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Abstract. The guillotine cut is an important tool to design polynomial-
time approximation schemes for geometric optimization problems. In
this article, we survey its history and recent developments.

1 Guillotine Cut

Robespirre (1758-1794) introduced the guillotine cut in French revolution. Nowa-
days, the guillotine cut has become an important technique to design PTAS (polynomial-
time approximation schemes) for geometric optimization problems.

Roughly speaking, a guillotine cut is a subdivision with a line which divides
given area into at least two subarea. To make our expanation more meaningful, let
us consider a specific problem.

The minimum edge-length rectangular partition (MELRP) was first proposed
by Lingas, Pinter, Rivest, and Shamir [15]. It can be stated as follows: Given a
rectilinear polygon possibly with some rectangular holes, partition it into rectangles
with minimum total edge-length.

The holes in the input rectangular polygon can be, possibly in part, degenerated
into a line segment or a point (Fig. 1).
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Figure 1 Rectilinear polygon with holes.

There are several applications mentioned in [15] for the background of the
problem: “Process control (stock cutting), automatic layout systems for integrated
circuit (channel definition), and architecture (internal partitioning into offices). The
minimum edge-length partition is a natural goal for these problems since there is
a certain amount of waste (e.g. sawdust) or expense incurred (e.g. for dividing
walls in the office) which is proportional to the sum of edge lengths drawn. For
VLSI design, this criterion is used in the MIT ‘PI’ (Placement and Interconnect)
System to divide the routing region up into channels - we find that this produces
large ‘natural-looking’ channels with a minimum of channel-to-channel interaction
to consider.”

They showed that the holes in the input make difference on the computational
complexity. While the MELRP in general is NP-hard, the MELRP for hole-free
inputs can be solved in time O(n4) where n is the number of vertices in the input
rectilinear polygon. The polynomial algorithm is essentially a dynamic program-
ming based on the following fact.

Lemma 1.1 There exists an optimal rectangular partition in which each max-
imal line-segment contains a vertex of the boundary.

Proof Consider a minimum length rectangular partition P . Suppose P has
a maximal vertical line-segment [A,B] which does not contain any vertex of the
boundary (see Fig. 2). Then two endpoints A and B must lie on the interior of
two horizontal line-segments in P or the boundary. Suppose there are r horizon-
tal segments touching the interior of [A,B] from right and l horizontal segments
touching the interior of [A,B] from left. We claim that r = l. In fact, if r > l (or
r < l), then we can move [A,B] to the right (or left) to reduce the total length of
the rectangular partition, contradicting the minimality of P .

Since r = l, moving [A,B] to either right or left does not increase the total
length of P . Let us keep moving [A, B] to the left. Then we must be able to
move [A,B] to contain a vertex of the boundary; otherwise, [A,B] would be moved
to overlap with another vertical segment in P , so that the total length of the
rectangular partition is reduced, contradicting the optimality of P again.

A naive idea to design approximation algorithm for general case is to use a
forest connecting all holes to the boundary and then to solve the resulting hole-free



A Tale on Guillotine Cut 43

A

B

Figure 2 Maximal vertical line-segment.

case in O(n4) time. With this idea, Lingas [16] gave the first constant-bounded ap-
proximation; its performance ratio is 41. Later, Du [10, 11] improved the algorithm
and obtained an approximation with performance ratio 9. Meanwhile, Levcopoulos
[17] provided a greedy-type faster approximation with performance ratio 29 and
conjectured that his approximation may have performance ratio 4.5.

Motivated from a work of Du, Hwang, Shing, and Witbold [7] on application
of dynamic programming to optimal routing trees, Du, Pan, and Shing [8] initiated
an idea which is important not only to the MELRP problem, but also to many
other geometric optimization problems. This idea is about guillotine cut. A cut is
called a guillotine cut if it breaks a connected area into at least two parts. A rect-
angular partition is called a guillotine rectangular partition if it can be performed
by a sequence of guillotine cuts. The guillotine cut features dynamic programming
since each guillotine cut breaks a minimum length guillotine rectangular partition
problem into two or more subproblems.

Figure 3 The guillotine cut features dynamic programming.

