (Blake,
1978). Hu et al. (Hu et al., 2009) implemented counter-propagating
waves on two laterally separated ribbon fins to perform a turning
motion. The Ghostbot was used as a physical model to uncover the
mechanics of counter-propagating waves on a single ribbon fin by

measuring forces and flow features, and testing alternative
hypotheses. Several conclusions were made from these experiments
involving inward propagating waves in which the two traveling
waves occur over equal lengths of the robotic ribbon fin, appropriate
for hovering in still water (Curet et al., 2011a). First, although the
surge components of the thrust produced by each individual wave
should cancel out, the heave component should still remain.
Interestingly, inward waves generated ~40% more heave force than
outward waves. This difference can be at least partially explained by
the flow features resulting from the two sets of kinematics. For
inward waves, a strong downward jet is generated at the nodal point
along the fin, as shown in Fig.4. No downward jet was present for
the outward waves. Second, while standing waves also produced a
similar amount of heave force, as well as smaller downward jets at
the standing wave nodes, the variability over a cycle was very high,
indicating unstable mechanics (Curet et al., 2011a). Therefore,
inward counter-propagating waves allow for stable actuation in the
heave direction, which can be very useful for both a fish and a robot
requiring high maneuverability.

Enhanced stability and maneuverability associated with counter-
propagating waves
While it is possible for knifefish to use counter-propagating waves
to move in the heave axis, due to experimental constraints counter-
propagating waves have mainly been observed when the fish is
keeping station relative to a refuge, either in still water or in flows
of one body length per second or less. In these situations, the fish is
maintaining its vertical position. Moreover, behavioral studies show
that the nodal point of the two traveling waves shifts caudally with
increased flow velocity (Ruiz-Torres et al., 2013). The Ghostbot was
again used to confirm that the longitudinal force varies linearly with
the shift in the nodal point (Sefati et al., 2012). There are two reasons
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Fig.4. Midsagittal plane showing the flow structure generated by counter-
propagating waves. Two traveling waves originating from each end of the
robotic fin collide in the middle. A downward jet is produced, canceling any
surge components to the thrust and leaving only a heave component. The
color bar indicates the magnitude of the y-component of velocity, where
positive indicates flow upwards and negative indicates flow downwards from
the fin. Reprinted with permission from Curet et al. (Curet et al., 2011a).

THE JOURNAL OF EXPERIMENTAL BIOLOGY



2507Robotics in electric fish research

presented for why the fish would employ this seemingly inefficient
strategy. First, for station-keeping behaviors in still water where
adjustments must quickly be made forward and backward, nodal
point shift allows for linear control around zero swimming velocities,
rather than requiring the reversal of the traveling wave (Sefati et al.,
2012). Second, counter-propagating waves help stabilize against
perturbations, as force generated by the wave moving with the
perturbation is decreased due to a decrease in wave velocity relative
to the fluid, while the force generated by the wave moving against
the perturbation is increased, pushing the fish back towards its
unperturbed state (Sefati et al., 2012).

As the nodal point changes position, the magnitude, position and
direction of the heave force changes, which could change the body
pitch angle as well as translation along the dorsoventral axis. How
the fish stabilizes itself against these perturbations while varying
the nodal point awaits further investigation.

