
Space-Time Graph Planner for Unsignalized
Intersections with CAVs

Caner Mutlu, Ionut Cardei, and Mihaela Cardei

Florida Atlantic University, Boca Raton FL 33431, USA
Department of Electrical Engineering and Computer Science

{cmutlu,icardei,mcardei}@fau.edu
http://www.eecs.fau.edu

Abstract. Emerging autonomous intersection management systems control the
entry order and trajectory for connected and autonomous vehicles ready to tra-
verse a road intersection. They aim to compute trajectories that are safe and opti-
mal in order to reduce congestion, environmental impact, and to cut travel time.
We propose a novel approach for computing the fastest waypoint trajectory using
search in a discretized space-time graph that produces collision-free paths with
variable vehicle speeds complying with traffic rules and vehicle dynamics con-
straints. The resulting trajectories allow high levels of intersection sharing, high
evacuation rate, with a low algorithm runtime even with large scenarios with 1200
vehicles (5.5 seconds on a laptop).

Keywords: space-time graph · intersection management · autonomous cars

1 Introduction

There are about 15 million road intersections in the continental US alone, and 44% of
the road incidents occur at intersections [1]. Time waste and fuel consumption [2] at
intersections also have negative societal impact. In contrast to traditional signaled inter-
sections, signal-free intersections controlled by Autonomous Intersection Management
Systems (AIMS) do not employ semaphores and provide conflict-free intersection tran-
sit for Connected Autonomous Vehicles (CAVs). CAVs talk to AIMS on a network,
such as cellular, vehicle-to-vehicle (V2V), vehicle-to-instructure (V2I), and others [3].

A CAV contacts the nearby AIMS and sends an admission request with its pre-
dicted arrival time at the intersection entry and its intended intersection exit lane. The
AIMS considers new requests, the trajectories of CAVs already in transit, and computes
control commands for each new vehicle. The computation can be centralized in the in-
frastructure or it can be distributed among coordinating CAVs. Possible AIMS goals
include minimizing exit time for each vehicle in a fair first-in/first-out (FIFO) way or
maximizing the global exit flow, across all vehicles.

Management of CAVs in an unsignaled AIMS environment can be categorized un-
der two broad problem classes, “vehicular scheduling” and “vehicular control” [4]. Both
can be addressed separately, but a true optimal trajectory would require solving both
concurrently. A vehicle control system formulates a solution describing commands for

2 C. Mutlu et al.

vehicle actuators, such as steering, throttle, braking. Some examples use model pre-
dictive control [5] or optimal control [6]. On the other hand, a vehicle scheduler is a
trajectory planner that gives a sequence of waypoints (location + time) that must be tra-
versed by the CAV. At a minimum, it just provides an entry sequence to the intersection,
enough for vehicles to avoid collisions if they stick to their desired lane. Reservation-
based systems [6, 7] schedule vehicles to leave the intersection in FIFO order, under-
utilizing shared intersection space. Solutions that solve a discrete optimization problem
[8] are limited by the exponential growth of the search space - unfeasible for realistic
large scenarios with hundreds of vehicles. Graph search methods model the intersection
as a graph in 2D. Depth first spanning tree (DFST) methods [4, 9] do conflict analysis
and determine an entry order that increases parallel access to the intersection.

In this paper we are concerned with the problem of finding the shortest collision-
free space-time trajectory through an intersection, constrained by traffic rules and ve-
hicle limitations. Such a trajectory can then be passed to the CAV’s navigation unit to
generate actuator commands.

We propose a solution – the Fastest Trajectory Planner algorithm – that a) models
the intersection road map as a discretized graphGu; b) expandsGu’s vertices and edges
to the time dimension into a space-time graph Gt so that a Gu vertex or an edge used
at a particular time corresponds to vertices and edges in Gt that will be removed from
Gt for subsequent vehicles; c) finds the fastest variable-speed trajectory complying to
constraints using a shortest path algorithm in the space-time graph. Our algorithm was
inspired by our earlier work on drone traffic management [10–13], with addition of
the variable speed capability and vehicle dynamic constraints. The algorithm has a low
runtime complexity and scales well: scenarios with 1200 vehicles at a 4-lane 4-way
intersection are solved in about 5.5 seconds on a typical laptop, with code in Python.

