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Abstract In the design of wireless networks, techniques for improving energy efficiency
and extending network lifetime have great importance, particularly for defense and civil/res-
cue applications where resupplying transmitters with new batteries is not feasible. In this
paper we study a method for improving the lifetime of wireless networks by minimizing the
length of the longest edge in the interconnecting tree by deploying additional relay nodes at
specific locations. This optimization problem, known as the Bottleneck Steiner Tree Problem
(BSTP), asks to find a Steiner tree for n terminals with at most k Steiner points such that the
length of the longest edge in the tree is minimized. We present a ratio-

√
3 + ε polynomial

time approximation algorithm for BSTP, where ε is an arbitrary positive number.

Keywords Wireless networks · power efficient · approximation algorithms · Steiner tree ·
bottleneck Steiner tree

1 Introduction

Recent advances in affordable and efficient electronics have had a dramatic impact on the
availability and performance of radio-frequency wireless communication equipment. A con-

I. Cardei · M. Cardei (B)
Department of Computer Science and Engineering, Florida Atlantic University, Boca Raton,
FL 33431, USA
e-mail: {icardei,mihaela}@cse.fau.edu

L. Wang
Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
e-mail: lwang@cs.cityu.edu.hk

B. Xu
School of Mathematics and Computer Science, Nanjing Normal University, Nanjing, P.R. China
e-mail: baogxu@pine.njnu.edu.cn

D.-Z. Du
Department of Computer Science, University of Texas at Dallas, Richardson, TX 75083, USA
e-mail: dzdu@utdallas.edu



J Glob Optim

siderable number of defense and civil applications involve deployment of computing devices
or sensors able to communicate digital information through wireless connections. Ad-hoc
wireless networks require no infrastructure, central access points or wired switches. The wire-
less nodes run communication protocols that enable on-the-fly organization of traffic routing,
so that all nodes achieve end-to-end connectivity by forwarding data packets from one node
to a destination node across multiple hops. The lack of any infrastructure simplifies rapid
network deployment, especially useful in situations where human presence is not appropriate
or even possible, because of a dangerous environment. One representative ad-hoc wireless
network consists of sensors capable of monitoring the environment and sending acoustic,
video or seismic information to a data collection node. In most cases the sensors are battery
powered and therefore operate for a limited time before they consume all power and stop
working. For radio-frequency wireless communication, the transmission power required for
a radio signal to be received at a destination node located at distance r from the source is
proportional to rk , with k ∈ [2, 4]. So, in order to prolong the network lifetime in general, it
is desirable to minimize the distance between nodes. When the node positions are fixed, there
are several different methods to extend the network lifetime, mainly based on power-aware
routing and transmission scheduling.

This paper contributes an algorithm for extending the lifetime of a wireless network when
n nodes have fixed locations and a number of up to k additional nodes can be placed at
arbitrary positions. The objective of the algorithm is to build a spanning tree that connects
the n fixed points and up to k additional nodes in the Euclidean plane, so that the length of
the longest tree edge is minimized. Hence, the power required to transmit on the longest link
is minimized also, and the network lifetime, in terms of connectivity, is extended.

The problem described above is a variation of a Steiner tree problem, named bottleneck
Steiner tree problem (BSTP for short). A Steiner tree is an acyclic network interconnecting a
set P of terminals and some other points. Every vertex in a Steiner tree other than a terminals
is called a Steiner point. The BSTP is defined as follows: given a set P of n terminals and a
positive integer k, find a Steiner tree with at most k Steiner points such that the length of the
longest edge in the tree is minimized. Contrary to the classic Steiner tree problem, degree-2
Steiner points are allowed in BSTP. Instead of minimizing the total length of the tree, here
we want to minimize the length of the longest edge.

The BSTP is NP-hard. The work in Ref. [10] shows that BSTP cannot be approximated
in polynomial time with performance ratios less than 2 and less than

√
2 in the rectilinear

plane and the Euclidean plane, respectively. Moreover, a ratio-2 approximation algorithm
was introduced for both the rectilinear plane and the Euclidean plane in Ref. [10]. For the
rectilinear plane, this performance ratio is the best possible. A ratio-1.866 approximation
algorithm for the Euclidean plane has been described in Ref. [11]. In this paper, we give a
randomized approximation algorithm with performance ratio

√
3+ε for the Euclidean plane,

where ε is an arbitrary positive number.
As mentioned above, this problem has an immediate application in the design of wireless

networks for extending their lifetime. A typical scenario where the algorithm can be used,
consists of n units (combat units, rescue crews or sensors) that need to communicate. The
algorithm determines the number and location of maximum k communication relay nodes
(mobile nodes, unmanned aerial vehicles) deployed to improve connectivity and save power
for the wireless network. The computed tree spanning at most n + k nodes could be used to
route traffic between nodes.