Neural control of the ribbon fin
While modeling single traveling wave kinematics as a traveling
sine wave is straightforward, modeling two inward counter-
propagating waves meeting at a nodal point is more complicated.
For example, the robotic fin could be simply programmed to have
one traveling wave on one side of the nodal point, and an opposing
traveling wave on the other side. This will most often result in a
sharp discontinuity in the waveform, which is not mechanically
ideal for either the robotic or the biological fin. Therefore, a gradual
change from one wave to the other is usually implemented around
the nodal point using weighted combinations of the two waves.
However, there has been little investigation into how this weighted
combination of opposing waves should be modeled to match the
actual kinematics of the knifefish fin. Perhaps a better way of
modeling the control of the fin is to use a central pattern generator
(CPG) neural circuit model. A CPG model for single traveling wave
kinematics was explored by Zhou and Low (Zhou and Low, 2010),
showing gait transitions between forward waves, reverse waves,
asymmetrical waves and varying wavelengths. Recent work shows
that a similar CPG model adapted from work in the lamprey can
reproduce the kinematics of both single traveling waves and
counter-propagating waves (Ruiz-Torres et al., 2013). This
modified model for the ribbon fin includes driving inputs for both
the first and last rays as well as the ray where the traveling waves
meet. By lowering the drive at the nodal point ray compared with
the first and last rays, inward counter-propagating waves moving
toward the nodal point are generated. Also, due to the structure of
the coupled oscillators, the CPG model accounts for the smooth
transition between the two waves around the nodal point. This and
many other questions related to the control of ribbon fin mechanics
in both the robotic and biological paradigms are still largely open
to explore. Importantly, very little work has yet been done with
control in 3D space, an area where the fish excels and will be
necessary to master for a freely swimming ribbon fin robot. These
issues, as well as recombining knifefish mechanics with artificial
electrosense, will be discussed in the final part of this review.

Sensing
Introducing biological and artificial electrosense

Electrosense in animals is one of the most recently discovered
sensory modalities at just over half a century old (Lissmann and
Machin, 1958). Many animals, such as sharks and platypuses, can
passively sense weak electric fields emitted by other animals, often
to locate prey. However, weakly electric fish emit and sense their
own electric field (Fig.5A). Perturbations as small as 0.1% of the

emitted electric field, caused by nearby objects, can be sensed by
the fish’s electroreceptors (Nelson and MacIver, 1999; Goense and
Ratnam, 2003). Since the fish generates the energy needed to sense
the environment, this variant of electrosense is called an active
sensing system, similar to sonar or radar. For this review, the term
electrosense will refer to the active sensing variant of electrosense.
Nelson and MacIver (Nelson and MacIver, 2006) provide a review
of biological active sensing systems.

Even before the discovery of actively sensing electric fish, there
have been numerous technological examples of electric field
sensing. The theremin, a musical instrument from 1921, was
capable of detecting the capacitance of a performer’s body parts
through measured changes in an emitted electric field (Theremin
and Petrishev, 1996). The position of the body part in that field was
translated into varying output pitches and tones, allowing the player
to produce a range of sounds by sweeping their hands over the
space near the theremin. These principles have been further applied
by the Massachusetts Institute of Technology Media Lab to track
the 3D position of a hand (Smith et al., 1998) and develop robotic
fingers capable of sensing objects before contact (Smith et al.,
2007). Even modern capacitive touch screens implement these
basic active sensing principles. Electrical impedance tomography
(EIT) is another example of sensing an emitted field. In medical
imaging, EIT produces images of internal structures within the
body, estimating the distribution of impedances by emitting current
and sensing voltages along the boundary (Barber and Brown,

A

B

Fig.5. Comparison of electric fields. Models of the electric field around
gymnotiform (South American) weakly electric fish (Chen et al., 2005) differ
in shape from fields generated by a single dipole in artificial electrosense.
Isopotential lines for the fish run roughly parallel along the long axis of the
fish body (A), whereas isopotential lines of artificial electrosense are mostly
perpendicular to the long axis connecting the emitting dipole (B).
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1984). Resistivity imaging, which includes EIT, began its
widespread use in the 1920s by geophysicists who used arrays of
metal electrodes inserted into the ground to estimate a map of the
subsurface strata. Data are collected by injecting current across
pairs of electrodes and then measuring the voltages at the other
electrodes. Variants of the basic technique are still used today by
geophysicists for imaging the subterrane and extracted core
samples (Dines and Lytle, 1981). A later section will discuss the
possibility of using EIT in underwater electrosense. A more recent
medical application of electrosense actually inspired by the weakly
electric fish is a catheter-based sensor that can be used to identify
plaques indicating arteriosclerosis (von der Emde et al., 2009;
Metzen et al., 2012). Research in artificial electrosense is now
pursued by several laboratories and was the sole topic of a 2012
workshop on robotic electrosense in College Park, MD, USA, just
prior to the electric fish symposium to which this special issue is
dedicated (MacIver and Boyer, 2012).

