
On Maintaining Sensor-Actor Connectivity in Wireless Sensor and

Actor Networks∗

Jie Wu, Shuhui Yang, and Mihaela Cardei

Department of Computer Science and Engineering

Florida Atlantic University

Boca Raton, FL 33431

Abstract

In wireless sensor and actor networks (WSANs), a group of sensors and actors are connected by a wire-

less medium to perform distributed sensing and acting tasks. Sensors usually gather information in an event

area. They pass it on to actors, which are resource-rich devices that take decisions and perform necessary

actions. Therefore, it is vital to maintain connections between sensors and actors for effective sensor-actor

coordination. In this paper, we first define several sensor-actor connection requirements, including weak

and strong actor-connectivity, and then propose several local solutions that put as many sensors as possi-

ble to sleep for energy saving purposes, while meeting different actor-connectivity requirements. We also

prove the relationship between the proposed actor-connectivity and the connectivity in regular graphs, which

helps with the implementation of the proposed solutions. Comprehensive performance analysis is conducted

through simulations.

Keywords: Connectivity, fault-tolerance, local solutions, wireless sensor and actor networks (WSANs).

∗This work was supported in part by NSF grants ANI 0083836, CCR 0329741, CNS 0422762, CNS 0434533, EIA 0130806, CNS

0531410, CCF 0545488, and CNS 0626240. Email: jie@cse.fau.edu.

1

1 Introduction

Recent technological advances have lead to the emergence of distributed hybrid sensor networks consisting of

both resource-rich sensor devices (calledactors) and resource-impoverished sensor devices (calledsensors).

Such a network, called a wireless sensor and actor network (WSAN) [1, 9, 13, 15], is shown in Figure 1. In this

figure, sensors are represented as circles and actors as triangles. Actors are connected among themselves and

to the sink through special channels.

Typically, when sensors detect a phenomenon, they either transmit data to actor nodes (also called actuators)

which then initiate appropriate actions, or route data to the sink which then issues action commands to actors. In

this paper, we focus on the former approach, also called automated architecture [1], where actors are deployed

to perform distributed actuation tasks upon the environment. For example, a smoke detector (sensor) reports a

fire event to one or several nearest water sprinklers (actors) instead of the distant central control system (sink).

The water sprinkler(s) then perform an action and report the event to the central system for further processing.

There are two types of coordinations: actor-actor and actor-sensor. In this paper we focus only on the

actor-sensor coordination. The number of actors is relatively small and since they are resource-rich devices

with a long transmission range, their connection to the sink can be treated in a relatively easy way [9, 18]. For

example, a separate wireless interface can be used to communicate with neighboring actors so they can perform

long-range communication without any involvement from the sensors.

Existing actor-sensor coordination focuses on energy-efficient connectivity from a sensor to a nearby actor.

The approach in [12] borrows the concepts of efficient routing protocols for wireless sensor networks (WSNs).

It constructs a tree rooted at the event source sensor to perform a reverse tree-based anycast routing to a nearby

actor. Some other approaches construct a cluster structure with each cluster being a tree rooted at an actor,

triggered by an on-the-fly event, thus minimizing the routing energy expenditure [17], or constructed only once

during the network initialization to route data from a sensor to a nearby actor through a maximum remaining

energy path [18]. In [4], energy efficiency is achieved through topology control where each sensor adjusts

its transmission range while preserving actor connectivity. However, none of these existing approaches are

localized. In a local solution, unlike the traditional distributed solutions, a decision at each node is purely

based on local information and there is no information propagation.

In this paper, we use a different approach to construct a self-organizing framework for data routing from

sensors to actors. We first give a formal graph model for WSANs. We propose several local solutions for

maintaining different versions of sensor-actor connectivity by putting as many sensors to sleep as possible,

while still considering area coverage and fault-tolerance. In these solutions, only neighborhood information

(neighbor set) is required, and location/distance information is not used. In addition, other issues such as sensor

2

sensor
sink

sensing field

actor

Figure 1: A sample data gathering process in a WSAN with circles representing sensors and triangles repre-

senting actors.

energy efficiency and delay sensitivity of individual routing paths are discussed. More specifically, instead of

finding efficient routes from sensors to actors in the entire network, we try to reduce the routing space by putting

as many sensors to sleep as possible to limit the energy consumption subject to the following two requirements:

• Coverage: each sleeping sensor has at least one neighbor that is either an active sensor or an actor.

• Connectivity: each active sensor is still connected to the same set of actors as it was before sensors

were put to sleep (calledpersistent actor-connectivity) or to at least one actor (calledat-least-one actor-

connectivity).

The coverage requirement is used to ensure the coverage of all the sensors which are discrete points. This

point coverage can approximate the area coverage, especially when sensors are densely deployed [5]. The

connectivity requirement ensures that information collected by any active sensor can be delivered to at least one

actor in at-least-one actor-connectivity. In certain situations, connection to one actor is not sufficient. Multiple

actors should be informed in order to make decisions of the most appropriate way of performing actions.

A sufficient degree of connectivity is needed to protect against the loss of sensors and actors due to failure

or battery depletion. To ensure a certain degree of fault-tolerance, the network should still meet the coverage

and connectivity requirement after removingk−1 arbitrary nodes (sleep sensors, active sensors, or actors). The

corresponding property is calledk-actor-connectivity. In addition, more active sensors and a higher connectivity

degree help to find a more efficient route in terms of delay.

We propose several local solutions that put as many sensors to sleep as possible while meeting different

coverage and connection requirements. Note that we try to minimize the energy consumption in a single

iteration. Network activity is organized as a sequence of iterations, where a new schedule is decided at the

3

beginning of each iteration. Sensors can be scheduled to work in different iterations such that to balance the

energy consumption and to prolong the network lifetime. In this paper, we do not deal with the actual routing

protocol which can be designed on the active sensors derived from our methods.

In summary, we will focus on the following technical issues in this paper:

1. We give a formal graph model for WSANs and define several sensor-actor connections based on the

coordination requirement.

2. We develop two local solutions for the different versions of the sensor-actor connectivity.

3. We prove the relationship between the traditional connectivity in graph and the new defined sensor-actor

connectivity.

4. We extend the sensor-actor connectivity and the corresponding local solutions for fault-tolerant consid-

eration.

5. We conduct performance analysis through simulations on the proposed algorithms.

The rest of the paper is organized as follows: Section 2 reviews the related work in WSANs. Section

3 presents a graph model for WSANs and several connectivity requirements. The proposed local solutions

for different connectivity requirements are given in Section 4. The fault-tolerance extensions are presented in

Section 5, followed by several properties in Section 6. Section 7 discusses several implementation issues and

Section 8 presents the simulation results. The paper concludes in Section 9.

