IEEE ISORC 2000

Hierarchical Feedback Adaptation for
Real Time Sensor-Based Distributed Applications

Mihaela Cardei, lonut Cardei Rakesh Jha, Allalaghatta Pavan
Honeywell Technology Center
3660 Technology Drive, Minneapolis, MN 55418, USA
{mihaela, ionut}@cs.umn.edu, {jha, pavan}@htc.honeywell.com

Abstract

This paper presents an innovative hierarchical feedback
adaptation method that efficiently controls the dynamic
QoS behavior of real-time distributed data-flow
applications, such as sensor-based data streams or
mission-critical command and control applications. We
applied this method in the context of the Real Time
Adaptive Resource Management' system, a middleware
architecture for resource management with support for
integrated services, developed at the Honeywell
Technology Center. We present the analytical model for
feedback adaptation for periodic distributed data-flow
applications and we describe experimental results for an
Automatic Target Recognition pipeline application and
the impact of hierarchical feedback adaptation on the
application behavior and its QoS parameters.

1. Introduction

In recent years, there have been several efforts to build
adaptive resource management systems for heterogeneous
resources with real-time constraints [3,4,5,6,9,10]. This
paper presents developments of the Real Time Adaptive
Resource Management (RTARM) system [1,3], designed
at the Honeywell Technology Center.

The RTARM system defines a hierarchical resource
management architecture that provides the following
basic services [1,3]: (1) scalable end-to-end criticality-
based Quality of Service (QoS) contract negotiation that
allows distributed applications to share common resources
while maximizing their utilization and execution quality;
(2) end-to-end QoS adaptation that dynamically adjust
application resource utilization according to their
availability while optimizing application QoS; (3)
integrated services for CPU and network resources with
end-to-end QoS guarantees and (4) real-time application
QoS monitoring for integrated services. An innovative
feature of RTARM is the hierarchical resource manage-
ment architecture that unifies heterogeneous resources

! Funded by DARPA under NRaD Contract number N66001-97-C-8524.

and their management functions into a uniform abstract
resource model. In this paper, we refer to services and
resources interchangeably. The central piece of the
architecture is the Service Manager, a recursive structural
component. This encapsulates a set of services and their
management functions. Because all service managers
export the same common interface, it becomes easy to
build layered hierarchies recursively, in which
heterogeneous services are integrated bottom-up. This
also helps rapid object-oriented prototyping and
development.

Many mission—critical distributed command and
control applications, such as Automatic Target
Recognition (ATR) [6], exhibit a degree of flexibility:
they tolerate a range of QoS and resource usage above a
minimum limit. Their performance depends on the
allocated resources, usually specified by a contract, and
they are ready to trade off some application service
quality to save the critical services. For these applications,
it is important to have a mechanism that regulates their
dynamic behavior and protects them from contract
violations.

The main contribution of this paper is a new
hierarchical QoS-based real-time feedback adaptation
method for periodic distributed data-flow applications
with parallel-pipeline structure. We have developed an
analytical model that enables control of the end-to-end
QoS behavior for the entire distributed application by
adjusting the input rate in the pipeline. This model can be
generally applied to any type of periodic application with
data-flow pipeline structure and a compatible QoS
representation, such as multimedia streams and distributed
command and control applications. We applied this model
of feedback adaptation to our RTARM integrated service
provider and experimented with a distributed ATR
application.

Other adaptive real-time resource management systems
are GRMS [4,5], ARA [10,11] and QualMan [9]. GRMS
has a hierarchical structure that reflects the application
data flow and does not offer feedback adaptation. The
ARA framework [10] provides feedback adaptation for
applications having a discrete set of acceptable

IEEE ISORC 2000

configurations with specific resource needs and ac-
complishes feedback adaptation by resource reallocation.
[8] proposes a feedback adaptation method that adjusts
the rate of data sent from a server to clients based on
observation and prediction using a control-theoretical
model. The system described in [7] uses digital control
theory to determine the states of the adaptive system,
which may activate control algorithms for adaptation.
Another adaptive resource management system is
QualMan [9], designed for distributed multimedia
applications.