This paper continues in Section 2 with a presentation of other techniques to optimize
power consumption in wireless networks. Section 3 presents the main theorem that proves



J Glob Optim

the
√

3+ε approximation performance and continues with the algorithm description. Section
4 concludes the paper with some final remarks.

2 Related work

The recent advances in wireless technology have stimulated a strong research current in power
efficiency for wireless networks. Chang and Tassiulas [2] formulate the maximum lifetime
routing problem for a wireless network as a linear program, similar to the maximum flow
problem with node capacities. Their goal is to maximize the time until the network partitions,
which is similar to our goal. Their algorithm computes optimal data flows for the single and
the multi-commodity cases and they also consider a version for power-efficient routing with
delay constraints, where the delay is given by the number of intermediary hops. Furthermore,
Chang and Tassiulas extend their model in Ref. [3], and introduce a new class of flow aug-
mentation and flow redirection algorithms that employ shortest paths and power consumption
balance across nodes, proportional to their energy reserves, in order to maximize the net-
work lifetime. Their approaches consider static networks and compute flow-based optimal
routes, while our algorithm works on optimal placement of Steiner points—communication
relays—that reduce the power consumption for the bottleneck edges in the network.

Slijepcevic and Potkonjak [9] study the problem of placement of wireless nodes (sensors)
into a monitored area and transmission scheduling to achieve full coverage with minimal
power utilization. Their heuristic solution for the Set K-Cover problem partitions the wire-
less nodes into mutually exclusive sets, where nodes in each set fully cover the monitored
area. Since at one time only one set of nodes is active, and the disjoint sets are rotated,
significant power savings are achieved and the network lifetime is extended. The proposed
technique works well for applications that do not need continuous connectivity for all nodes,
sensor networks, for instance.

A novel power-aware routing method is described by Li et al. [6]. The authors model the
network lifetime as the earliest time when a message cannot be transmitted and propose a
routing algorithm, named max—min z Pmin—path, that consumes at most z Pmin power
while maximizing the minimal residual power fraction.

Steiner trees have been a constant source of interesting problems with relevant applica-
tions in the wireless networking domain. For variations of Steiner tree problems and their
applications, see Refs. [1, 4, 5, 8].

3 Ratio-
√

3 approximation algorithm for BSTP

In this section, we present a ratio-
√

3 approximation algorithm for BSTP in the Euclidean
plane. We start by defining some key notions.

Definition 1 A full component of a Steiner tree is a subtree in which each terminal is a leaf
and each internal node is a Steiner point.

Definition 2 A Steiner tree for n terminals is a k-restricted Steiner tree if each full component
spans at most k terminals.

The next theorem characterizes the performance of our approximation algorithm for BSTP:
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Theorem 1 Let T be an optimum Steiner tree for BSTP. Then, there exists a 3-restricted
Steiner tree with the same number of Steiner points as T such that the longest edge in the
tree is at most

√
3 times the optimum.

Proof We assume that T is rooted by arbitrarily selecting a Steiner point as its root. We will
modify T bottom up into a 3-restricted Steiner tree without increasing the number of Steiner
points such that the length of the longest edge is at most

√
3 times the optimum. Without

loss of generality, we assume that T is a full Steiner tree, i.e., every internal node in T is a
Steiner point and every leaf in T is a terminal.

We organize the nodes in T level by level (ignoring degree-2 Steiner points). Level 1 is
the lowest level. Level i is the level above level i − 1. Let v be a node at level 3 that has some
grandchildren. Let v′ be a child of v. If v′ is a Steiner point, we can assume that the degree of
v′ is 3, i.e., v′ has two children that are terminals. Otherwise, suppose that v′ has 3 or more
children that are terminals, say, a, b, and c. Assume that a, b, c are positioned clockwise
around v′. Then the three angles � av′b, � bv′c and � cv′a form 360◦. Thus, at least one of
the three angles � av′b, � bv′c and � cv′a is at most 120◦. Without loss of generality, assume
that � av′b ≤ 120◦ and av′ is not shorter than bv′. Then |ab| ≤ √

3|av′|.
Let m be the number of degree-2 Steiner points (not including v′) in the path from a to v′.

We construct a new Steiner tree T ′ by removing all the edges on T , and directly connecting
a and b with m degree-2 Steiner points so that the length of each edge in the segment ab is
at most

√
3. Now, we need only to consider the tree obtained from T ′ by removing a and all

the degree-2 nodes on the path connecting a and b in T ′.
From now on, we assume that the degree of v′ is at most 3. We consider two cases.