This paper continues with related work in Section 2, the problem statement in Sec-
tion 3, the proposed algorithm in Section 4.4, a performance evaluation in Section 5,
and conclusions (Section 6).

2 Related Work

Papers [4, 14] study global optimality for vehicular scheduling problems in an AIMS.
Their method models vehicles with vertices and they build a Conflict Directed Graph
where edges map from pair-wise path conflicts. An Improved Depth First Search Span-
ning Tree is used to design a conflict-free passing order through the intersection. A
second algorithm uses a complementary Coexisting Undirected Graph built from non-
conflicting vehicle pairs to compute the Minimum Clique Cover. That gives an optimal
passing order with the minimum evacuation time.

The conflict-duration approach in [15] builds a Gantt-chart inspired conflict-duration
diagram. Its axes are conflict locations and timing stamps. The conflict-duration dia-
gram registers double or triple conflicts between vehicles. By considering the physical
size (L x W) of each vehicle, the total duration where a physical conflict persists be-
tween two or three vehicles is represented on the conflict-duration diagram as overlap-
ping time duration at a particular conflict point. By removal of the overlapping time
region, through rescheduling speed profile of one or more vehicle(s), a conflict can be
prevented between any pair of vehicles.

Space-Time Graph Planner for CAV Intersections 3

In our prior work on drone traffic management, we developed the concept of short-
est path search in a space-time graph for vehicle trajectory planning. We initially for-
mulated the point-to-point trajectory planner for drone package delivery in [10] us-
ing multi-source/multi-destination BFS on the space-time graph. The planner computes
shortest space-time paths with edges traversed in one time unit and no constraints on
vehicle dynamics. We improved that approach in [12] with a batch scheduling method
that has a lower complexity and better results.We addressed in [11] the problem of
energy-constrained drone package delivery with multiple warehouses and customers
using a multi-source A* algorithm running on the space-time graph. More recently,
[13] presents a multi-source/multi-destination search algorithm for the fastest trajec-
tory between two disjoint groups of vertices in the space-time graph. This is suitable
for drone planning when the operator has multiple drones available stationed through
the network and has to deliver packages to multiple customers.

Our contribution in this paper differs from prior work with space-time graphs by
complying to vehicle dynamic constraints and by allowing multiple possible times for
space-time edge traversal, necessary for supporting variable average edge velocities.
The collision constraints and resource sharing rules are different from drone scenarios.

Fig. 1: (a) a 4-lane, 4-way intersection. (b) the graph for the intersection traffic road network.
Paths possible from the two South entry vertices are highlighted with different colors.

3 Problem Statement

Fig. 1a illustrates a typical 4-lane, 4-way intersection, with legal trajectories high-
lighted. Vehicles moving in perpendicular directions have paths that intersect at shared
points. The shared space forces vehicles to serialize their passage in order to avoid
collisions. An AIMS runs the algorithms presented in Section 4.4. It uses the graph
representation for the road network described below.

We model a road map as a directed graph with tuple G = (V,E, pos), with edge set
E and vertex set V , as in Fig. 1b. A segment corresponds to a directed edge (u, v) ∈ E.

4 C. Mutlu et al.

If a road segment (u, v) is bidirectional, then (v, u) ∈ E, too. Function pos : V → R2

defines the position of a vertex.
A collision between two vehicles occurs when their trajectories overlap in space and

time. Vehicles can safely occupy the same space at different times sufficiently separated.
A vehicle’s admission request is as an object Request(src, dst, ts, Tmax), where

src, dst ∈ V are the source and destination vertices, ts ∈ R≥0 is the vehicle arrival
time at the intersection, and Tmax ∈ R+ is the maximum allowed trajectory duration.
Tmax = ∞ if a vehicle may take indefinitely to exit the intersection. The intersection
manager accepts requests over a finite time interval [0, tend].