2 Related Work

The traditional wireless sensor networks (WSNs) usually contain only a single sink and perform the sensing

in a distributed way. However the management is centralized at the sink. WSANs contain actors in addition

to a sink and perform both distributed sensing and management. As shown in Figure 1, a WSAN is a two-tier

architecture with sensors on the lower layer and actors on the upper layer. Actors provide real-time distributed

management, they can coordinate among themselves, and they can communicate with the sink for further

instructions. WSANS can be used as an integral part of some novel, low-cost, high-performance systems [1,

2, 7, 11, 20], and can provide the infrastructure of various applications such as battlefield surveillance, nuclear,

biological, or chemical attack detection, and environmental or health monitoring. [1] provides a comprehensive

survey of WSANs and related research issues.

4

Energy-efficient routing protocols is a major research issue for energy constrained WSNs. Many energy-

aware routing schemes that prolong network lifetime have been proposed [3, 14, 21]. WSANs have two unique

coordinations compared with WSNs [1]: actor-actor and actor-sensor coordinations. Therefore, routing proto-

cols designed for WSANs should be both energy-efficient and coordination-sensitive. Additionally, the actor-

related distributed coordination raises a new research issue. Most of the existing works focus on the design of

a self-organizing framework for connecting sensors and actors. The proposed solutions under this framework,

however, are distributed but not localized.

Some approaches construct a tree-structure rooted at each actor in a distributed way, and can be viewed as

a many (sensor)-to-one (actor) connection. In [17], a sensor-actor connection model based on an event-driven

clustering paradigm is proposed, and in each cluster, a data tree is formed. Trees are created on-the-fly and are

triggered by an event. This approach considers the tradeoffs between energy efficiency and reliability in the

routing procedure. Location information via GPS is necessary in this approach. However, creating a routing

framework on-the-fly may require a high overhead. Also, the assumption of each sensor knowing the positions

of actors is rather strong. In [18], trees are formed in the initialization procedure and data is collected on

the paths with maximum remaining energy. A distributed actor-discovery protocol is developed without the

assumption of knowing the actor positions.

The tree-structure rooted at each sensor is also developed, which forms the many-to-many connection. [12]

extends the protocols in WSNs for WSANs and proposes a reverse tree-based anycast routing structure. It

constructs a tree rooted at the event source where actors can join and leave dynamically as the leaves of the tree.

According to the detailed requirement, each sensor can choose to connect to one or more actors. In [19], every

sensor finds paths connecting to each actor. Nodes are randomly put to sleep in this approach. Therefore, when

constructing the tree to connect to each actor, not only distance but also the status (sleep/active) of the nodes

is considered to balance the latency and energy consumption. A power-aware many-to-many routing structure

is proposed in [6]. Actors broadcast interests and register in each sensor. When data is collected, a sensor

routes data to the corresponding registered actors. Routes are created in the registration procedure. Location

information is necessary in this approach.

Some other issues in WSANs are also discussed. For example, [11] discusses control engineering prob-

lems and existing technologies in WSANs. In [9, 17], actor-actor coordination is addressed. [4] solves the

topology control problem in WSANs considering both energy-efficiency and reliability. The communication

range of each sensor is adjusted to reduce total energy consumption while maintaining certain connectivity to

the actor(s). Like other topology control methods, this approach requires distance information.

The work proposed in this paper aims at minimizing the entire routing space instead of finding the exact

routes from sensors to actors. Our work differs from the other works by considering a qualified minimal

5

forwarding set for all the sensors, that meets the efficiency and reliability requirements. Note that in our paper

we measure the routing energy consumption in terms of hop counts as opposed to distance. We also consider

fault tolerance. That is, the selected forwarding set can tolerate the failures of up tok − 1 nodes, including

actors. To the best of our knowledge, our work is the first to deal with fault tolerance in WSANs. We focus

on the development of localized solutions which rely only on local information, i.e., properties of nodes within

their vicinities. In addition, there is no sequential propagation of any partial computation result. In the proposed

algorithms, neither location nor distance information is needed. Only neighborhood information by exchanging

“Hello” messages is necessary.

3 Model

A WSAN is represented as an undirected graphG = (V, E). V = S ∪A, whereS is the sensor set andA is the

actor set.E ⊂ (S × S) ∪ (S × A) is the edge set for sensor-sensor and sensor-actor connections. There is no

direct connection between any two actors. They are connected indirectly through other means (such as special

channels).

Figure 2 shows several sample WSANs. Each sensor inG1 is connected to one actor while each sensor in

G2 andG3 is connected to two actors. A graphG is actor-connected if each sensor is connected to an actor

through nodes inG. Note that an actor-connected WSAN does not imply that the whole graph is connected.

For example,G = G2 ∪G3 in Figure 2 is not connected, although it is actor-connected. Now suppose a subset

S
′
of S is put to sleep (for energy saving). We denoteG

′
= G[V − S

′
], i.e., the network after removingS

′
.

Definition 1 Given an actor-connected networkG,

• G
′
is persistent actor-connected if it maintains the same actor-connectivity asG, i.e., if a sensor, sleep or

active, is connected to an actor through nodes inG, then it is still connected to the actor through nodes in

G
′
.

• G
′

is at-least-one actor-connected if each sensor, sleep or active inG, is connected to at least one actor

through nodes inG
′
.

Note that all of the above conditions imply coverage of sleep nodes. That is, each sleep node has at least one

neighbor that is an active sensor or an actor. Suppose sensors are densely deployed such that the given area is

fully covered by sensors and actors1. Due to the coverage requirement, each sleeping node has at least one active

1For simplicity, we assume each actor also has sensing capability with the same sensing range as a sensor.

6

1

1a
2a

S4S3S2

G 2

1a

G 1

S2

S1

S3

S1 S2

S3

2a1a

G 3

S4

S

Figure 2: Sample WSNAs.

neighbor to cover it. Therefore, the set of active sensors and actors still cover the whole area approximately.

Connectivity varies depending on the required degree: persistent or at-least-one.

In Figure 2G2, if S
′
= {s4}, G

′
2 is persistent actor-connected since all sensors are still connected (through

active nodes) to both actors. IfS
′
= {s1, s2, s4}, G′

2 is no longer persistent but it is at-least-one actor-connected,

since all sensors are connected to at least one actor (e.g.,s4 to a2 via active sensors3). Note that traditional

clustering approaches [8, 16] can be used to meet the coverage requirement, where only clusterheads are active.

Such approaches, however, are not localized (there is information propagation). In addition, gateway nodes

need to be selected to ensure connectivity among clusterheads. Clustering approaches will not be discussed

further here.

Let us consider now a WSAN that is initially actor-connected. How can we remove some sensors (i.e.,

put them to sleep) while ensuring that the resultant graph is still at-least-one or persistent actor-connected?