Moreover, Du et al [8] noticed that the minimum length guillotine rectangu-
lar partition also satisfies the property stated in Lemma 1.1. Hence, the minimum
length guillotine rectangular partition can be computed by a dynamic programming
in O(n5) time. Therefore, they suggested to use the minimum length guillotine rect-
angular partition to approximate the MELRP and tried to analyze the performance
ratio. Unfortunately, they failed to get a constant ratio in general and only obtained
a result in a special case.
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In this special case, the input is a rectangle with some points inside. Those
points are holes. It had been showed (see [12]) that the MELRP in this case is
still NP-hard. Du et al [8] showed that the minimum length guillotine rectangular
partition as an approximation for the MELRP has performance rato at most 2 in
this special case. (This ratio is improved to 1.75 by Gonzalez and Zheng [13].) The
following is a simple version of their proof, obtained by Du, Hsu, and Xu [9].

Theorem 1.2 The minimum length guillotine rectangular partition is an ap-
proximation with performance ratio 2 for the MELRP.

Proof Consider a rectangular partition P . Let projx(P ) denote the total
length of segments on a horizontal line covered by vertical projection of the partition
P .

A rectangular partition is said to be covered by a guillotine partition if each
segment in the rectangular partition is covered by a guillotine cut of the latter. Let
guil(P ) denote the minimum length of guillotine partition covering P and length(P )
the total length of rectangular partition P . We will prove

guil(P ) ≤ 2 · length(P )− projx(P )

by induction on the number k of segments in P .
For k = 1, we have guil(P ) = length(P ). If the segment is horizontal, then we

have projx(P ) = length(P ) and hence

guil(P ) = 2 · length(P )− projx(P ).

If the segment is vertical, then projx(P ) = 0 and hence

guil(P ) < 2 · length(P )− projx(P ).

Now, we consider k ≥ 2. Suppose that the initial rectangle has each vertical
edge of length a and each horizontal edge of length b. Consider two cases:

Case 1. There exists a vertical segment s having length ≥ 0.5a. Apply a
guillotine cut along this segment s. Then the remainder of P is divided into two
parts P1 and P2 which form rectangular partition of two resulting small rectangles,
respectively. By induction hypothesis,

guil(Pi) ≤ 2 · length(Pi)− projx(Pi)

for i = 1, 2. Note that

guil(P ) ≤ guil(P1) + guil(P2) + a,

length(P ) = length(P1) + length(P2) + length(s),
projx(P ) = projx(P1) + projx(P2).

Therefore,
guil(P ) ≤ 2 · length(P )− projx(P ).

Case 2. No vertical segment in P has length ≥ 0.5a. Choose a horizontal
guillotine cut which partitions the rectangle into two equal parts. Let P1 and
P2 denote rectangle partitions of the two parts, obtained from P . By induction
hypothesis,

guil(Pi) ≤ 2 · length(Pi)− projx(Pi)
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Case 1 Case 2

Figure 4 The proof of Theorem 1.2.

for i = 1, 2. Note that

guil(P ) = guil(P1) + guil(P2) + b,

length(P ) ≥ length(P1) + length(P2),
projx(P ) = projx(P1) = projx(P2) = b.

Therefore,
guil(P ) ≤ 2 · length(P )− projx(P ).

Gonzalez and Zheng [13] improved the constant 2 in Theorem 1.2 to 1.75 with
a very complicated case-by-case analysis. Du, Hsu, and Xu [9] also extended the
idea of guillotine cut to the convex partition problem.

2 1-Dark Points

In the proof of Theorem 1.2, we may note that in case 2, every point on the
cut line receives projection from two sides, both above and below. We call such
a point as a vertical 1-dark point. Namely, a point in considered area is called a
vertical (horizontal) 1-dark point if starting from the point along vetical (horizontal)
line going either direction would meet at least one horizontal (vertical) segment in
considered partition. Indeed, the term projx takes advantage in the induction proof
only on those vertical 1-dark point, since the cut line lies in the area of vertical 1-
dark point. After cutting, the same size of term projx would be kept in each of the
two inequalities for subproblems. When the two inequalities are added together,
the size of term projx is doubled.

There is an alternative way to take the advantage of 1-dark points, which can
be seen in the following alternative proof of Theorem 1.2.

Alternative Proof of Theorem 1.2.

