1. Course title/number, numb	per of credit hours	
EML 4142 – Heat Transfer		# 3 credit hours
2. Course prerequisites, corec	quisites, and where th	e course fits in the program of study
Prerequisites: EGN 3343 Engineering The EML 3701 Fluid Mechanics EGN 2538 Computer Appli		
3. Course logistics		
<i>Term</i> : Spring 2015 This is a classroom lecture cou Class – MWF 9:00 PM-9:50AM		
4. Instructor contact informa	tion	
Instructor's name Office address Office Hours Contact telephone number Email address	Dr. Myeongsub "Mik Engineering West (Eu M-W 10:00 AM- 12:0 (561) 297-3442 kimm@fau.edu	
5. TA contact information		
TA's name Office address Office Hours Contact telephone number Email address	Samar Kadduori Engineering West (E TBA skaddouri2012@fau.	
6. Course description		
conduction, numerical method convection, radiation properti	ls, computer program es, shape factors, radia	eady state heat conduction, unsteady heat projects, empirical relations for forced and free tion heat exchange between gray bodies.
7. Course objectives/student		
Course objectives		ring students with analyzing and solving problems on, convection, and radiation modes of heat
Student learning outcomes & relationship to ABET a-k objectives	heat conduction 2. Be familiar with mechanisms, an (a,e,k) 3. Explain the princ them in radiation	able to , and solve problems on the steady and transient problems. (a,e,k) both forced and natural convection, the underlying d empirical correlations, including solving skills. tiple of radiation heat transfer, view factors, and use n heat transfer calculations. (a,e,k) fer problems as part of a group-effort class project.

	course synabus	
. Course evaluation method		
Homework – 20% Midterm Exams – 50% (two exams, 2 Final Examination – 30%	5% each)	
9. Course grading scale		
Grading Policy:		_
Letter Grade	Percentage (%)	
А	≥ 95	
A	≥ 90	
B^{+}	≥ 85	
В	≥ 80	
B	≥ 75	
C+	≥ 70	
С	≥ 65	
C	≥ 60	
D^{+}	≥ 55	
D	≥ 50	
F	< 50	
<i>Note</i> : The minimum grade required	to pass the course is C.]
Dellevien medicium tente lete	1 12 14	

10. Policy on makeup tests, late work, and incompletes

Homework

- You are encouraged to work along with your colleagues, but each of you must provide your own individual solution set. <u>Plagiarism</u> will result in a <u>zero</u> for that set.
- All assignment are due on the specified due date in class. No late returns will be accepted.

Exam

- There will be two midterm exams and a comprehensive final exam. These tests will be given open book and open note.
- **No make-up exam or assignments** will be given unless a medical or other emergency was the reason for missing the exam or the assignments.

11. Special course requirements

12. Classroom etiquette policy

University policy requires that in order to enhance and maintain a productive atmosphere for education, personal communication devices, such as cellular phones and laptops, are to be disabled in class sessions. In addition, no food except drinks will be allowed during the class.

13. Disability policy statement

In compliance with the Americans with Disabilities Act (ADA), students who require special accommodations due to a disability to properly execute coursework must register with the Office for Students with Disabilities (OSD) located in Boca Raton campus, SU 133 (561) 297-3880 and follow all OSD procedures.

14. Honor code policy

Students at Florida Atlantic University are expected to maintain the highest ethical standards. Academic dishonesty is considered a serious breach of these ethical standards, because it interferes with the university mission to provide a high quality education in which no student enjoys unfair advantage over any other. Academic dishonesty is also destructive of the university community, which is grounded in a system of mutual trust and place high value on personal integrity and individual responsibility. Harsh penalties are associated with academic dishonesty. See University Regulation 4.001 at www.fau.edu/regulations/chapter4/4.001 Code_of_Academic_Integrity.pdf

15. Required texts/reading

Textbook: Heat and Mass transfer: Fundamentals and Applications, 5th Edition by Yunus Cengel, Afshin Ghajar, McGraw-Hill, (ISBN: 978-0073398181)

16. Supplementary/recommended readings

Class notes

Textbook reading in advance at each class is strongly recommended

17. Course topical outline, including dates for exams/quizzes, papers, completion of reading

Course Topics

- 1. Modes of heat transfer
- 2. Heat Conduction
- 3. Steady and Transient Conduction
- 4. Numerical Methods in Heat Conduction
- 5. Forced Convection
- 6. Natural/Free Convection
- 7. Heat Exchangers
- 8. Radiation Heat Transfer

Tentative Course Schedule

Week	Topics	HWs
1 (1/5, 7, 9)	Introduction, Modes of Heat Transfer (Ch. 1)	
2 (1/12, 14, 16)	Thermal Conductivity, Heat Equation (Ch. 2)	#1
3 (1/19, 21, 23)	Thermal Resistances (Ch. 3), 19: M.L. King Jr. Holiday	
4 (1/26, 28, 30)	Energy Generation, Fins (Ch.3)	#2
5 (2/2, 4, 6)	Lumped Capacitances, Separation of Variables, (Ch. 4)	#3
6 (2/9, 11, 13)	Midterm #1	#4
	Finite Difference Methods, Transient Conduction (Ch. 5)	
7 (2/16, 18, 20)	Boundary Layers, Flow-Thermal Analogy (Ch. 6)	#5
8 (2/23, 25, 27)	External Forced Convection (Ch. 7)	#6
9 (3/2, 3/4, 3/6)	Spring Break	
10 (3/9, 11, 13)	Internal Forced Convection (Ch. 8)	#7
11 (3/16, 18, 20)	Free Convection (Ch. 9)	#8
12 (3/23, 25, 27)	Midterm #2	#9
_	Boiling and Condensation (Ch. 10)	
13 (3/30, 4/1, 3)	Heat Exchangers (Ch. 11)	#10

14 (4/6, 8, 10)	Heat Radiation, Emission/Absorption (Ch.12)	#11		
15 (4/13, 15, 17)	View Factors, Radiation Exchange (Ch. 13)			
16 (4/20)	Review			
17	Final Exam			
*HW due is every Friday in the following week.				