Basics of artificial underwater electrosense
The simplest artificial electrosense system, as shown in Fig.6, is
comprised of two pairs of electrodes, one pair for excitation and
the other for differential voltage measurements (Solberg et al.,
2008). The sensing pair is placed orthogonal to the emitting pairs
so that when no object is present, the differential signal from the
sensing pair is zero, as shown in Fig.6A. When an object whose
conductivity differs from the water is placed within the field as
shown in Fig.6B, the proximal electrode will measure a voltage
different than that of the distal electrode, resulting in a non-zero
differential signal, indicating the presence of the object. A central
thrust of current research in artificial electrosense is how this signal
can be processed to obtain valuable information about the object.

A single differential measurement in electrosense is analogous
to the intensity measurement of a single pixel of a camera, and
object detection, location, identification, etc., through processing of
electrosensory signals is akin to machine vision. An object in the
emitted electric field perturbs the field, and the perturbations
measured by the array of sensors on the robot or fish boundary
constitute the electric image of the object. Of course, just as light
can be measured in ways other than signal intensity, there are
numerous variants to the simple artificial electrosense described
above, which will be mentioned throughout the rest of this section.
An important way in which the analogy to geometric optics and
machine vision does not apply is that the electric field significantly
changes its structure as a function of the objects in the near field.

Artificial versus biological electrosense
The main goal of research into artificial electrosense thus far has been
to use the principles of biological electrosense for tasks where other
sensing modalities break down, such as in dark murky water, or
navigation in complex geometries where a robot has to swim very
near obstacles. Therefore, electrosense should be able to identify and
localize objects and features in the environment to aid robotic
navigation and other tasks. Mimicking every feature of biological
electrosense may not be necessary to achieve this goal, although even
when the goals are purely technological it is often beneficial to relate
findings back to the rich literature in biological electrosense. The
following is a brief overview of the abstractions made from
biological electrosense and important differences between the two.

The first major difference between artificial and biological
electrosense is the structure of the emitted field. The simplest
emitter is a single dipole. This differs from the common method of
modeling the field generated by the electric organ of the electric

fish, consisting of multiple positive sources and a single negative
source (Rasnow and Bower, 1996; Assad et al., 1999; Chen et al.,
2005). The resulting electric fields for the two paradigms are shown
in Fig.5. There are many other features of the electric fish field
whose import to electrolocation are not fully understood, such as
frequency of oscillation and rotation of the caudal electric field
within an electric organ discharge cycle (Assad et al., 1999;
Rasnow and Bower, 1996). The structure of the electric field has a
large impact on the voltage perturbations created by objects. The
second important difference is that artificial systems generally use
differential measurements between sensor pairs, while
electroreceptors respond to the signal at the receptor with respect
to the potential within the body as modeled in one of the early
artificial systems (MacIver and Nelson, 2001). Last, fish such as
electric knifefish use over 10,000 sensors distributed all over the
skin (Carr et al., 1982), while current artificial systems have only
up to around 30 sensors. To compensate for this deficiency, the
sensors are often moved around the object to obtain multiple views,
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Fig.6. A simple four-electrode active electrosense system. The two red
squares create a dipole, generating an electric field marked with solid
isopotential lines and vectors for field strength and direction. The green
diamond pair measures differential voltage. (A)With no object present, both
sensors lie on the same isopotential line, resulting in a differential output of
0V. (B)When an object is introduced that distorts the field, the proximal
sensor observes a higher voltage shift than the distal sensor, resulting in a
nonzero differential measurement. Reprinted with permission from Solberg
et al. (Solberg et al., 2008).
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though this operation is not the same as having a large array of
sensors because the emitted field and the field-distorting robot body
must move with the sensors. All of these differences have to be
factored in when relating findings from artificial electrosense
research back to biological electrosense.

Single channel localization
Given the simple system of a single pair of sensing electrodes,
Solberg et al. (Solberg et al., 2008) demonstrated localization of
the sensor within a previously mapped stationary environment. To
do so, the researchers created an ensemble of electrosensory
viewpoints (EEVs) for a given object or environment. This section
describes EEVs, as well as the performance of this system for
localizing itself given noisy sensor data.