Vehicle movement on the road is limited by the maximum legal speed smax, max-
imum acceleration a+max, maximum deceleration a−max, and vehicle length, packaged
all in an object Cons(smax, a+max, a

−
max, L).

The computed trajectory between the req.src and req.dst is defined by a list of
space-time waypoints that the vehicle must reach: Tr(times, positions, velocities)
indicating the time at each waypoint in times = (t0, t1, ..., tm−1), the position of each
waypoint positions = (p0, p1, ..., pm−1), and a velocity vector for each waypoint.

A Tr object for which a solution cannot be found has no waypoints: Tr((), (), ()),
where () is the empty sequence. Otherwise, that is a valid trajectory.

We define the problem of finding trajectories for vehicles on a traffic map as follows:

Problem Definition Given a road network graph G = (V,E, pos), vehicle constraints
Cons, and a list of vehicle admission objects (Request)i over a time interval [0, tend],
the Fastest Trajectory Planning problem is finding a trajectory with mi waypoints
for each vehicle i through the road network that has the earliest arrival time tmi−1,
subject to these conditions:

1. vehicles move on edges in E,
2. there are no collisions between any two vehicles on the road network,
3. vehicle constraints as defined by Cons are satisfied at all times.

The problem objective is locally greedy. An algorithm that globally minimizes the
maximum delay is NP-complete because of the combinatorial explosion of the number
of ways in which vehicle moves can be sequenced over time edges and space-time
edges.

Performance Metrics.
The intersection trajectory planner accepts a sequence ofN requests reqs and produces
a sequence of N Tr objects, from which n are valid: trji = Tr(timesi, positionsi,
velocitiesi), i = 0, ..., N − 1, and with attribute timesi = (t0, t1, ..., tm−1)i, for mi

waypoints. We define the following performance metrics for a planning solution:

Definition 1. The trajectory delay for a valid trajectory i is the difference between
trajectory arrival time at destination and the request start time: delay = tm−1 − t0.

The following metrics apply to a batch reqs of N Requests resulting in n valid
trajectories that complete in tevac = maxi tmi−1.

Space-Time Graph Planner for CAV Intersections 5

Definition 2. The average trajectory delay is delayavg = 1
n

∑
i delayi over valid

trajectories. The maximum trajectory delay is delaymax = maxi delayi

Definition 3. The request admission ratio is the fraction of valid trajectories vs. the
total number of requests submitted, adm = n/N .

Definition 4. The traffic flow rate is the number of vehicles that reach their destination
vertex per time unit. This is the exit rate from the intersection. The traffic flow rate over
a time period of duration tevac is flowT = n/tevac [s

−1].

We make the following assumptions to design our algorithm:

1. The waypoint trajectory is converted by the CAV’s own control systems to com-
mands for actuators (throttle control, braking, steering) to maintain a trajectory
with high fidelity.

2. Without loss of generality, all vehicles have the same dynamic constraints.
3. The optimization objective for the planning algorithm is to minimize the delay of

each request while preserving the first in - first out order at intersection entry lanes.
Minimizing the travel time reduces the overall utilization of shared intersection
resources, such as graph edges and vertices, contributing to increased traffic flow.

4 The Space Time Graph Methodology for Trajectory Search

The proposed solution, Fastest Trajectory Planner (FTP), is inspired from the Space-
Time graph planner for the drone delivery problems introduced in articles [10–13]. In
contrast to our earlier work, the new algorithm works for autonomous cars carrying
people and goods, supports multiple average speeds on graph edges, enforces dynamic
vehicle constraints (e.g. min/max acceleration), and applies collision avoidance rules
specific to road vehicles.

4.1 Collision Avoidance and Graph Representation

Fig. 2 illustrates several collision scenarios on graph G. Fig. 2a shows two vehicles
moving on different edges inGu towards the same vertex. Fig. 2b shows the red vehicle
moving on an edge towards a vertex v occupied by the blue vehicle standing still. Fig. 2c
shows the red vehicle on edge (u, v) and the blue vehicle on edge (v, u) moving towards
each other. A vehicle (red) can stand still in the middle of an edge (u, v) while the blue
vehicle comes barreling towards it from vertex u, Fig. 2d.