Proof Consider a rectangular partition P .
Case 1. There exists a vertical segment s having length ≥ 0.5a. Apply a

guillotine cut along this segment s and charge 1 to the segment s.
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Case 2. No vertical segment in P has length ≥ 0.5a. Choose a horizontal
guillotine cut which partitions the rectangle into two equal parts. Charge 0.5 to
those horizontal segments, which directly face the cut. Note that every point on
the cut is a vertical 1-dark point. Therefore, charged horizontal segments have a
total length equal to exactly twice of the length of the cut.

Since each vertical segment in P is charged at most once and each horizontal
segment is charged at most twice, the total length of added segments in guillotine
cuts cannot exceed the total length of P . This completes the proof of Theorem
1.2.

How do we find a guillotine cut consisting of 1-dark points? This is a central
part of the argument in [8, 9]. Du et al [8] succeded in the special case, but were
unable to extend their excellent idea to the general case.

3 1-Guillotine Cut and Mitchell’s Lemma

“inspired by the proof in [8]” (quote from Mitchell [19, 20]), Mitchell made a
significant progress in exploring the idea of guillotine cut.

First, he found a close relationship between 1-dark points and the guillotine
cut by extending the guillotine cut to the 1-guillotine cut. A vertical (horizontal)
cut is called 1-guillotine cut if it consists of all vertical (horizontal) 1-dark points
on the vertical (horizontal) line passing through the cut. (See Fig. 5.) This line
will be called a cut line.

Figure 5 1-guillotine cut

Secondly, he found a very important relationship between vertical 1-dark points
and horizontal 1-dark points.

Lemma 3.1 (Mitchell’s Lemma) Let H (V ) be the set of all horizontal (verti-
cal) 1-dark points. Then there exists either a horizontal line L such that

length(L ∩H) ≤ length(L ∩ V )

or a vertical line L such that

length(L ∩H) ≥ length(L ∩ V ).

Proof First, assume that the area of H is not smaller than the area of V .
Denote La = {(x, y) | x = a}. Then areas of H and V can be represented by

∫ +∞

−∞
length(La ∩H)da
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and ∫ +∞

−∞
length(La ∩ V )da,

respectively. Since
∫ +∞

−∞
length(La ∩H)da ≥

∫ +∞

−∞
length(La ∩ V )da,

there must exist a such that

length(La ∩H) ≥ length(La ∩ V ).

Similarly, if the area of H is smaller than the area of V , then there exists a horizontal
line L such that

length(L ∩H) ≤ length(L ∩ V ).

This lemma actually means that there exists either a vertical 1-guillotine cut
of length not exceeding the total length of segments consisting of all horizontal 1-
dark points on the cut line, or a horizontal 1-guillotine cut of length not exceeding
the total length of segments consisting of all vertical 1-dark points on the cut
line. Namely, there always exists a 1-guillotine cut such that its length can be
symmetrically charged to those segments parallel to the cut line, with value 0.5 to
each side.

A rectangular partition is called a 1-guillotine rectangular partition if it can be
performed by a sequence of 1-guillotine cuts. It can be showed that there exists
a minimum 1-guillotine rectangular partition such that every maximal segment
contains at least a vertex of the boundary.

Now, the question is whether the 1-guillotine cut also features the dynamic pro-
gramming. The answer is yes. In fact, the 1-guillotine cut partitions a rectangular
partition problem into two subproblems with boundary conditions, since after a 1-
guillotine cut, two open segments may be created on the boundary. This boundary
condition increases the number of subproblems in the dynamic programming. Since
each subproblem is based on a rectangle with four sides. The condition on each
side can be described by two possible open segments at the two ends. Hence each
side has O(n2) possible conditions. So, the total number of boundary conditions
is O(n8). This gives that the total number of possible subproblems is O(n12). For
each problem, there are O(n3) possible 1-guillotine cuts. Therefore, the minimum
1-guillotine rectangular partition can be computed by a dynamic programming in
O(n15) time.

With 1-guillotine cuts, the approximation ratio 2 can be established not only
for the special case, but also in general. First, we use a rectangle to cover the input
rectangular polygon with holes. Then, we can cut the rectangle each time into two
rectangles with the 1-guillone cut.