Electrosensory viewpoints
The first step towards localization within an environment is to have
a map of the environment. Similarly, a map can be created of an
unknown environment if expected features can be localized and
subsequently superimposed, assuming that the perturbation due to
the features do not overlap. The reading from the differential
channel, or sensor observation, when the sensing platform is in a
certain location and orientation within the environment or with
respect to an object is called an electrosensory viewpoint. The
collection of electrosensory viewpoints for all possible locations in
the map is called an EEV for the given object or environment.
Fig.7A is an example of an EEV for a conducting disk. Also,
because the sensors are noisy, each viewpoint has a mean and
standard deviation associated with it. Therefore, for a given
reading, a probabilistic map can be generated based on the
likelihood that the sensors are in any position within the map given
the sensor reading as shown in Fig.7. One measurement therefore
is not sufficient for localization. However, localization can be
achieved by combining movement with sensing through
probabilistic filtering methods common in robotics.

Performance in localizing objects and in self-localization
Solberg et al. used a particle filter to estimate location within a
known map (Solberg et al., 2008). The distribution of particles is

initially random, and their position is updated according to the
probabilistic map following a measurement. Monte Carlo forward
simulation attempts to minimize the expected uncertainty at the
next step. Using this algorithm, the sensor was able to localize
itself with respect to the pre-mapped object or environment within
just a few steps. However, limitations include needing the pre-
mapped EEV for each object or environment, using a fixed sensor
orientation, and knowing parameters such as the conductivity 
of the medium. Recent work has expanded this localization
problem using a sensing platform with more channels (shown in
Fig.8) and allowing for varying sensor platform orientation
(Silverman et al., 2012). While having to map objects and
environments seems onerous, electric fish do have spatial
memory, and often make scanning movements around novel
objects, perhaps to create something similar to an EEV of the
object (Assad et al., 1999).

Object identification
Perhaps equally important to object localization is object
identification and discrimination. Assad et al. (Assad et al., 1999)
proposed a mapping of how features in the electric image of an
object on a fish’s skin encode information about physical
properties of the object, including electrical properties (i.e.
conductivity and permittivity) and geometrical properties (i.e.
size and shape). Similarly in artificial electrosense, features must
be extracted from measurements that can be used to discriminate
objects based on their physical properties. First, we review
methods developed to determine the complex impedances of an
object by measuring both amplitude and phase perturbations
caused by the object. Weakly electric fish have electroreceptors
capable of detecting phase shifts due to capacitance, which could
be used to discriminate between the high capacitance of live tissue
(largely resulting from cell membranes) and the lower capacitance
of dead tissue (von der Emde and Bleckmann, 1998). Second, we
review a method developed to disambiguate object shape.

Determining electrical properties of objects
Bai et al. (Bai et al., 2012) implemented a dual-channel solution
for deriving the phase shift of the electrosensory signal due to the

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

x (mm)

y 
(m

m
)

A B

Fig.7. Ensemble of electrosensory viewpoints (EEV) and probabilistic map for a conductive disk. (A)Color map indicates the differential measurement of the
green triangles given the placement of the target object. Dotted lines indicate the target locations that give the same differential measurement. The solid
blue contour indicates locations resulting in a 0V measurement, while the solid yellow contour indicates locations resulting in −35mV. (B)Probabilistic map
of the target location given a single noisy measurement of −35mV. White indicates high probability that the object is in that location, while black indicates
low probability. Adapted with permission from Solberg et al. (Solberg et al., 2008).
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presence of a capacitive object. The researchers added a second
demodulation channel to the already existing demodulation
channel described above. In the second channel, the reference
signal is phase shifted by π/2, resulting in two values related to
each other by the amplitude and phase shift of the perturbation.
Therefore, both the amplitude and the phase shift can be
calculated from the two demodulated channels of a single
differential measurement of one sensor pair. The goal of this dual-
channel implementation was to differentiate objects that would
look very similar with a single channel but different when the
second channel is added. To test this hypothesis they generated
electrosensory ‘fly-by profiles’ as the object passed by the sensor
at a fixed lateral distance. This dual-channel design was able to
more easily disambiguate objects that previously looked very
similar when just a single channel was used. For example, the fly-
by profile of a single demodulated channel shares similar features

for an inanimate rock and a live plant. However, the second
channel shows a clear change, as seen in Fig.9. Ultimately, the
measurements from two channels are necessary for determining
both components of complex impedance.