Case 1 Every edge below v in T has length no more than 1. We consider the case where v

has 4 grandchildren. The case where v has 3-children is simpler and is left to the interested
readers.

We first consider that v is a degree-3 node. (See Fig. 1a) In this case, we assume that
� bv′c > 120◦ and � d f e > 120◦. Otherwise, assume that � d f e ≤ 120◦, then we can
directly connect d and e. The length of edge de is at most

√
3. Therefore, we have

min{� d f v, � e f v} <
360◦ − 120◦

2
= 120◦ and min{� cv′v, � bv′v} < 120◦,

i.e.,

min{|dv|, |ev|} <
√

3 and min{|cv|, |bv|} <
√

3. (1)

Fig. 1 (a) The original tree. (b)
The modified tree

(b)(a)
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Without loss of generality, assume that

� d f v = θ = min{� vv′v, � vv′c, � d f v, � e f v} (2)

and

� vv′c ≤ � vv′b. (3)

We will find a point h on edge vv′ such that max{|ch|, |bh|, |dh|} ≤ √
3, and construct a

new tree by removing nodes v′ and f , adding edges ch, cv, dh, bh, and connecting d and e
directly with a Steiner point w on the middle of de. (See Fig. 1b) Then, we can continue the
modification process with n − 3 terminals in P ∪ {v} − {b, c, d, e}.

By (1) and (3), we know that |ch| ≤ √
3 for any h on the edge vv′. So, we need only to

choose an h to guarantee |bh| ≤ √
3 and |dh| ≤ √

3.
First we suppose that θ < 90◦, then we take h to be the point on edge vv′ such that

|vh| = 2 − √
3. It is clear that |bh| ≤ √

3. Note that |dv| ≤ 1 and | f v| ≤ 1. By triangle
inequality, |dh| ≤ |dv| + |vh|. It is easy to see that |dv| ≤ √

2 when � d f v < 90◦. (dv is the
third edge in �d f v.) Thus,

|dh| ≤ |dv| + |vh| ≤ √
2 + 2 − √

3 <
√

3.

Now we suppose that 90◦ ≤ θ < 120◦. By (2) and (3), we know that � bv′v < 360◦ −
120◦ − θ = 240◦ − θ . We choose h to be the point on edge vv′ such that |vh| = √

3 − |dv|.
By (1), |vh| > 0. It is easy to see that

|v′h| ≤ 1 − |vh|
= 1 − (

√
3 − |dv|) (4)

= 1 − √
3 +

√
|d f |2 + | f v|2 − 2|d f || f v| cos θ

≤ 1 − √
3 + √

2 − 2 cos θ. (5)

By triangle inequality,

|dh| ≤ |dv| + |vh| = √
3. (6)

Using (5), we have

|bh|2 = |bv′|2 + |v′h|2 − 2|bv′||v′h| cos � bv′v
≤ 1 + (1 − √

3 + √
2 − 2 cos θ)2

−2(1 − √
3 + √

2 − 2 cos θ) cos(240◦ − θ)

= 1 + (1 − √
3 + √

2 − 2 cos θ)2

+2(1 − √
3 + √

2 − 2 cos θ) sin(θ + 30◦)

= 1 +
(

1 − √
3 + 2 sin

θ

2

)2

+2

(
1 − √

3 + 2 sin
θ

2

)
sin(θ + 30◦) = G(θ).
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Set H(θ) = G(θ) − (
√

3)2.

H(θ) = 1 +
(

1 − √
3 + 2 sin

θ

2

)2

+ 2

(
1 − √

3 + 2 sin
θ

2

)
sin(θ + 30◦) − 3

= −2 +
(

1 − √
3 + 2 sin

θ

2

)2

+ 2

(
1 − √

3 + 2 sin
θ

2

)
sin(θ + 30◦).