Theorem 3.2 Every rectangular partition P can be modified into a 1-guillotine
partition by adding some segments of total length not exceeding to the total length
of P .

Proof Each time, if a 1-guillotine cut already exists in segments belonging
to P , then we use it to divide the considered rectangle into two parts. If such a
1-guillotine cut does not exist, then by Mitchell’s lemma, there exists a 1-guillone
cut whose length can be symmetrically charged to parallel segments in P . We add
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segments in this 1-guillotine cut into P . Since charge is performed symmetrically,
no segment in P can be charged more than twice. Therefore, added segments have
a total length not exceeding the total length of P .

This theorem actually means that the minimum 1-guillotone rectangular par-
tition is a polynomial-time approximation with performance 2 for minimum rect-
angular partition.

4 m-Guillotine Cut

Mitchell [21] extended the 1-guillotine cut to the m-guillotine cut in the follow-
ing way: A point p is a horizontal (vertical) m-dark point if the horizontal (vertical)
line passing through p intersects at least 2m vertical (horizontal) segments of the
considered rectangular partition P , among which at least m are on the left of p
(above p) and at least m are on the right of p (below p). A horizontal (vertical)
cut is an m-guillotine cut if it consists of all horizontal (vertical) m-dark points on
the cut line. In other words, let Hm (Vm) denote the set of all horizontal (vertical)
m-dark points. An m-guillotine cut is either a horizontal line L satisfying

L ∩Hm ⊆ L ∩ P

or a vertical line L satisfying

L ∩ Vm ⊆ L ∩ P,

where P is the considered partition. A rectangular partition is m-guillotine if

Figure 6 m-guillotine cut results in 2m open segments on each subproblem’s boundary.

it can be realized by a sequence of m-guillotine cuts. The minimum m-guillotine
rectangular partition can also be computed by dynamic programming in O(n10m+5)
time. In fact, at each step, an m-guillotine cut has at most O(n2m+1)) choices.
There are O(n4) possible rectangles appearing in the algorithm. Each rectangle
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has O(n8m) possible boundary conditions. By a similar argument, Mitchell [21]
established the following result.

Lemma 4.1 (Mitchell’s Lemma) There exists either a horizontal line L such
that

length(L ∩Hm) ≤ length(L ∩ Vm)
or a vertical line L such that

length(L ∩Hm) ≥ length(L ∩ Vm).

Theorem 4.2 Every rectangular partition P can be modified into an m-guillotine
rectangular partition P ′ with total length

length(P ′) ≤ (1 +
1
m

)length(P ).

Corollary 4.3 There exists a polynomial-time (1+ε)-approximation with run-
ning time nO(log 1/ε) for MELRP.

From the 1-guillotine cut to the m-guillotine cut, there is no technical diffi-
culty. Unfortunately, this extention was established just a few weeks after Arora
[1] published his remarkable results.

In 1996, Arora [1] published a surprising result that many geometric opti-
mization problems, including the Euclidean TSP (traveling salesman problem), the
Euclidean SMT (Steiner minimum tree), the rectilinear SMT, the degree-restricted-
MST (minimum spanning tree), k-TSP, and k-SMT, have polynomial-time approx-
imation schemes. More precisely, for any ε > 0, there exist approximation algo-
rithms for those problems, running in time nO(1/ε), which produce approximation
solution within 1 + ε from optimal. It made Arora’s research be reported in New
York Times. Several weeks later, Mitchell [21] claimed that his earlier work [19]
(its journal version [20]) already contains an approach which is able to lead to the
similar results. However, one year later, Arora [2] made another big progress that
he improved running time from nO(1/ε) to n3(log n)O(1/ε). His new polynomial-
time approximation scheme also runs randomly in time n(log n)O(1/ε). Soon later,
Mitchell [22] claimed again that his approach can do a similar thing.

Next, let us study Arora’s seminal work to find out its relationship with the
guillotine cut.

5 Portals

Arora’s polynomial-time approximation scheme in [1] is also based on a se-
quence of cuts on rectangles. For example, let us consider rectilinear SMT. Initially,
use a minimal square to cover n input points. Then with a tree structure, partition
this square into small rectangles each of which contains one given point. Arora
managed the tree structure to have depth O(log n) with the following techniques:

(1) Equally divide the initial square into n2×n2 lattice. Move each given point
to its closest lattice point.