At the same time, two vehicles moving on the same long edge in the same direction,
with similar speeds should be perfectly fine, with no collision.

Three salient observations are apparent:

(a) Graph edges and vertices occupied by a vehicle at a time are resources that must be
allocated to vehicles with mutual exclusion on that time.

(b) Time-dependent allocation of resources for one request controls allocation for other
vehicles, hence their movement, collision avoidance, and performance metrics.

6 C. Mutlu et al.

Fig. 2: Examples of collisions scenarios.

(c) The original graph G derived from the road map has insufficient space and time
resolution for an adequate fine-grained granularity to achieve effective resource
reuse.

The basic approach of our proposed algorithm is summarized here:

1. Discretize the original road map graph G to a spatial unit graph Gu that has fine-
grained “granularity”, e.g. 5 m.

2. FromGu, build a space-time graphGt, with time edges for each vertex for a vehicle
that stands there still for a time unit, and space-time edges for a vehicle that moves
from one vertex to another during one or more time units.

3. Time variable availability of edges and vertices in Gu is modeled by existence of
edges in the space-time graph.

4. A vehicle trajectory is expressed by a path in this space-time graph. Edges and
vertices in Gt that form a trajectory and their adjacent neighbors are “allocated”
exclusively to a vehicle’s trajectory and removed from Gt. A trajectory (vehicle)
cannot use vertices and edges in Gt already allocated to other trajectories.

5. The fastest ending (shortest) path in the space-time graph is a good approximation
to the fastest trajectory in the original graph G.

Next are the key ideas underlining the Fastest Trajectory Planner’s algorithm.

4.2 Discretized Graph and Discrete Time
The original road map graph G is discretized with unit length D (e.g. 5 m) so that
each original edge (u, v) ∈ E is split into smaller edges of length D and at most
one shorter edge (w, v) at the end of (u, v). The new discretized graph is denoted by
Gu(Vu, Eu, pos), with V ⊆ Vu. pos(u) represents the position of vertex u, as before.
The size bound of the discretized graph is about the order of |Vu| = Θ(D−1|V |), and
|Eu| = Θ(D−1|E|). Since V ⊆ Vu, the route planning problem on G is equivalent to
the same problem on graph Gu. However, an optimal solution for Gu is suboptimal for
the problem in G because of space discretization error.

Discretizing the graph allows one to run the planner in discrete time, with time units
of δt (e.g. 1 second) expressed in time ticks.

We allow an edge to be traversed in discrete multiples of δt: {δt, 2δt, ..., pδt}. This is
called a slow fragment and p is called the edge time multiplier. We also allow for up to q
consecutive edges to be traversed in just one δt time interval. We call this a fast fragment
and q is the edge speed multiplier. The unit edge speed is su = D

δt
. The set of possible

average speeds on edges inEu of lengthD is {su, 2su, 3su, ..., q su}∪{ su2 ,
su
3 , ...,

su
p },

Space-Time Graph Planner for CAV Intersections 7

where constants p, q ∈ N+ are selected such that qsu ≤ smax and su
p exceeds the

minimum possible vehicle speed allowed. In our simulations p = 2 and q = 4. These
parameters also affect runtime complexity, as discussed later.

4.3 The Space-Time Graph
We assume the planner computes trajectories for a sequence of requests over a finite
time horizon H > 0, with H = min{{reqi.tf}i=0..n−1 ∪ {Tmax}}. The discrete time
horizon is defined as K =

⌊
H
δt

⌋
, where Tmax is the maximum simulation time.

The space-time graph Gt is built from the discretized unit graph Gu as follows.
Each vertex u ∈ Vu converts to K space-time vertices (k, u) ∈ Vt. Time edges in Et
are defined as ((k, u), (k+1, u)) for all 0 ≤ k < K − 1 and u ∈ Vu. Space-time edges
are defined as ((k, u), (k+1, v)) for all 0 ≤ k < K− 1 and (u, v) ∈ Eu. A space-time
edge is added for each edge in the discretized graph Gu and each time unit. The size of
Gt is given by |Vt| ∈ Θ(Kδ−1

t |V |), and |Et| ∈ Θ(Kδ−1
t |E|). The space-time graph

for a very simple Gu is shown in Fig. 3a.