We consider local solutions in which each node uses neighborhood information to determine its status: active

or sleep. Unlike traditional centralized or distributed solutions where some form of sequential propagation

of information is required, i.e. broadcasting of link state in central solutions and propagation of node status

(active/sleep) in distributed solutions, local solutions relay onh-hop neighborhood (for a smallh such as 2 or

3) information without any other form of information propagation.h-hop neighborhood information can be

obtained through periodic “Hello” message exchange or link state broadcast withinh-hop.

4 Proposed Methods

Let us assume that each node is equipped with itsh-hop neighborhood information (forh = 2 or 3). Also,

each nodes has a priorityp(s) and such a priority is totally ordered within itsh-hop neighborhood. In addition,

all actors have the same priority which is higher than any sensor priority. Letp(a) be the actor priority. In

Figure 2G3, 1-hop neighborhood ofs1 includesa1, s2, ands3, but no connections among 1-hop neighbors.

7

2-hop neighborhood ofs2 covers the whole network.

Local rule for persistent actor-connectivity: The default status of a sensor is active. A sensoru is in the

sleep mode if, for any two of its neighborsw and v, w and v are connected by a path with all intermediate

nodes (sensors or actors if any) having higher priorities thanu.

The above path is called areplacement pathfor nodeu. The intuition behind this rule is that a sensoru

can be put to sleep if any two neighbors can be re-connected through nodes on a replacement path. Note that

nodes on a replacement path can also be put to sleep. To avoid inconsistencies and a possible iterative process

of putting sensors to sleep, a global priority is defined on each node. Note that if a sensor does not have two

neighbors, then the replacement path condition is satisfied and the status of the sensor is sleep. The neighbor

could be a sensor or an actor.

Suppose that in the Figure 2 the priority of sensors is the following:p(a1) = p(a2) > p(s1) > p(s2) >

p(s3) > p(s4). Using 2-hop neighborhood information,s1 ands3 are put to sleep inG1 in persistent actor-

connectivity;s4 is in sleep inG2 ands3 ands4 are in sleep inG3.

SupposeS
′

is the set of sleeping sensors andG
′

is the subgraph after removingS
′
. V

′
is the vertex set of

G
′
.

Theorem 1 SupposeS
′
is the set of sleeping sensors after applying the local rule for persistent actor-connectivity.

• (Coverage) For each sensor inS
′
, there is a neighbor inV

′
.

• (Connectivity)G
′
has the same actor-connectivity asG.

Proof: SupposeS(a) is a subset ofS connected to actora in G. We show thatS(a) is still connected toa

through nodes inG
′
. We prove this by contradictions. SupposeW is a subset ofS(a) not connected toa. Note

that nodes inW can be sleep or active. LetU = N(W)−W be the sleep neighbors ofW (see Figure 3) that are

connected toa. U 6= 0 sinceW is connected toa in G. Let u be the node inU with the highest priority. From

the assumption,u has two neighbors,w andv, from W andV − U −W , respectively. Any replacement path

for u must contain at least one nodeu
′ ∈ U . That contradicts the assumption thatp(u) > p(u

′
). Therefore, all

nodes inS(a) are still connected toa and all sleep nodes inW have neighbors that are active sensors or actors.

2

To provide a local rule for at-least-one actor-connectivity, we define anextended replacement pathas fol-

lows:

8

1. it is regular replacement path foru connecting two neighborsw andv, or

2. w andv are each connected to an actor. These two actors can be distinct and all intermediate nodes in

these two connections have higher priorities thanu.

Local rule for at-least-one actor-connectivity: The default status of a sensor is active. A sensoru is in

sleep mode if for any two of its neighborsw andv, there exists an extended replacement path foru connecting

w andv.

The intuition behind the above rule is that sensoru can be put to sleep as long as any two neighbors can be

either connected through a regular replacement path or each of them is connected to an actor.

In Figure 2, using 2-hop neighborhood information,s3 is asleep inG1 for at-least-one actor-connectivity;

s1, s2, ands4 are asleep inG2 and all sensors are asleep inG3.

Theorem 2 SupposeS
′

is the set of sleeping sensors after applying the local rule for at-least-one actor-

connectivity.

• (Coverage) For each sensor inS
′
, there is a neighbor inV

′
.

• (Connectivity) Each node inG
′
is connected to at least one actor.

Proof: We use a similar proof as in Theorem 1. In our model, each node inS is connected to at least one actor.

We show that each node inS is still connected to an actor through nodes inG
′
. We prove by contradiction.

SupposeW is the subset ofS not connected to any actor. LetU = N(W) −W be the sleep neighbors ofW

that are connected to an actor. Letu be the node inU with the highest priority. From the assumption,u has

two neighbors,w andv, from W andV − U −W , respectively. Any replacement path foru must contain at

least one nodeu
′ ∈ U . Such a replacement path connectsw via u

′
to eitherv or an actor directly as shown in

Figure 3. That contradicts the assumption thatp(u) > p(u
′
). Therefore, all nodes inS are connected to actors

and all sleep nodes inW have neighbors that are active sensors or actors. 2

5 Extensions

In this section, we introduce two new notions of connectivity.

9

vu

u’

a’

a

replacement path

extended replacement path

WU

w

Figure 3: Illustration for the proof of Theorems 1 and 2.

Definition 2 A WSAN, G, is called weakk-actor-connected if each sensor is connected tok actors. A WSAN,

G, is called strongk-actor-connected if each sensor is connected to at least one actor after removing anyk − 1

nodes (sensors or actors) fromG.

Based on Definition 2, strongk-actor-connectivity implies weakk-actor-connectivity, i.e., connection to

k actors. Thek-actor-connectivity is used for reliability. Weakk-actor-connectivity can toleratek − 1 actor

failures, while strongk-actor-connectivity can toleratek − 1 failures of any nodes, sensors and actors.

Figure 2 shows several sample WSANs.G1 is 1-actor-connected, although each node has two node-disjoint

paths to actora1. G2 is weak 2-actor-connected but not strong 2-actor-connected.G3 is strong 2-actor-

connected. To simplify the notation, we usek-actor-connected for strongk-actor-connected.

We now consider maintainingk-actor-connectivity while putting some sensors into the sleep mode. LetG

be ak-actor-connected network andG
′
= G[V − S

′
], whereS

′
is a set of sleeping sensors.

Definition 3 Given ak-actor-connected networkG,

• G
′

is persistentk-actor-connected if it maintains the same actor-connectivity asG after removing any

k − 1 nodes (sensors or actors).

• G
′
is at-least-onek-actor-connected if each sensor, sleep or active, inG is connected to at least one actor

through nodes inG
′
after removing anyk − 1 nodes.