For any capacitive object, the complex impedance will be
frequency dependent. Frequency sweeping is a trivial addition to
artificial electrosense that weakly electric fish cannot do as they
maintain discharge frequencies within a relatively narrow range.
Bai et al. (Bai et al., 2012) also investigated the impact of varying
the excitation frequency. By sweeping a range of frequencies to
derive Bode plots of phase and amplitude, other objects that could
not previously be disambiguated for a single frequency for both
channels exhibit different phase and amplitude values over a range
of frequencies. Ammari et al. (Ammari et al., 2013a) developed
numerical methods of object identification using multifrequency
measurements capable of reconstructing the complex impedance as
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Fig.8. Models of electrosense. (A)Model of the electric field
of a mormyriform (African) weakly electric fish. (B)The
ANGELS seven-electrode current-sensing electrosensory
platform. (C)Model of electric field perturbation due to an
object (conductive ellipse above the white cylinder) in an
artificial electrosense system. (D)The 37-electrode
Northwestern SensorPod as it navigates a cluttered
environment. A and B are used with permission of F. Boyer.
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Fig.9. Two-channel capacitance sensing of a rock (top) and a plant (bottom). Distance indicates the longitudinal position of the object along the sensing pod
as the object passes by. Amplitude is the demodulated differential measurement from the electrode pair. The demodulation signal was phase shifted by
90deg for channel 2. The rock and plant give similar profiles for channel 1 (solid black line), but are easily disambiguated given the profiles for channel 2
(dotted red line). Moreover, the calculated phase shift due to the presence of the rock is much different than that of the plant, indicating varying degrees of
capacitance of the two objects. Adapted with permission from Bai et al. (Bai et al., 2012).
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well as size of small disk- and ellipse-shaped objects. Currently,
this method uses the electric field and boundary conditions
associated with the actual fish, and would have to be adapted
accordingly to be utilized in an artificial electrosense platform.

Determining shapes of objects
Discriminating shapes of two similarly sized objects using
electrosense is difficult as the electric image does not retain features
such as sharp edges or corners often used to discriminate various
shapes. However, electric fish have been shown to be able to
discriminate shape (von der Emde and Fetz, 2007). The
mathematical model presented in Ammari et al. (Ammari et al.,
2013a) was used to extract generalized polarization tensors (which
are quantities intrinsic of object geometry) of a nearby object. They
have built a library of shape descriptors that are invariant of size
and orientation of the object and are derived from the polarization
tensors. Therefore, they can classify objects based on the similarity
of the shape descriptors based on simulated noisy measurements
and those in the library. Again, these methods have not been
performed on a physical artificial electrosense platform, but show
promise in strengthening the ability to perform accurate object
classification.

Variants of artificial electrosense
The latest advancements in artificial electrosense have largely been
moving towards the goal of creating a useful technology rather than
trying to build a physical model of biological electrosense to test
hypotheses related to the fish. However, by creating various
methods of localization, object identification and control using
electrosense, appreciation is gained for the complex underlying
issues that the fish is able to overcome. The following sections
describe some recent variants to artificial electrosense.