Fig. 3: a) Space-time graph Gt is derived from Gu by “extending” (u, v) edges in time (red) and
by adding time edges (blue) for each vertex. b) space-time paths for two vehicles (red and blue
wide arrows). Edges crossed with an X are pruned from Gt after admission to prevent collisions.
c) a slow fragment (green dashed line) of one Gu edge traversed in more than one single tick at
half the normal edge speed. d) a fast fragment (green dashed line) of more than 2 edges in one
tick leads to higher speeds.

4.4 The Fastest Trajectory Planner Algorithm

The key ideas behind the use of the space-time graph are:
1. A shortest path for Request(src, dst, ts, Tmax) in the discretized graph Gu be-
tween vertices src and dst can be found by computing the “earliest ending” path in
the space-time graph Gt between any space-time vertices (ks, src) and (kf , dst), with
ts ≤ ksδt ≤ kfδt ≤ ts + Tmax, such that kf is the minimum such value that is possi-
ble. This is the same as the multi-source, multi-destination shortest path problem in the
space-time graph.

8 C. Mutlu et al.

2. A space-time edge e = ((ku, u), (ku + 1, v)) is traversable at time ku from u to v
only if e ∈ Et. We remove (prune) space-time edges fromGt to prevent collisions when
ulterior requests (with later start times) are computed. Fig. 3b shows shortest space-time
paths for two vehicles. Blue’s path u→ x is computed first. The algorithm finds a path
with the edges covered by the wide blue arrow and, then, it prunes from Gt the edges
marked with X signs from Gt. The path computation for the red vehicle will not see
those deleted edges and it will find the space-time path drawn with the wide red arrows.
The edges marked with X signs will be pruned from Et. Space-time edges in Gt used
by a solution path are removed from Gt
3. Support for multiple speeds (and dynamic constraints) is added by modifying the
Dijkstra algorithm to consider during the “vertex expansion step” space-time path frag-
ments (i.e. subpaths) corresponding to multiple traversal times and multiple space-time
edges.

No optimality with constraints: since our planner enforces dynamic constraints (min/max
acceleration) involving successive edges, we cannot prove that it finds the fastest path.
Without constraints on acceleration, it does.

Several functions implement the planning algorithm.

4.5 planRequests: Top Level Algorithm
The entry to the planner is a function called planRequests, implemented in Algorithm 1.
Function planRequests(Gu, reqs) computes a trajectory for each Request in list reqs,
in the given input order.

Algorithm 1 : compute N admssion from list requests.
1: function planRequests(Gt, requests) . Process a list of requests
2: trjs = [] . empty list
3: for all reqinrequests do
4: path← computePath(Gu, req) . plan one path: list of Vt vertices
5: trj ← convertToTrajectory(Gu, req, path) . convert path to Tr
6: trjs.append(trj)

7: return trjs . all trajectories, including Tr((), (), ()) for failed ones

Line 4 calls function computePath(Gt, req) to compute the space-time path for the
current request req. That is the main part of the planning algorithm. It returns in variable
path a list of vertices (waypoints) in Gt that defines a space-time trajectory in format
[(k0, v0), (k1, v1),], indicating that the vehicle must be at vertex v0 at tick k0, at v1 at
tick k1, etc. This works also when multiple space-time edges are traversed in one tick.

4.6 computePath: the Shortest Space-Time Path Algorithm

The computePath(Gt, req) function call (Algorithm 2) computes the fastest space-time
path from vertex req.src to vertex req.dst using only available edges in the space-time
graph Gt. This algorithm runs a multi-source/multi-destination version of Dijkstra’s
shortest path algorithm. Once a space-time vertex (ku, u) is reached our algorithm ex-
plores all feasible path fragments that start from time tick ku like this:
• slow fragments (u, v) with exactly two space vertices that can be traversed in 1, 2, ..., q
ticks; the average speed on this fragment does not exceed su (Fig. 3c).