Again, the actor-connectivity means that if a sensor inG is connected to an actor through nodes inG, then

this sensor (which might be in the sleeping mode) is still connected to the actor through nodes inG
′
. At-least-

10

onek-actor-connected is the regulark-actor-connected and is simply calledk-actor-connected, while persistent

k-actor-connected requires a stronger condition. Here we use the general case of removingk − 1 nodes, which

includes both sensors and actors. In this case, the persistent connectivity means the existence of a path fromG
′

to previously connected actor (before the removal ofk − 1 nodes) even if that actor has been removed. Next,

we give local rules that ensurek-actor-connectivity. Two paths are called node-disjoint if they do not share any

intermediate nodes.

Local rule for persistent k-actor-connectivity: The default status of a sensor is active. A sensoru is

in sleep mode if for any two of its neighborsw and v, there existsk node-disjoint replacement paths foru

connectingw andv.

Likewise, the at-least-one version ofk-actor-connectivity also uses the extended replacement path.

Local rule for k-actor-connectivity: The default status of a sensor is active. A sensoru is in sleep mode if

for any two of its neighborsw andv, there existsk node-disjoint extended replacement paths foru connecting

w andv.

Note that bothw andv can be actors and in this case there is no connection of intermediate nodes. Also,

the actor can not be shared in two extended replacement paths. In Figure 2G3, s4 is put to sleep based on local

rule for persistent 2-actor-connectivity. That is, even if a node is removed arbitrarily fromG3, all sensors are

still connected to both actors. For example, whens2 is removed,s4 is connected toa1 via a2. Sensorss3 ands4

are put to sleep fromG3 for 2-actor-connectivity. In this case,s1 ands2 in G3 are both 2-actor-connected after

makings3 ands4 sleep.s3 is put to sleep by checking all neighbor pairs, for which each has 2 node-disjoint

paths. For example, for neighborss1 ands2 of s3, one path is(s1, s2) and the other is froms1 to a1 and from

s2 to a2.

The correctness of these two local rules in preservingk-actor-connectivity will be discussed in the next

section.

6 Properties

In this section, we relatek-actor-connectivity tok-connectivity in regular graphs. Then, we show the correctness

of two local rules fork-actor-connectivity.

We first construct ak-connected graph by treating all actors inA as regular nodes. These actors are con-

nected by a complete bipartite graphḠ with node setA∪A
′
, where|A| = |A′ | and each node inA is connected

11

G

S A A’

G

Figure 4: Ak-connected graphG ∪ Ḡ.

to each node inA
′
. There is no direct connection among nodes inA (and among nodes inA

′
). Note thatA

′
is

a set of virtual nodes. Now we first show thatG ∪ Ḡ (shown in Figure 4) isk-connected.

Theorem 3 If G is k-actor-connected, thenG ∪ Ḡ is k-connected.

Proof: Based on the definition ofk-actor-connectivity, we can see that|A| ≥ k. We arbitrarily select two nodes

s andd from G ∪ Ḡ, and we have the following three cases:

1. If both s andd are inA∪A
′
, they are clearly connected after removingk−1 nodes, sincēG is a complete

bipartite graph with|A| = |A′ | ≥ k.

2. If one is inS and the other inA ∪ A
′
, based on the definition ofk-actor-connectivity, the one inS is

connected to at least one node inA after removingk − 1 nodes fromG ∪ Ḡ, which in turn is connected

to any node inA ∪A
′
, includingd.

3. If both are inS, suppose one is connected to a nodea in A and the other is connected to a nodea
′

in A

after removing anyk − 1 nodes fromG ∪ Ḡ. Based on the construction of̄G, nodesa anda
′

are still

connected.

Therefore,G ∪ Ḡ based on the definition isk-connected. 2

Now we show that the two local rules in the previous section preservek-actor connectivity.

12

Theorem 4 Given ak-actor-connected graphG, the graphG
′

derived using the local rule for (persistent)k-

actor-connectivity is (persistent)k-actor-connected.

Proof: SupposeG is the originalk-actor-connected graph. Now we arbitrarily removek− 1 nodes fromG and

obtainGF . By relatingk-actor-connectivity tok-connectivity (Theorem 3) and the Menger’s theorem [10],GF

still preserves the same actor-connectivity asG. Based on these two rules fork-actor-connectivity, each sleep

node inG hask node-disjoint replacement or extended replacement paths for any pair of neighbors. Removing

anyk − 1 nodes will leave at least one replacement or extended replacement path. That is, a sleep node using

rules fork-actor-connectivity inG will still be a sleeping node using corresponding rules for actor-connectivity

in GF . That is,G
′
(obtained by applying local rules fork-actor-connectivity onG) has at least the same degree

of actor-connectivity as(GF)
′

(obtained by applying the corresponding local rules for actor-connectivity on

GF). The rest of the proof follows by applying Theorems 1 and 2 to(GF)
′
, which shows the relevant actor-

connectivity. 2

The following are two more properties: one relatesk-actor-connectivity to node-disjoint paths tok actors

and the other to node-disjoint paths to actors after applying local rules.

Property 1 If G is k-actor-connected, then each node inS has node-disjoint paths to at leastk nodes inA.

We can use the following argument to prove this property. Suppose we have a sensors in S and the other

noded in A
′
. Menger’s theorem states that in ak-connected graph there arek node-disjoint paths between

any two nodes. Using this property, we havek node-disjoint paths betweens andd. Among these paths, all

neighbors ofd are distinct actors inA. Therefore, any node inS has node-disjoint paths to at leastk distinct

actors.

SupposeS
′

is the subset ofS that is removed (put to sleep) after applying the local rule for (persistent)

k-actor-connectivity and againG
′
= G[V − S

′
]. We have the following result.

Property 2 G
′ ∪ Ḡ is still a k-connected graph and each node inS − S

′
has node-disjoint paths to at leastk

nodes inA.

Based on Theorem 4, the local rule for (persistent)k-actor-connectivity ensures thatG
′

is still k-actor-

connected. Based on Theorem 3, we haveG
′ ∪ Ḡ as ak-connected graph. The second part follows directly

from Theorem 1. Therefore, the above property holds.

13

7 Implementation Issues

We discuss several issues related to implementation, including actor-initiated dynamic implementation solutions

which will be used for baseline comparison in simulation.

7.1 Selection of priority

We assume that node priorities withinh-hop are distinct. In the actual implementation, this condition can be

relaxed. That is, nodes withinh-hop can have the same priority. This will not cause errors because a node can

go to sleep only if any two neighbors are connected by otherk paths with “higher” priorities. However, it will

affect the efficiency of the algorithm. Because in some cases, two nodes can cover each other’s neighbors, but

neither can go to sleep due to their identical priority.

A natural choice for node priority is node ID, although other metrics can be used, such as energy level. In

this way, sensors can rotate their roles (active/sleep) to balance energy consumption. The energy consumption

of each sensor is then balanced in the long term.