(2) Choose cut line in a range between 1/3 and 2/3 of a longer edge (or an edge
for a square), through the middle between two adjacent lattice points.

The following lemmas explain these two techniques.

Lemma 5.1 Let P be the set of n given points and P ′ the set of n lattice points
closest to n given points, respectively. If there is a PTAS for P ′, then there exists
a PTAS for P .
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Proof Let Tε(P ′) be a polynomial-time ε-approximation for rectilinear SMT
on P ′. That is,

length(Tε(P ′)) ≤ (1 + ε)length(RSMT (P ′)).

where RSMT (P ′) is the rectilinear Steiner minimum tree on P ′. Note that

|length(RSMT (P ))− length(RSMT (P ′))| ≤ L/n

where L is the edge length of the initial square. Since the square is minimal, L
is not bigger than the length of the minimum spanning tree on P and hence not
bigger than 1.5length(RSMT (P )).

Construct a tree T interconnecting points in P from Tε/2(P ′) by connecting
each point in P ′ to its corresponding point in P . Then

length(T ) ≤ length(Tε/2(P ′)) + L/n

≤ (1 + ε/2) · length(RSMT (P ′) + L/n

≤ (1 + ε/2)(length(RSMT (P ) + L/n) + L/n

= (1 + ε/2)length(RSMT (P )) + (2 + ε/2)L/n

≤ (1 + ε/2 + (2 + ε/2) · 1.5/n)length(RSMT (P )).

Note that for sufficiently large n,

(2 + ε/2) · 1.5/n < ε/2

that is,
length(T ) < (1 + ε)length(RSMT (P )).

Based on this lemma, we will work on P ′ instead of P .

Lemma 5.2 With technique (2), the binary tree structure of the partition has
O(log n) levels.

Proof With technique (2), the rectangle at the ith level has area at most
L2(2/3)i−1. Since the ratio between the lengths of longer edge and shorter edge is
at most three, the rectangle at the last level, say the sth level, has area at least
(1/3)(L/n2)2. Therefore, L2(2/3)s−1 ≥ (1/3)(L/n2)2. That is, s = O(log n).

Figure 7 Portals

To reduce the number of crosspoints at each cut line, Arora [1] used a different
technique. This technique is the portal. Portals are points on cut line equally
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dividing cut segments. For rectilinear SMT (or Euclidean SMT, etc), crosspoints
of the Steiner tree on a cut line can be moved to portals. This would reduce the
number of crosspoints on the cut line. Suppose the number of portals is p. The
following lemma shows that by properly choosing cut line, at each level of the tree
structure moving crosspoints to portals would increase the length of the tree within
a certain amount.

Lemma 5.3 By properly choosing cut line, at each level of the tree structure
moving crosspoints to portals would increase the length of the tree within three pth
of the total length of the Steiner tree.

Proof Consider each rectangle R at a certain level. Suppose its longer edge
has length a and shorter edge has length b (b ≤ a). Look at every possible cut in a
range between 1/3 and 2/3 of a longer edge. Choose the cut line to intersect the
Steiner tree with the smallest number of points, say c points. Then the length of the
part of the Steiner tree lying in rectangle R is at least ca/3. Moving c crosspoints
to portals requires to add some segments of total length at most cb/(p + 1) ≤
ca/(p + 1) ≤ (3/p)(ca/3).

Since the tree structure has depth O(log n), the total length of the resulting
Steiner tree is within (1 + 3

p )O(log n) times the length of the optimal one. To obtain
(1 + 3

p )O(log n) ≤ 1 + ε, we have to choose p = O( log n
ε ).

Summerizing the above, we already proved the structure theorem of Arora.

Theorem 5.4 (Structure Theorem) For any RSMT T ∗, there exists a (1+ ε)-
approximation tree T which can be constructed with (1/3, 2/3)-partition and p por-
tals on each cut where p = O( log n

ε ). Moreover, the tree structure of the (1/3, 2/3)-
partition has O(log n) levels.

Now, we describe how to find such a (1 + ε)-approximation in the structure
theorem. We employ dynamic programming to find the shortest one among the
trees with the same structure as the ε-approximation.