Dead reckoning in an environment-dependent electric field
The examples of artificial electrosense described so far share a
common theme that movement is important for both localization
and object identification. However, the algorithms rely on having
knowledge about the movement that occurred. For either the fish
or a robot, knowledge of internal state can be achieved either by
knowing the dynamics involved with transitioning between states,
or by sensing the current state. Generally, animals and robots
combine both methods, as motor actions as well as sensor
readings can be noisy. Therefore, the fish and an electrosensory
robot should be able to sense its own movement and combine that
with some expectation of the motor output to dead reckon its
current state. One way to sense movement is to detect the relative
velocity of the robot and a fixed object as the robot passes by. A
simple method of velocity estimation uses multiple sensor pairs
oriented axially along an electrosensory system. Each sensor pair
should view a similar electric image, offset by time according to
the speed of the sensors. Through cross-correlation of these
electric images, an estimate of velocity is achieved. However,
Snyder et al. (Snyder et al., 2012) found that the electric images
of the various sensor pairs were vastly different due to their
varying locations within the non-uniform electric field, resulting
in poor velocity estimates. Each sensor pair is analogous to a
camera with a different distorting lens, so the images cannot be
simply correlated without knowing the effects of the distortions.
Similarly, the velocity of the electric image on the skin of the fish
of an object depends on the distance of the object to the fish
(Rasnow, 1996), so simply calculating the velocity of the electric
image would not work for the fish either.

Electrical impedance tomography
A solution of the velocity estimation problem is to have a better
estimate of the actual object location at all times. Recently, an
approach developed for medical imaging applications has been
applied to underwater electrosense. The EIT method uses
controlled emissions of electric current and voltage measurements
to create a map of impedances near the sensing platform. Snyder
et al. (Snyder et al., 2012) show in simulation that velocity
estimations using EIT are vastly more accurate than using simple
cross-correlation. Fig.10 shows the reconstruction of the position
of an object as it passes by the sensor platform. While both the
sensing paradigm and the mathematical analysis involved with EIT
is a large departure from any known biological mechanism the fish
might use to localize objects, the task space for an animal is also
radically different from that of underwater vehicles. For an animal,
orientation toward an identified object and closing the gap may be
all that is needed (for prey capture, for example), while in robotics
applications it may be useful or necessary to compute an estimate
of 3D object position and do more complex scene analysis of
objects for planning trajectories.

Current sensing and reactive control
So far, the artificial electrosense applications described have
implemented voltage-sensing electrodes with high input
impedance. Alternatively, the current sourced or sunk through the
electrodes can be measured (Boyer et al., 2012). One such
platform, shown in Fig.8B, uses seven electrodes and can perform
localization and object identification tasks similar to studies using
voltage sensing (Boyer et al., 2012). However, the sensor
geometry allows for the measured current to be simply

A B

C D

Fig.10. Forward and inverse conductivity. Left plots (A,C) show two views
of the conductivites prescribed onto elements of the mesh (red is 100×
other open region around the pod) to be used in computing the forward
solution. Right views (B,D) show elements above threshold (70% of peak
conductivity) in the reconstructions on a low-resolution mesh. Three-
dimensional object position is accurately estimated when near the pod
(lateral distance is 0.09m). Adapted with permission from Snyder et al.
(Snyder et al., 2012).
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decomposed into an axial current and a lateral current. The axial
current is indicative of whether the sensed object is an insulator
or conductor, while the lateral current is indicative of the lateral
location of the object, given that the electrical properties of the
object are known. Using these properties of the sensor, Boyer et
al. (Boyer et al., 2013) implemented a simple control strategy
based on the two decomposed current measurements to avoid
insulated objects while seeking conductive ones or vice versa. A
sample trajectory is shown in Fig.11. Such control is termed
reactive, as no model of the environment or the object is required
and the sensor merely reacts to the electrical properties of nearby
objects. This reactive control would be useful for navigation while
avoiding objects without a map. The nervous system of the fish
likely uses similar reactive control to avoid obstacles as the range
of electrosense is limited to approximately one body length,
corresponding closely with the space in which the fish can avoid
objects given neural reaction times (Snyder et al., 2007).
Examples of simulated transdermal potentials of fish swimming
on a planned trajectory are shown in Chen et al. (Chen et al.,
2005). Rapid changes in potential near walls correlate with similar
changes in measured currents shown in Fig.11, and could
potentially be used in a reactive control law to allow the fish to
avoid obstacles.