7.2 Controlling the path length

In some real-time applications, it is vital for a detecting event to reach the corresponding actor(s) within certain

time limits. To avoid having too many sensors on short paths (from the sensor to the actor), we can restrict the

length of each replacement path for each sleeping sensor. For example, we can set each replacement path to be

bounded byh hops, then globally the shortest path length of each sensor to an actor can be controlled.

7.3 Static vs. dynamic implementation

Local rules can be implemented in a static or dynamic way. In static implementation, each node determines

its status based on itsh-hop information. In dynamic implementation, each node acts on a message originated

from an actor. In such a message, the actor ID or even path information from the original actor to the current

node can be piggybacked to assist the status determination of each node. The actor ID indicates the connectivity

of a neighbor to a particular actor, even though the actor might be outsideh-hop neighborhood. Likewise, path

information to an actor can be used for the local rule fork-actor-connectivity. Efficient reduction of active nodes

is possible by judiciously selecting an appropriate time-out after receiving the first message at each sensor to

gather more path information from actors.

14

If we allow propagation of node status, an active node can be treated as an actor which is useful for at-

least-one actor-connectivity. Note that dynamic implementation resembles distributed implementation which

has several simple implementations for at-least-one and persistent actor-connectivity.

7.4 Actor-initiated dynamic implementation

We can use actor-initiated dynamic implementation for two simple cases: at-least-one and persistent actor-

connectivity. The direct distributed implementation for at-least-one and persistentk-actor-connectivity are

much more involved, since path information needs to be propagated. Note that all dynamic implementations

are not strictly local solutions with information propagation. However, they are used as baseline cases for

comparison.

At-least-one actor-connectivity:

1. Each actor sends out an invitation message.

2. Each sensor responds to the first invitation only and forwards the invitation to its neighbors.

3. Sensors receiving responses are active and sensors not receiving responses are put to sleep.

Although at-least-one actor-connectivity is simple, it does need some form of information propagation

(in this case, an invitation). The number of invitation messages is equivalent to the number of sensors. The

distributed implementation for persistent actor-connectivity is much more involved in terms of message com-

plexity: it is the total number of actor-sensor connectivity.

Persistent actor-connectivity:

1. Each actor sends out an invitation message with its ID.

2. Each sensor responds to the first invitation for each ID and forwards the invitation to its neighbors.

3. Sensors receiving responses are active and sensors not receiving responses are put to sleep.

Maintainingk-actor-connectivity is much more involved as each active sensor needs to ensure the existence

of node-disjoint paths tok distinct actors. The complete path information needs to be propagated in the network,

generating excessive traffic. Hence, we will not discuss this approach further.

15

Table 1: Simulation parameters.

Network Area 100× 100
Transmission Range 25
Number of Sensors n, 50 to 300

Number of Actors m, 2 to 8

Number of Hops h, 2 to 4

Connectivity Requirement k, 1 to 6

Number of Trials 100

8 Simulations

We evaluate the proposed two algorithms, Local Rule for persistentk-actor-connectivity (LR-per) and Lo-

cal Rule for at-least-onek-actor-connectivity (LR-one) with different system parameters. We also simulate

the Actor-Initiated Dynamic implementation for persistent actor-connectivity (AID-per) and at-least-one actor-

connectivity (AID-one) to compare with the proposed local algorithms.

8.1 Simulation Environment

All algorithms have been implemented on a custom simulator. All simulations are conducted in randomly

generated static networks. To generate a network,n sensors andm actors are randomly placed in a100× 100

area. The transmission range is 25. Any two sensors, or a sensor and an actor, with distance less than 25

are considered neighbors. Networks that cannot form ak-actor-connected graph are discarded. The tunable

parameters in the simulation are as follows. (1) The number of sensorsn. We vary the number of deployed

nodes from50 to 300 to check the scalability of the algorithms. (2) The number of actorsm. We varym from

2 to 8. (3) The connectivity requirementk. We use 1 to 6 as the value ofk. In each simulation,k ≤ m. (4)

The number of hops,h. The local algorithms use 2-hop neighborhood information in most of the simulations.

We also increaseh to 3 and 4 to see the effect. When a node collectsh-hops information, it gets the network

topology within itsh-hops neighborhood except for the links between any twoh-hop away nodes. For each

tunable parameter, the simulation is repeated 100 times or until the confidence interval is sufficiently small

(±1%, for the confidence level of90%). Table 1 lists the simulation parameters.

The following performance metrics are evaluated. (1)Active nodes. The number of active sensors, which

represents the energy consumption. (2)Path ratio. The ratio of the average length of the routing paths inG′ to

that inG, which represents the routing latency of the system.