Our work differs from these approaches at the resource
management architecture level, by supporting other
application paradigms or by the way it accomplishes
feedback adaptation.

The rest of this paper is organized as follows. In
Section 2 we briefly describe the hierarchical architecture
of the RTARM system. Section 3 presents the feedback
adaptation model and analysis for the periodic parallel-
pipeline applications. Section 4 continues with the
description of the hierarchical feedback adaptation in
RTARM, the ATR experiment, performance metrics and
evaluation, and the impact of feedback adaptation on the
ATR QoS. Section 5 concludes the paper and presents
directions for future work.

2. The Real Time Adaptive Resource
Management architecture

This section presents briefly the basics of the RTARM
system. For more detailed information please refer to [1].

We have implemented an RTARM prototype that
supports periodic independent tasks and periodic parallel
pipeline applications with real-time requirements. The
RTARM system is built as a middleware layer above the
operating system and network resources. RTARM allows
service initiation requests (admission requests) from
clients and views applications as service consumers.
RTARM supports a multidimensional representation of
QoS, defined by a set of parameters (e.g. rate, latency,
jitter) specified as a range [Q0Sin, Q0Spax]. The RTARM
system strives to allocate the best available services to
applications with priority for ones that are more critical.

2.1. Hierarchical adaptive service management
for integrated services

The basic blocks of the RTARM recursive hierarchy,
the Service Manager (SM), provide management
functions for resources, such as CPU or network
resources, and directly control resource utilization by
application components. Higher-level service composition
is based on lower-level services, giving rise to a service
hierarchy. One use of a service hierarchy is to provide
abstract or integrated resources for clients.

Figure 1 depicts a simple runtime configuration with
two different lower-level SMs (LSM): a CPU and a Net-
work SM at the bottom of the hierarchy, and a higher-
level SM (HSM) that integrates CPU and network
services. Two applications access services from the
system.

Integrated
Service
Manager

Network

CPU SM @ @ SM

Figure 1. Sample RTARM hierarchy

2.2. Adaptation

RTARM recognizes three situations when application
QoS may be changed after admission [1,3]: (1a) QoS
reduction of lower criticality applications when a new
application is admitted; (1b) QoS expansion when
applications depart and release resources, and (2)
feedback adaptation. While (1a) and (1b) imply contract
changes and involve other applications, feedback
adaptation does not change the contract, but only varies
the current operational point of the application within the
contracted QoS region. Feedback adaptation is triggered
only by significant changes in application behavior, such
as resource overload that results in a lowering of QoS
operating point, resource underutilization that prompts
RTARM to increase the application QoS operating point
within the contracted QoS region and QoS contract
violations that require corrective actions. Sections 3 and 4
detail feedback adaptation for pipeline applications.

2.3. Service Manager instances

We currently have implemented three service
managers: CPU, Network and a higher-level Pipeline SM.
All Service Managers have a component-based internal
architecture with plug-and-play features [1].

2.3.1. CPU Service Manager. The CPU SM provides
periodic applications access to a processor resource. Each
computing node has a CPU SM, allowing concurrent
applications to share a CPU. The application QoS is
bidimensional: application execution rate (R) and iteration
execution time (W). The specific CPU scheduling policy
is isolated within the Scheduler component and the
Monitor component tracks the CPU utilization. CPU

IEEE ISORC 2000

feedback adaptation is presented in more detail in section
4.

2.3.2. Network Service Manager. We integrated the
NetEx real-time network service manager [2,12] from
Texas A&M University into the RTARM system by
building a wrapper around it. NetEx runs as a middleware
and provides connection-oriented real-time
communication with guaranteed delay and bandwidth
over commercial network infrastructures, such as ATM
and switched Ethernet.