To estimate the running time of dynamic programming, we first note that each
subproblem is characterized by a rectangle and conditions on the boundary. There
are O(n8) possible rectangles. Each rectangle has four sides. One of them must
contain p portals. However, each of other three may contain less than p portals
resulting from previous cuts. Thus, the number of positions for portals on each
of these three sides is O(n4). Hence, the total number of portal positions on the
boudary is O(n20). For each fixed set of portal possitions, we need also consider
whether a portal is a crosspoint or not and how crosspoints are connected to each
other inside the rectangle. It brings us 2O(p) possibilities. Therefore, the total
number of possible subproblems is nO(1/ε).

Moreover, in each iteration of dynamic programming, the number of all possible
cuts is O(n2). Therefore, the dynamic programming runs in time nO(1/ε).

6 m-Guillotine Cuts with Portals

Let us first compare the m-guillotine cut with the portal.
For problems in three or higher-dimensional space, the cut line should be re-

placed by cut plane or hyperplane. The number of portals would be O(( log n
ε )2) or

more. With so many possible crosspoints, the dynamic programming cannot run in
polynomial time. However, the m-guillotine cut has at most 2m crosspoints in each



52 Mihaela Cardei, Xiuzhen Cheng, Xiaoyan Cheng, and Ding-Zhu Du

dimension and m is a constant with respect to n. Therefore, the polynomial-time
for the dynamic programming would be preserved under increasing dimension.

The portal technique cannot be applied to the MELRP, the rectilinear Steiner
arborescence[18], and the symmetric rectilinear Steiner arborescence [6]. In fact,
for these three problems, moving crosspoints to portals is sometimes impossible.
But, the m-guillotine cut works well in these problems.

In the other hand, the m-guillotine cut cannot be applied to grade Steiner
tree [14], Euclidean k-median, and Euclidean facility location [4]. In fact, the m-
guillotine cut may change the topologic structure of the connection, which would
change the cost of connection lines. However, the portal technique can be success-
fully used for those problems.

Both techniques can be applied to the rectilinear SMT problem. However, if
we count the runing time carefully, then it is not very hard to see that the dynamic
programming with the m-guillotine cut takes less time than that with the portal.
In fact, the m-guillotine cut allows us to reduce the number of crosspoints on a
cut to a constant O(1/ε) while the portal technique can only reduce the number to
O((log n)/ε).

It is true that the m-guillotine cut has several advantages compared with than
the portal technique. But, why Mitchell did not do such an extention from the
1-guillotine cut to the m-guillotine cut before Arara [1] published his remarkable
results? The answer is that before Arora’s breakthrough, nobody was thinking in
this way. Indeed, the importance of Arora’s work [1] is more on opening people’s
mind than proposing new techniques.

Now, we discuss how to combine the m-guillotine cut with the portal. This
combination would reduce the running time for dynamic programming. In fact,
the portal technique first reduces the number of possible positions for crosspoints
to O( log n

ε ) and this enables us to choose 2m from the O( log n
ε ) positions to form a

m-guillotine cut (m = 1/ε). Therefore, the dynamic programming for finding the
best such partition runs in time nc(log n)O(1/ε)) where c is a constant. This is the
basic idea of Arora [2] and Mitchell [22]. Arora’s work [2, 3] also contains a new

Figure 8 m-guillotine cut with portals

technique about the tree structure of partition. Indeed, it is an earlier and better
work compared with Mitchell [22].

It is an open problem whether the MELRP, the rectilinear Steiner arborescence,
the symmetric rectilinear Steiner arborescence, grade Steiner tree, Euclidean k-
median, and Euclidean facility location have a PTAS with running time nc(log n)O(1/ε).



A Tale on Guillotine Cut 53

The power of the m-guillotine cut and the portal also has certain limitation. For
example, we do not know how to establish a polynomial-time approximation scheme
without including total length of given segments in the problem of interconnecting
highways [5]. This provides another opportunity for further development of these
elegant techniques. Therefore, it is an open problem whether there exists a PTAS
for the problem of interconnecting highways.

There are some geometric problems which both the portal and the m-guillotine
cut cannot be applied to, such as rectilinear SMT with obstructions. Those prob-
lems encourage us to find new techniques.
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