16

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

� �

�

�

1

27

1

28

28 2
12

2

15

2

20

2

24

3

20

3

27

3

28

3

32

4

5

4

13

4

18

4

21

4

30

4

33

5

21

5

33

6

7

6

9

6

10

6

14

6

16

6

17

6

22

6

25

6

31

7

9

7

10

7

23

7

25

7

31

8
12

8

14

8

15

8

17

8

20

8

24

8

32

9

10

9

14

9

17

9

25

9

34

10

14

10

17

10

22

10

25

10

34

11

18

11

22

11

25

11

28

11

29

11
30

11

32

12

14

12

15

12

17

12

20

12

22

12

24

12

32

13

18

13

21

13

33

14

17

14

22

14

24

14

25

14

32

14

34
15

20

15

24

16

19

16

23

16

25

16

26

16

29

16

30

16

31

17

22

17

25

17

31

17

32

17

34

18

21

18

28

18

29

18

30

18

33

19

21

19

23

19
26

19

29

19
30

19

31

20

24

21

26

21

30

21

33

22
25

22

29

22

30

2231 22

32

23

26

23

31
25

29

25

30

25
31

25

32

26

29

26 3026

31

26

33

27

28

29

30

29

31

29

33

30

33

1

(a) AID-per,k = 1

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

� �

�

�

1

27

1

28

28 2
12

2

15

2

20

2

24

3

20

3

27

3

28

3

32

4

5

4

13

4

18

4

21

4

30

4

33

5

21

5

33

6

7

6

9

6

10

6

14

6

16

6

17

6

22

6

25

6

31

7

9

7

10

7

23

7

25

7

31

8
12

8

14

8

15

8

17

8

20

8

24

8

32

9

10

9

14

9

17

9

25

9

34

10

14

10

17

10

22

10

25

10

34

11

18

11

22

11

25

11

28

11

29

11
30

11

32

12

14

12

15

12

17

12

20

12

22

12

24

12

32

13

18

13

21

13

33

14

17

14

22

14

24

14

25

14

32

14

34
15

20

15

24

16

19

16

23

16

25

16

26

16

29

16

30

16

31

17

22

17

25

17

31

17

32

17

34

18

21

18

28

18

29

18

30

18

33

19

21

19

23

19
26

19

29

19
30

19

31

20

24

21

26

21

30

21

33

22
25

22

29

22

30

2231 22

32

23

26

23

31
25

29

25

30

25
31

25

32

26

29

26 3026

31

26

33

27

28

29

30

29

31

29

33

30

33

1

(b) AID-one,k = 1

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

� �

�

�

1

27

1

28

28 2
12

2

15

2

20

2

24

3

20

3

27

3

28

3

32

4

5

4

13

4

18

4

21

4

30

4

33

5

21

5

33

6

7

6

9

6

10

6

14

6

16

6

17

6

22

6

25

6

31

7

9

7

10

7

23

7

25

7

31

8
12

8

14

8

15

8

17

8

20

8

24

8

32

9

10

9

14

9

17

9

25

9

34

10

14

10

17

10

22

10

25

10

34

11

18

11

22

11

25

11

28

11

29

11
30

11

32

12

14

12

15

12

17

12

20

12

22

12

24

12

32

13

18

13

21

13

33

14

17

14

22

14

24

14

25

14

32

14

34
15

20

15

24

16

19

16

23

16

25

16

26

16

29

16

30

16

31

17

22

17

25

17

31

17

32

17

34

18

21

18

28

18

29

18

30

18

33

19

21

19

23

19
26

19

29

19
30

19

31

20

24

21

26

21

30

21

33

22
25

22

29

22

30

2231 22

32

23

26

23

31
25

29

25

30

25
31

25

32

26

29

26 3026

31

26

33

27

28

29

30

29

31

29

33

30

33

1

(c) LR-per,k = 1

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

� �

�

�

1

27

1

28

28 2
12

2

15

2

20

2

24

3

20

3

27

3

28

3

32

4

5

4

13

4

18

4

21

4

30

4

33

5

21

5

33

6

7

6

9

6

10

6

14

6

16

6

17

6

22

6

25

6

31

7

9

7

10

7

23

7

25

7

31

8
12

8

14

8

15

8

17

8

20

8

24

8

32

9

10

9

14

9

17

9

25

9

34

10

14

10

17

10

22

10

25

10

34

11

18

11

22

11

25

11

28

11

29

11
30

11

32

12

14

12

15

12

17

12

20

12

22

12

24

12

32

13

18

13

21

13

33

14

17

14

22

14

24

14

25

14

32

14

34
15

20

15

24

16

19

16

23

16

25

16

26

16

29

16

30

16

31

17

22

17

25

17

31

17

32

17

34

18

21

18

28

18

29

18

30

18

33

19

21

19

23

19
26

19

29

19
30

19

31

20

24

21

26

21

30

21

33

22
25

22

29

22

30

2231 22

32

23

26

23

31
25

29

25

30

25
31

25

32

26

29

26 3026

31

26

33

27

28

29

30

29

31

29

33

30

33

1

(d) LR-one,k = 1

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

� �

�

�

1

27

1

28

28 2
12

2

15

2

20

2

24

3

20

3

27

3

28

3

32

4

5

4

13

4

18

4

21

4

30

4

33

5

21

5

33

6

7

6

9

6

10

6

14

6

16

6

17

6

22

6

25

6

31

7

9

7

10

7

23

7

25

7

31

8
12

8

14

8

15

8

17

8

20

8

24

8

32

9

10

9

14

9

17

9

25

9

34

10

14

10

17

10

22

10

25

10

34

11

18

11

22

11

25

11

28

11

29

11
30

11

32

12

14

12

15

12

17

12

20

12

22

12

24

12

32

13

18

13

21

13

33

14

17

14

22

14

24

14

25

14

32

14

34
15

20

15

24

16

19

16

23

16

25

16

26

16

29

16

30

16

31

17

22

17

25

17

31

17

32

17

34

18

21

18

28

18

29

18

30

18

33

19

21

19

23

19
26

19

29

19
30

19

31

20

24

21

26

21

30

21

33

22
25

22

29

22

30

2231 22

32

23

26

23

31
25

29

25

30

25
31

25

32

26

29

26 3026

31

26

33

27

28

29

30

29

31

29

33

30

33

1

(e) LR-per,k = 2

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

� �

�

�

1

27

1

28

28 2
12

2

15

2

20

2

24

3

20

3

27

3

28

3

32

4

5

4

13

4

18

4

21

4

30

4

33

5

21

5

33

6

7

6

9

6

10

6

14

6

16

6

17

6

22

6

25

6

31

7

9

7

10

7

23

7

25

7

31

8
12

8

14

8

15

8

17

8

20

8

24

8

32

9

10

9

14

9

17

9

25

9

34

10

14

10

17

10

22

10

25

10

34

11

18

11

22

11

25

11

28

11

29

11
30

11

32

12

14

12

15

12

17

12

20

12

22

12

24

12

32

13

18

13

21

13

33

14

17

14

22

14

24

14

25

14

32

14

34
15

20

15

24

16

19

16

23

16

25

16

26

16

29

16

30

16

31

17

22

17

25

17

31

17

32

17

34

18

21

18

28

18

29

18

30

18

33

19

21

19

23

19
26

19

29

19
30

19

31

20

24

21

26

21

30

21

33

22
25

22

29

22

30

2231 22

32

23

26

23

31
25

29

25

30

25
31

25

32

26

29

26 3026

31

26

33

27

28

29

30

29

31

29

33

30

33

1

(f) LR-one,k = 2

Figure 5: Examples of AID-per, AID-one, LR-per, and LR-one (n = 30,m = 4).

Figure 5 shows the selected active node set in a sample network. There are 30 sensors (shown as circles)

and 4 actors (shown as triangles). The active sensors are shown by bold circles, and the numbers in the sensors

are the IDs. (a) and (b) are the results of AID-per and AID-one, respectively, withk = 1. There are 28 and 9

active nodes, respectively. (c) and (d) are of LR-per and LR-one whenk = 1. There are 14 and 9 active nodes,

respectively. (e) and (f) are of LR-per and LR-one whenk = 2. There are 26 and 21 active nodes respectively.

8.2 Simulation Results

Figure 6 shows the comparison of AID and LR withk = 1. (a) and (c) are the results of the number of active

nodes and ratio of length of the routing paths withm = 2, respectively. (b) and (d) show the results form = 6.

17

 10

 20

 30

 40

 50

 60

 70

 50 100 150 200 250 300

A
ct

iv
e

N
od

es

Number of Nodes

AID-per
AID-one

LR-per
LR-one

(a) Active nodes (m = 2)

 0

 20

 40

 60

 80

 100

 120

 50 100 150 200 250 300

A
ct

iv
e

N
od

es

Number of Nodes

AID-per
AID-one

LR-per
LR-one

(b) Active nodes (m = 6)

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 50 100 150 200 250 300

P
at

h
R

at
io

Number of Nodes

AID-per
AID-one

LR-per
LR-one

(c) Path ratio (m = 2)

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 50 100 150 200 250 300

P
at

h
R

at
io

Number of Nodes

AID-per
AID-one

LR-per
LR-one

(d) Path ratio (m = 6)

Figure 6: Comparison of AID-per, AID-one, LR-per, and LR-one (k = 1).