Space-Time Graph Planner for CAV Intersections 9

• fast fragments (u, ..., v) with three or more space vertices that can be traversed in
exactly 1 tick; the average speed on this fragment may exceed D/δt (Fig. 3d).

A path fragment is feasible if it satisfies intersection/traffic lane constraints, its
space-time edges are available inGt, and if speed, acceleration/deceleration constraints
(including vs. the previous fragment) are satisfied.

The priority queue that orders space-time vertex expansion holds objects of type
QueueEntry(k1, k0, priorV elocity, fragment, priorQe). fragment is a list of Vu
vertices [u, ..., v] that forms a subpath in Gt traversable from tick k0 at u, arriving at v
on tick k1. The fragment is constrained by available space-time edges inGt and vehicle
constraints. priorQe is the currently expanding QueueEntry object. priorV elocity
is the average 2D velocity vector across the priorQe.fragment fragment.

QueueEntry objects in the priority queue created on line 5 are ordered by their k1
attribute, the arrival at their fragment’s end vertex.

Algorithm 2 computes the shortest space-time path for one Request.
1: function computePath(Gt, req)
2: ks← breq.ts/δtc and kf ← breq.tf/δtc . arrival ticks; last allowed exit time in ticks
3: explored← {(ks, req.src)}
4: queue← new PriorityQueue()
5: queue.enqueue(new QueueEntry(ks, ks, (0.0, 0.0), [req.src], None))
6: ktime← ks . ktime keeps the current exploration time tick
7: path← []
8: while path == [] and queue.size > 0 and ktime ≤ kf do
9: qe← queue.dequeue() . ordered by fragment end time, qe.k1

10: continue if impossible to reach req.dst from qe.fragment[0] by tick tf
11: update ktime from qe.k1
12: nextQes← discoverFragments(Gt, req, explored, qe)
13: if nextQes.size > 0 then . if fragments were found
14: for all nqe in nextQes with nqe.k1 ≤ kf do
15: if req.dst ∈ nqe.fragment then . reached destination?
16: path← extract path from nqe and its predecessors
17: prune space time edges in path from Gt

18: break
19: else
20: queue.enqueue(nqe)

21: return path

Function discoverFragments computes the feasible fragments consisting of fea-
sible edges in the space-time graph: available in Gt and that satisfy the constraints
on vehicle dynamics and intersection lanes (line 12). Line 16 checks if the destination
vertex was reached. If so, it computes path from the chain of queue entries, going back-
wards in time towards the root queue entry. In case of failure to find a path, the function
returns the empty list []. The call to discoverFragments(Gt, req, explored, qe) ex-
plores the current space-time vertex from (qe.k1, qe.fragment.last) and returns new
QueueEntry objects for the shortest feasible fragments with duration between 1 and

10 C. Mutlu et al.

maximum q ticks. Its algorithm runs a Breadth-First Search starting from space-time
vertex (qe.k1, qe.fragment.last) in Gt with a search radius limited to q ticks.

Each shortest feasible fragment [u, ..., v] returned by function discoverFragments,
with u at k0 and v and k1 has these properties:

- it has no cycles if it is longer than 2 vertices;
- it forms no cycles going back on the queue entry chain history;
- has only space-time edges available in Gt and that comply with constraints;
- there is no other faster fragment with the same space endpoints u and v.
Function discoverFragments uses the space-time vertices in parameter explored

and updates it during search with each encountered space-time vertex.

Runtime Complexity Analysis
In the following, f is the maximum number of exits reachable from any entry vertex,
typically 2-4.The constrained effective average out-degree for exploration in Vu is b &
1. In the 4-lane 4-way example from Fig. 1, b = 1.0833 and f = 1. Search in the
space-time graph search will now branch only on time edges.