We will show that H(θ) ≤ 0 for θ ∈ [90◦, 120◦]. Then, combined with (6), h is certainly
a correct choice.

d H

dθ
= 2

(
1 − √

3 + 2 sin
θ

2

)
cos

θ

2
+ 2

(
1 − √

3 + 2 sin
θ

2

)
cos(θ + 30◦)

+2 sin(θ + 30◦) cos
θ

2
,

d2 H

dθ2 = (
√

3 − 1) sin
θ

2
+ 2(

√
3 − 1) sin(θ + 30◦) + 2 cos θ

+5 cos

(
3θ

2
+ 30◦

)
− cos

θ

2
cos(θ + 30◦),

d3 H

dθ3 =
√

3 − 1

2
cos

θ

2
+ 2(

√
3 − 1) cos(θ + 30◦) − 2 sin θ

−7 sin

(
3θ

2
+ 30◦

)
+ 1

2
cos

θ

2
sin(θ + 30◦),

d4 H

dθ4 = −
√

3 − 1

4
sin

θ

2
− 2(

√
3 − 1) sin(θ + 30◦) − 2 cos θ

−21

2
cos

(
3θ

2
+ 30◦

)
− 1

4
sin

θ

2
sin(θ + 30◦) + 1

2
cos

θ

2
cos(θ + 30◦).

If 90◦ ≤ θ ≤ 120◦, then −
√

3
2 ≥ cos( 3θ

2 + 30◦) ≥ −1, so it is easy to see that

d4 H

dθ4 (θ) > 0.

This means that d3 H
dθ3 (θ) is strictly an increasing function on [90◦, 120◦]. By

d3 H

dθ3 (90◦) < 0 and
d3 H

dθ3 (120◦) > 0,

we know that d3 H
dθ3 (θ) = 0 has a unique solution, say θ0 ∈ (90◦, 120◦). d2 H

dθ2 (θ) is decreasing

on (90◦, θ0), and is increasing on (θ0, 120◦). Therefore, the maximum value of d2 H
dθ2 (θ) on

[90◦, 120◦] should be either θ = 90◦ or θ = 120◦, i.e.,

d2 H

dθ2 (θ) ≤ max

{
d2 H

dθ2 (90◦), d2 H

dθ2 (120◦)
}

< 0 for θ ∈ [90◦, 120◦].

So, d H
dθ

(θ) is strictly decreasing on [90◦, 120◦], and then we have for θ ∈ [90◦, 120◦],
d H

dθ
(θ) ≥ d H

dθ
(120◦) > 0.
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Now, we know that H(θ) is a strictly increasing continuous function on [90◦, 120◦].
Therefore,

H(θ) ≤ H(120◦) = 0.

Case 2 Some edges below v have length greater than 1. Let u be a Steiner point which is a
child of v and has degree 3, x and y the two terminals connected to u.

Without loss of generality, suppose that |ux | ≤ |uy|, ux and uy have l and k Steiner points
(both including u), respectively. Let z be the point on uy such that |uz| = l. Then, we can
assume that zy contains k − l Steiner points (including z), and ux and uz contain totally
2(l −1) Steiner points (not including u and z). We directly connect x and z and equally insert
	1.155l
 − 1 Steiner points into xz. Then, the length of each edge on xz is

2l

	1.115l
 ≤ √
3.

After that, we still have 2(l − 1) − (	1.115l
 − 1) = 2l − 1 − 	1.115l
 = �0.885l� − 1
Steiner points which can be used to equally break ux into smaller edges. Then, by inserting
�0.885l� − 1 Steiner points into ux , each edge on ux has length at most

l

�0.885l� ≤ √
3 if l ≥ 3.

By this operation, u is changed into a vertex of degree 2 in the new tree, then we can continue
the process with n − 1 terminals in P ∪ {u} \ {x, y}.

Now we turn into the situation when l ≤ 2. If k > l, we directly connect x and y and
insert k − 1 Steiner points into xy, then u becomes a vertex of degree 2 and each edge on xy
is at most 5

3 <
√

3.
Next, we assume that k = l. Let m be the number of Steiner points on vu (not including

v).
(1) l = 2. If � xuy ≤ 120◦, |xy| ≤ 2

√
3, we can connect x and y by inserting a unique

Steiner point to break xy into two pieces of length at most
√

3, then u is changed into a
vertex of degree 2. If � xuy > 120◦, then one of � xuv and � yuv is less than 120◦. Assume
� xuv < 120◦. Then, |vx | ≤ m + √

3. We directly connect x and v and select a point z in
xv such that |vz| = 1, and then insert m − 1 Steiner points into xz to break it into equally
pieces, and connect x and y and insert two Steiner points to break xy into equally pieces.
Thus, z becomes a vertex of degree 2 and each edge below z has length at most

√
3 (note

that u is no longer in the new tree). We can now continue the process with n − 1 terminals
(P ∪ {z}) \ {x, y}.