In (a) we can see that methods for persistent connectivity have larger numbers of active nodes than those for

at-least-one connectivity, which is obvious since more nodes need to be selected in order to keep each node

connected to every actor instead of one actor. AID-per selects more active nodes than LR-per. AID-one has

less active nodes than LR-one only when the number of sensors is very small (smaller than 75). In (b), when

m = 6, the comparison results of the four algorithms remain the same with those in (a). However, AID-per has

more active nodes with largerm while the other three tend to have less active nodes. This is because in AID-per

each node needs to keep a shortest path to every actor with all the nodes on the path being active. Obviously,

the greater the number of actors, the more active nodes there will be. In AID-one, a shortest path to an actor is

needed for each node, and more actors help to reduce the length of this shortest path. Thus, less active nodes

are necessary. For the LR-per and LR-one, since actors are viewed as nodes with the highest priorities, more

actors lead to higher probability of (extended) replacement path and hence the non-active nodes. Therefore,

less active nodes are selected. In both (a) and (b), more deployed sensor nodes lead to increased number of

active nodes. However, the increasing tends to stop when the node density reaches a certain degree in AID-one,

LR-per, and LR-one.

18

 20

 40

 60

 80

 100

 120

 140

 50 100 150 200 250 300

A
ct

iv
e

N
od

es

Number of Nodes

k=1
k=2
k=3
k=6

(a) Active nodes in LR-per

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 100 150 200 250 300

A
ct

iv
e

N
od

es

Number of Nodes

k=1
k=2
k=3
k=6

(b) Active nodes in LR-one

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 50 100 150 200 250 300

P
at

h
R

at
io

Number of Nodes

k=1
k=2
k=3
k=6

(c) Path ratio in LR-per

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 50 100 150 200 250 300

P
at

h
R

at
io

Number of Nodes

k=1
k=2
k=3
k=6

(d) Path ratio in LR-one

Figure 7: Performance of LR-per/LR-one with differentk (m = 6, h = 2).

(c) and (d) are the ratio of the length of the routing path in original graph to that in the resultant graph (via

only active nodes). The routing path is the shortest path from a sensor to a nearest actor, and the length is in

terms of hop count. Since AID-per and AID-one always keep the nodes on the shortest path from a sensor to

a nearest actor, the ratio is always 1. LR-per has smaller ratio than LR-one due to its larger active node set.

Comparing (c) with (d) we can see that largerm results in smaller ratio. Both in (c) and (d), more deployed

sensor nodes lead to an increased ratio. The increasing tends to stop when the node density reaches a certain

degree.

Figure 7 shows the performance analysis of LR-per and LR-one in terms of parameterk with m = 6.

(a) and (b) are the sizes of the resultant active node sets of LR-per and LR-one, respectively. (c) and (d) are

their corresponding path ratios.k is increased from 1 to 6 in these figures. We can see that whenk is larger,

more active nodes are necessary to achieve higher connectivity. However, compared with that of the deployed

sensors, the increasing of the number of active nodes is slight. Also, LR-one needs less active nodes than

LR-per, which is consistent with the previous simulation results. (c) and (d) show that largerk helps with a

19

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6

P
er

ce
nt

ag
e

Values of k

Percentage of active nodes
Percentage of increasing path ratio

(a) LR-per

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6

P
er

ce
nt

ag
e

Values of k

Percentage of active nodes
Percentage of increasing path ratio

(b) LR-one

Figure 8: Percentages of active nodes and the increasing of path ratio with differentk (n = 300,m = 6, h = 2).

smaller path ratio due to more active nodes. However, this decrease of path ratio tends to stop whenk is large

enough. We can see that whenk is 6, the ratio is slightly larger than 1 (less than 1.05). There is little room to

further reduce the ratio by increasingk. When the number of deployed nodes is 50, the original graph is hardly

6-actor-connected, thus there are no simulation results in the figures whenn is 50 andk is 6.

Figure 8 is generated from Figure 7 to show the percentages of active nodes and the increasing of path ratio

in LR-per and LR-one with the increasing ofk. We can see that when the value ofk decreases, less active nodes

are needed in both LR-per and LR-one, and the path ratios are increased as well. However, the increasing of

the path ratio is insignificant compared to the decreasing of the number of active nodes untilk is small enough,

that is,k is decreased to 1. Therefore, most of the time, the decrease of the number of the active nodes in the

network will not lead to the significant increase of the path ratio.

Figure 9 shows the results of LR-per and LR-one with different numbers of actors wherek is fixed as 2.

(a) and (c) are number of active nodes and path ratio in LR-per and (b) and (d) are those of LR-one. From (a)

and (b) we can see that largerm results in a smaller number of active nodes. A decreasing of the number of

active nodes caused by the increasing of the value ofm is more significant in LR-one than in LR-per. This

is because in LR-per, although more actors do provide higher probability for (extended) replacement path and

hence non-active node status, it also lead to the requirement of an increased connectivity. (c) and (d) show

that more actors result in a smaller path ratio. The path ratio of LR-per is smaller than that of LR-one due to

its larger size of active nodes. Both the number of active nodes and path ratio increase with the growth of the

network density, but tend to get saturated when the density reaches a certain degree under all circumstances.

Therefore, the proposed algorithms scale well.

Figure 10 shows the performance of LR-per and LR-one with differenth. (a) and (b) are the numbers

20

 34

 36

 38

 40

 42

 44

 46

 48

 50

 52

 54

 50 100 150 200 250 300

A
ct

iv
e

N
od

es

Number of Nodes

m=2
m=4
m=6
m=8

(a) Active nodes in LR-per

 22

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 50 100 150 200 250 300

A
ct

iv
e

N
od

es

Number of Nodes

m=2
m=4
m=6
m=8

(b) Active nodes in LR-one

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 1.09

 50 100 150 200 250 300

P
at

h
R

at
io

Number of Nodes

m=2
m=4
m=6
m=8

(c) Path ratio in LR-per

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 50 100 150 200 250 300

P
at

h
R

at
io

Number of Nodes

m=2
m=4
m=6
m=8

(d) Path ratio in LR-one

Figure 9: Performance of LR-per/LR-one with differentm (k = 2, h = 2).

of active nodes in these two algorithms, and (c) and (d) are the path ratios of them. We can see that with

more neighborhood information, less active nodes are necessary in both algorithms. However, this increase is

relatively slight. Whenh is 4, a node can achieve almost the entire network topology, the performance can not

be increased significantly. Therefore, in application a small value ofh is enough. The path ratios are decreased

with the growth of the value ofh as in (c) and (d). However, the increase of the performance is not significant.