Other parameters for runtime complexity include (with typical values): the total
number of requests to consider N : 101 − 103, the discrete time horizon for trajectory
computationK = Θ

(
Hδ−1

t

)
: 101−103, the edge time multiplier p: 4 - 8, and the edge

average speed multiplier q: 1, 2.
The runtime of convertToTrajectory is O(K). The time complexity of the top-

level planRequests algorithm is O(NfK(p+ bq+1 + log2 fK)), with a heap priority
queue. For intersections parameters f , p, q have moderate values and can be considered
constant. In that case, the runtime is O(NfK log2 fK) and does not seem to depend
directly on the road map’s graph topology, but on the discretization granularity D.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Request rate [1/s]

0

1

2

3

4

5

Ru
nt

im
e

av
g

[s
]

Runtime avg
Tmax = 40
Tmax = 60
Tmax = 120
Tmax = 600

(a) Algorithm runtime.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Request rate [1/s]

0

50

100

150

200

250

300

De
la

y
av

g
[s

]

Delay avg
Tmax = 40
Tmax = 60
Tmax = 120
Tmax = 600

(b) Average trajectory delay.

Fig. 4: Algorithm runtime and average trajectory delay.

5 Performance Evaluation
We evaluate the performance of the Fastest Trajectory Planner for the 4-lane, 4-way
intersection in Fig. 1b. |Vu| = 36, |Eu| = 56 edges, with average out-degree 1.55.
Legal lanes restrict the effective edge out-degree during search to b = 1.0833. The

Space-Time Graph Planner for CAV Intersections 11

space edge discretization length D = 10m and the time tick unit is δt = 1s. The speed
multiplier q = 2 and the edge time multiplier p = 4. The top acceleration/deceleration
is 2m/s2, consistent with a comfortable ride with enough braking ability.

Vehicle admission requests (random source/destination, no U-turns) are generated
from time 0 to tend = 600s with a rate that varies from 0.1/s (N = 60) to 2/s (N =
1200) in 0.05 s (δN = 30) increments. All charts have on the horizontal axis this inde-
pendent variable. The maximum allowed trajectory delay Tmax ∈ {40, 60, 120, 600}s.

Saturation starts when the request rate approaches 1/s, N = 600 requests. When
resource availability drops, vehicles experience higher waiting time, and metrics start
deteriorating. This congestion behavior, with an inflection point, is common in schedul-
ing with resource sharing. After congestion starts, requests will be rejected, bringing
relief for resource contention. Most relief is seen for scenarios with Tmax < 600

The average runtime is shown in Fig. 4a. It is proportional to the trajectory duration
and it has theN log2N asymptotic trend. The worst running time was for a request rate
of 2/s (N = 1200), with 4.323 ms/request, and a 5.5s total.

Fig. 4b shows the average trajectory delay. It has a very slow growth under 1 re-
quest/s, followed by a sharper growth above 1/s, when congestion begins that tapers off,
converging to Tmax. Note the a lower Tmax value causes more requests to be dropped.
This is evident in the request admission ratio chart from Fig. 5a. The admission ratio
stays at 100% for all scenarios before congestion begins (at 1/s - 1.1/s). After that, the
admission ratio starts a linear drop, delayed by a higher value for Tmax.

Fig. 5b shows the evolution of the intersection exit flow rate vs. request rate. It
follows the identity function before the congestion threshold, for all Tmax values. It is
constant for Tmax = 600s after that since the admission ratio is 100% up to the end and
no requests are dropped. However, for Tmax < 600s the admission ratio is less than
100%, allowing only shorter trajectories. That causes a higher exit flow rate.

Finally, in the maximum traffic flow regime, we counted on average 14 vehicles
present at the same time in the intersection. This high resource utilization should lead
to superior traffic flow rates compared to alternatives.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Request rate [1/s]

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ad
m

 ra
tio

 a
vg

Adm ratio avg

Tmax = 40
Tmax = 60
Tmax = 120
Tmax = 600

(a) Request admission ratio.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Request rate [1/s]

0.2

0.4

0.6

0.8

1.0

1.2

Ex
itf
lo
w
av

g
[1
/s
]

Exitflow avg
Tmax = 40
Tmax = 60
Tmax = 120
Tmax = 600

(b) Average intersection exit flow rate (ve-
hicle exits/second).

Fig. 5: Request admission ratio and intersection exit flow rate.