Although reactive control using artificial electrosense can be
useful for an underwater vehicle, the robot will have to be
maneuverable enough to actually react, especially given the short
range electrosense allows. While mechanics and sensing have
thus far been discussed separately, in the following section we
discuss bringing them back together to develop a highly agile
robot using electrosense. This concluding section also reiterates
the motivations for creating a robot inspired by the weakly
electric knifefish.

Recombining sensing and mechanics
A better autonomous underwater vehicle

One of the goals underlying the work in knifefish robotics was to
build an autonomous underwater vehicle of enhanced capability

over current designs. This vehicle should be able to efficiently
navigate complicated geometries in dynamic environments.
MacIver et al. (MacIver et al., 2004) make the case for why the
integration of artificial electrosense and knifefish mechanics will
be far more powerful than incorporating these elements in
isolation. The fish’s body plan and thrust capabilities are designed
to optimally perform maneuvers the fish uses to capture prey
(MacIver et al., 2001; Snyder et al., 2007; Postlethwaite et al.,
2009). These maneuvers are directed at prey locations in nearly
all directions around the fish, together demonstrating
omnidirectional mechanical capabilities over the very brief
duration of a prey capture sequence. These maneuvers include
rapid reversals and rolls, generated by the knifefish’s ribbon fin
and pectoral fins. The Ghostbot was similarly designed to be
maximally maneuverable in surging forward and backward as
well as rolling with its long cylindrical shape. A new version of
the Ghostbot that has recently been completed implements
pectoral fin-like dive planes to generate roll moments when held
asymmetrically in the flow. The bilateral symmetry of the fish
body is crucial to these efficient mechanics. Roll maneuvers allow
the fish to center the prey or object in the midsagittal plane,
simplifying control by maintaining constant signal strength
between the two symmetrical halves of the body during the strike
sequence (MacIver et al., 2001). This form of control is very
similar to the successful reactive control techniques using
electrosense described in the previous section. The
omnidirectional motion capabilities of the fish are dependent
upon an omnidirectional sensory field. This sensory field enables
objects to be scanned along the entire length of the fish or robot.
Forward and backward scanning motions (Assad et al., 1999) and
‘rapid reversals’ during prey capture (MacIver et al., 2001) allow
extraction of key object features while always keeping the object
within the short sensing range of the active electrosensory system.

A further advantage of weakly electric knifefish is that trunk
movements are decoupled from propulsion, as all propulsion comes
from traveling waves along the ribbon fin. This feature facilitates
technological development, as it is much simpler to build an
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underwater vehicle with a rigid body to house all internal
components. A rigid body also simplifies the computational
complexity of artificial active electrosense, as it stabilizes the signal
arising at sensors due to the electric field. The live fish performs
postural adjustments and probing motions by tail movements,
which creates an additional signal processing challenge because
such movements induce a much larger response in sensory
receptors than do the small prey that the fish hunts (Chen et al.,
2005). Future versions of Ghostbot that integrate electrosense will
benefit from the rigid body simplification, as well as minimize
electrosensory interference from the moving fin by maximizing
sensory acuity in regions away from the movement of the fin, as
found in the live fish (Snyder et al., 2007). The ANGELS project
combines electrosense with anguilliform swimming (Mintchev et
al., 2012). The ANGELS robotic design is made of independently
actuated modules that can combine together to undulate through the
water over longer distances. While each module is rigid, the
undulating mechanics of the combined robot produces large
fluctuations in the electrosensory signals that must be overcome. In
this case, efficient mechanics raises signal processing challenges
for the artificial electrosensory system not unlike those that that real
electric fish face.

A better understanding of the situated electric fish
Physical models are key tools used to test hypotheses and raise new
questions regarding the original biological system. Often, by
overcoming the technical challenges of building a robot to mimic
natural behaviors, appreciation is gained for the solutions to those
challenges found in nature. When waters become muddy and vision
useless, nature has co-developed mechanical and sensory systems
that allow electric fish to thrive where other organisms cannot. The
robots discussed above demonstrate that the principles derived from
studying the fish actually work when implemented, despite the
many simplifications necessary to make the research tractable.
Replication of observed animal behavior through physical models
or computational synthesis is a productive method of inquiry with
both scientific and technological benefits.
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