Simulation results can be summarized as follows:

1. LR-per has less active nodes than that of AID-per; AID-one has smaller number of active nodes than

LR-one. But AID-per and AID-one are not localized approaches.

2. Although the path ratios of LR-per and LR-one is not 1 (as in AID-per and AID-one), they are not

significantly higher than 1, and can be controlled by the value ofm.

3. Whenm is fixed, largerk leads to larger active node set and smaller path ratio in LR-per and LR-one.

21

 32

 34

 36

 38

 40

 42

 44

 46

 48

 50

 52

 54

 50 100 150 200 250 300

A
ct

iv
e

N
od

es

Number of Nodes

h=2
h=3
h=4

(a) Active nodes in LR-per

 28

 30

 32

 34

 36

 38

 40

 42

 50 100 150 200 250 300

A
ct

iv
e

N
od

es

Number of Nodes

h=2
h=3
h=4

(b) Active nodes in LR-one

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 1.09

 50 100 150 200 250 300

P
at

h
R

at
io

Number of Nodes

h=2
h=3
h=4

(c) Path ratio in LR-per

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 1.09

 1.1

 1.11

 1.12

 50 100 150 200 250 300

P
at

h
R

at
io

Number of Nodes

h=2
h=3
h=4

(d) Path ratio in LR-one

Figure 10: Performance of LR-per/LR-one with differenth (k = 2,m = 2).

4. Whenk is fixed, largerm helps to reduce the number of active nodes and also path ratio. However, in

LR-per the decreasing of number of active nodes by the increasing of the value ofmis insignificant.

5. The increase of the length of routing path in both LR-per and LR-one is insignificant. Therefore, selecting

only a subset of nodes to be active introduces very little data-routing latency.

6. More local neighborhood information results in better performance in terms of both the number of active

nodes and path ratio for both algorithms. However, a relatively small value, say 3, ofh is enough to avoid

overhead.

7. Under all circumstances, with the growth of the number of deployed nodes, the number of active nodes

and path ratio increase. However, there is a much smaller increasing ratio and the path ratio tends to get

saturated. Therefore, all the proposed algorithms scale well.

22

9 Conclusion

In this paper, we defined several sensor-actor connection requirements in wireless sensor and actor networks, the

persistent actor-connectivity and at-least-one actor-connectivity. We proposed several local solutions to ensure

different connection requirements, where each node makes its decision (on its active and sleep mode) purely

based on local information and there is no information propagation during the decision process. We also looked

at several fault-tolerance extensions, the persistent or at-least-onek-actor connectivity, in which the network is

still ensured connectivity in the presence of sensor or actor failures. We also proved the relationship between the

regulark vertex connectivity in graph theory and the proposedk-actor connectivity in the WSANs. Simulation

results show that LR-per and LR-one can both generate an efficient active node set, saving energy consumption

by putting other nodes into sleep states without introducing much routing delay. In the future, we will develop

a complete routing scheme based on the proposed connectivity, design a detailed energy consumption model

for the WSANs, and compare with other existing energy-efficient routing protocols.

References

[1] I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor and actor networks: research challenges.Ad Hoc

Networks Journal (Elsevier), (4):351–367, 2004.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: A survey.

Computer Networks, (4):393–422, 2002.

[3] S. Bandyopadhyay and E. Coyle. An energy efficient hierarchical clustering algorithm for wireless sensor

networks. InProc. of IEEE Infocom, 2003.

[4] M. Cardei, J. Wu, and S. Yang. Fault-tolerant topology control for heterogeneous wireless sensor net-

works. submitted for publication.

[5] J. Carle and D. Simplot-Ryl. Energy efficient area monitoring by sensor networks.IEEE Computer,

(2):40–46, 2004.

[6] E. Cayirci, T. Coplu, and O. Emirogl. Power aware many to many routing in wireless sensor and actuator

networks. InProc. of Ewsn, 2005.

[7] A. Cerpa, J. Elson, and M. Hamilton. Habitat monitoring: Application driver for wireless communica-

tion technology. InProc. of the ACM SIGCOM Workshop on Data Communication, in conjunct with

MobiCom’01, 2001.

23

[8] A. Ephremides, J. E. Wieselthier, and D. J. Baker. A design concept for reliable mobile radio networks

with frequency hopping signaling.Proceedings of the IEEE, (1):56–73, 1987.

[9] B. P. Gerkey and M. J. Mataric. A market-based formulation of sensor-actuator network coordination. In

Proc. of the AAAI Spring Symposium on Intelligent Embedded and Distributed Systems, 2002.

[10] A. Gibbons. Algorithmic graph theory.Cambridge University Press, 1985.

[11] M. Haenggi. Mobile sensor-actuator networks: opportunities and challenges. InProc. of 7th IEEE Inter-

natinal Workshop, 2002.

[12] W. Hu, N. Bulusu, and S. Jha. A communication paradigm for hybrid sensor-actuator networks.Interna-

tional Journal of Wireless Information Networks, (1):47–59, 2005.

[13] W. Hu, C. Chou, S. Jha, and N. Bulusu. Deploying long-lived and cost-effective hybrid sensor networks.

In Proc. of the 1st Workshop on Broadband Advanced Sensor Networks (BaseNets 2004), 2004.

[14] C. Intanagonwiwat, R. Govindan, D. Estrin, and J. Heidemann. Directed diffusion for wireless sensor

networking.IEEE/ACM Transactions on Networking, (1):2C16, 2003.

[15] R. Kumar, V. Tsiatsis, and M. B. Srivastava. Computation hierarchy for in-network processing. InProc.

of the 2nd ACM International Conference on Wireless Sensor Networks and Applications, 2003.

[16] C. Lin and M. Gerla. Adaptive clustering for mobile wireless networks.IEEE Journal on Selected Areas

in Communications, pages 151–162, 1999.

[17] T. Melodia, D. Popili, V. C. Gungor, and I. F. Akyildiz. A distributed coordination framework for wireless

sensor and actor networks. InProc. of MobiHoc, 2005.

[18] M. F. Munir and F. Filali. A novel self organizing framework forSANETs. In Proc. of the 12th EW

Conference, 2006.

[19] V. Paruchuri and A. Durresi. Delay-energy aware routing protocol for sensor and actor networks. InProc.

of ICPADS, 2005.

[20] E. M. Petriu, N. D. Georganas, D. C. Petriu, D. Makrakis, and V. Z. Groza. Sensor-based information

appliances.IEEE Instrumentation and Measurement Magazine, (4):31–35, 2000.

[21] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol for wireless sensor networks. In

Proc. of IEEE Infocom, 2002.

24