12 C. Mutlu et al.

6 Conclusions

This paper proposes a novel algorithm for the Fastest Trajectory Planning problem for
intersections with CAVs. The algorithm uses a shortest path search in a space-time
discretized graph derived from the original road network graph. The algorithm enforces
vehicle constraints (e.g. acceleration/deceleration) and it has a low runtime compared
to that reported for state of art algorithms using Conflict Detection Graphs [4, 14]. The
algorithm scales well with the number of admission requests and with the traffic graph
size, the main limitation being the maximum path duration parameter Tmax.

Future research directions include improving the search algorithm with A* and local
search heuristics that reorder vehicle advance at each search step.

References
1. Choi, E.-H. Crash Factors in Intersection-Related Crashes: An On-Scene Perspective, HS-811

366. 2010.
2. Wang, J., Guo, X., and Yang, X.: Efficient and Safe Strategies for Intersection Management:

A Review Sensors 21, no. 9: 3096 (2021)
3. Kiela, K. et. al : Review of V2X-IoT Standards and Frameworks for ITS Applications, Applied

Sciences 10, no. 12: 4314 (2020).
4. Chen, C., Xu, Q., Cai, M., Wang, J., Wang, J., Li, K.: Conflict-free cooperation method for

connected and automated vehicles at unsignalized intersections: Graph-based modeling and
optimality analysis. IEEE Transactions on Intelligent Transport. Sys., 23(11), 21897 (2022)

5. He, X., Liu, X., Liu, HX.: Optimal vehicle speed trajectory on a signalized arterial with con-
sideration of queue, Transp. Res. C, Emerg. Technol., vol. 61, pp. 106120, (2015)

6. Zhang, Y., Malikopoulos, A., Cassandras, C. G.: Decentralized optimal control for connected
automated vehicles at intersections including left and right turns, in Proc. IEEE 56th Annu.
Conf. Decis. Control (CDC), pp. 44284433, (2017).

7. Xu, B., Ban, X. J., Bian, Y., Wang, J., Li, K.: V2I based cooperation between traffic signal and
approaching automated vehicles, in Proc. IEEE Intell. Vehicles Symp. (IV), (2017)

8. Xu, Xi, Zhang, Y., Li, L., Li, W.: Cooperative driving at unsignalized intersections using tree
search, IEEE Trans. Intell. Transp. Syst., vol. 21, no. 11, pp. 45634571, (2019).

9. B. Xu et al., Distributed conflict-free cooperation for multiple connected vehicles at unsignal-
ized intersections, Transp. Res. C, Emerg. Technol., vol. 93, pp. 322334, Aug. 2018.

10. Steinberg, A., Cardei, M., Cardei, I.: UAS Path Planning using a Space-Time Graph, IEEE
SysCon, (2020).

11. Papa, R., Cardei, I., Cardei, M.: Energy-constrained drone delivery scheduling. In Combina-
torial Optimization and Applications: 14th International Conference, COCOA 2020, Dallas,
TX, USA, December 1113, 2020, Proceedings 14 (pp. 125-139). Springer (2020)

12. Steinberg, A., Cardei, M. Cardei, I.: UAS Batch Path Planning With a Space-Time
Graph, in IEEE Open Journal of Intelligent Transportation Systems, vol. 2, pp. 60-72, doi:
10.1109/OJITS.2021.3070415 (2021)

13. Papa, R., Cardei, I., Cardei, M.: Generalized Path Planning for UTM Systems With a Space-
Time Graph, in IEEE Open Journal of Intelligent Transportation Systems, vol. 3, pp. 351-368,
doi: 10.1109/OJITS.2022.3171502 (2022)

14. Chen, C. et al.: A Graph-based Conflict-free Cooperation Method for Intelligent Electric
Vehicles at Unsignalized Intersections, IEEE Int. Intelligent Transportation Sys. Conf. (2021).

15. Deng, Z., Shi, Y., Han, Q., Lu, L., Shen, W.: A Conflict Duration Graph-Based Coordina-
tion Method for Connected and Automated Vehicles at Signal-Free Intersections, Appl. Sci.
(2020).