(2) l = 1, i.e., |ux | ≤ 1 and |uy| ≤ 1. In this case, m ≥ 2 (the case m = 1 has been
discussed in Case 1). If � xvy ≤ 120◦, then we connect x and y directly. If � xuy > 120◦,
then we can assume � xuv < 120◦. We (1) directly connect x and v and select a point z in
xv such that |vz| = 1, and then insert m − 2 Steiner points into xz to break it into equally
pieces, and (2) connect x and y and insert a Steiner point to break xy into two pieces. We
can continue the process with n − 1 terminals (P ∪ {z}) \ {x, y}. �

The algorithm for finding the approximation of an optimal 3-restricted Steiner tree is the
same as that of Ref. [11]. It uses the notion of hypergraph, defined as H = (V, F), where
V is a set of vertices and a F is the set of edges, which is an arbitrary family of subsets of
V . A weighted hypergraph H = (V, F, w) is a hypergraph such that each edge e in F has
a weight w(e). An r-hypergraph Hr (V, F, w) is a weighted hypergraph, each edge having
cardinality at most r .
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The following theorem, introduced in Ref. [7], proves the existence of a randomized
algorithm for computing a minimum spanning tree for a weighted 3-hypergraph:

Theorem 2 There exists with probability at least 0.5 a randomized algorithm for the min-
imum spanning tree problem for 3-hypergraphs, running in poly(n, wmax) time, where n
is the number of nodes in the hypergraph and wmax is the largest weight of edges in the
hypergraph.

We construct a weighted 3-hypergraph H3(V, F, w) from the set P of terminals. Here
the vertex set for the hypergraph, V = P , and the edge set F = {(a, b)|a ∈ P and
b ∈ P} ∪ {(a, b, c)|a ∈ P and b ∈ P and c ∈ P}. To obtain the weight of each edge
in F , we need to know B, the length of the longest edge in an optimal solution for BSTP. It
is hard to find the exact value of B. However, we can find an approximate value, B ′, that is
at most (1 + ε)B for any ε, in time poly(n, ε), as illustrated in steps 1 and 2 in the algorithm
listed below. Interested readers can find more details for determining B ′ in Ref. [11].

Theorems 1 and 2 prove the existence of the
√

3 + ε approximation algorithm and its
performance.

Theorem 3 For any given ε > 0, there exists with probability at least 0.5 a randomized algo-
rithm that computes a Steiner tree with n terminals and at most k Steiner points such that
the length of the longest edge in the approximated tree is at most

√
3 + ε multiplied with the

length of the longest edge in the optimum tree. The algorithm running time is 1
ε
× poly(n, k).

Next we present the Bottleneck Steiner tree approximation algorithm:
Input: A set P of n terminals in the Euclidean plane, an integer k and a positive number ε.
Output: A 3-restricted Steiner tree T with at most k Steiner points.
Step 1. Call the ratio-2 approximation algorithm for BSTP from [10] and obtain a number
X as the length of the longest edge.
Step 2. For B = X

2 , X
2 (1 + ε), X

2 (1 + 2ε), . . . , X
2 (1 + ε × 	 1

ε

) do:

Step 2.1. Construct a weighted hypergraph H3(V, F, w) ([11]).
Step 2.2. Call the randomized algorithm from [7] to compute a minimum spanning tree T
for H3(V, F, w).
Step 3. Consider the solution T ′ of the smallest B such that w(T ′) ≤ k.
Step 4. Replace every edge f of the minimum spanning tree T ′ on H3(V, F, w) with a
Steiner tree with w( f ) Steiner points such that the maximum length of each edge in the tree
is at most B, and output the obtained tree.

The work in [11] analyses the polynomial running time of this algorithm.

4 Conclusions

Efficient energy management is an important issue in the design of wireless networks with
battery-powered nodes. For applications where replacing drained batteries is not feasible,
extending the network lifetime by prolonging the network connectivity, may signify the suc-
cess or failure of a mission. Existing methods for improving energy consumption are based
on computing optimal flows, transmission scheduling or power-aware routing.

In this paper we present an approximation algorithm for the NP-complete bottleneck
Steiner tree problem in the Euclidean plane, and we prove a

√
3 + ε performance ratio. The

output of the polynomial-time algorithm consists of a Steiner tree with n fixed terminal nodes
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and up to k Steiner nodes such that the length of the longest edge in the tree is minimized.
This algorithm helps designing power-efficient wireless networks by computing the location
of maximum k additional communication relay nodes so that the resulting spanning tree of at
most n + k nodes minimizes the length of the longest edge. Thus, the transmission power for
the longest link is minimized, and, as a result, the time until the first node drains its battery
and stops transmitting, breaking the network connectivity, is prolonged.
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of Theorem 1. Lusheng Wang is fully supported by HK CERG Grant 9040351. Xu Baogang is supported in
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