2.3.3. Pipeline Service Manager. The Pipeline Service
Manager (PSM) is a higher-level SM that aggregates
services from lower-level SMs (CPU, Network, other
HSMs) into a representation suited for pipeline
applications. A PSM client can be a user or another HSM.

Our PSM supports periodic independent tasks and
periodic parallel pipeline applications, consisting of
communicating stages in an arbitrary configuration, with
a single source and a single sink node.

For periodic pipeline applications, the QoS consists of
end-to-end message latency and rate for the final stage.
The admission contract also contains execution time for
each stage as well as the message size for each
connection. It is the job of the pipeline Translator
component, to decompose the integrated-service pipeline
request into CPU and network admission requests. The
admission protocol is described extensively in [1].

The PSM also provides hierarchical feedback
adaptation that continuously monitors application QoS
parameters and controls their resource utilization, taking
corrective actions if necessary (refer to section 4).

3. Feedback adaptation model and analysis
for pipeline applications

This section presents a model for periodic pipeline
applications and introduces an efficient and stable method
for feedback adaptation. We consider the end-to-end
latency as the most critical QoS parameter. The main
result is that by adjusting only the period for the input
sensor, the system controls the end-to-end latency of a
pipeline application. We further prove the convergence
and stability of this algorithm. First, we list some
assumptions.

A pipeline application consists of stage tasks that
process data sequentially. We assume a sensor enters
periodically data frames in the pipeline. Each frame is
processed by each stage in turn and then sent to the next
stage. A clock-based pipeline assumes that each stage
operation is synchronous and periodic. If a frame is
available for processing at the beginning of a period, the
stage will process and send it to the next stage(s) in the
data flow. If no frame is available at the beginning of a

period, the stage will block until the beginning of the next
period, when it will repeat the same cycle.

Our model ignores the network communication
overhead between two stages. This assumption would not
affect the feedback adaptation for the Automatic Target
Recognition experiment because of the large disparity
between the stage period (1-5s) and communication
latency (0.05s).

The analysis assumes that the execution time and
period of each stage are constant. These parameters may
vary as the pipeline application evolves in time, and our
analysis relates with a particular instance of time. It says
that if starting with that moment the sensor input period is
adjusted over some value, then, with the currently set
parameters, the pipeline latency will exhibit deterministic
behavior. In this way, the analysis may be applied at any
time instance for the corresponding parameters.

Section 3.1 presents our main findings and an example
for the clock-based simple pipeline. Section 3.2
generalizes for clock-based pipeline with composite
stages.

We have also analyzed the event-driven pipeline
model, which may be useful for other types of
applications. This model assumes aperiodic stages. They
may start execution of a frame whenever it becomes
available. The results obtained for this model are similar
to those of the clock-based model: the sensor input period
is the only factor the pipeline application needs to adjust

T stage0 stagel stageN

sensor —p» ><) ><)_ —=>()

Figure 2. Linear, simple pipeline

to control the pipeline end-to-end latency. Due to the
space limitation, we do not describe this model here.

3.1. Clock-based simple pipeline

Consider a pipeline with N+1 stages from Figure 2 and
the next notations. N+1 is total number of stages, T is the
period at which the sensor pushes frames into the
pipeline. It may change over time, but we assume it stays
constant starting with the frame with which we develop
the analysis. C(i) is the execution (processing) time on
stage i. T(i) is the period of stage i, T(i) = C(i). W(i, n) is
the waiting time for frame n at stage i. It represents the
time the frame needs to wait before being processed by
the stage i. It is greater than 0 if the stage i did not finish
processing the previous frame. W(i, n) = 0 and W(i, n) =
max [tou(i, n-1) - to,(i-1, n), 0], where t,(i,n) is the time
at which stage i produces output for frame n.

S(i, n) is the synchronization time. It is the time the
frame n waits to synchronize with the beginning of the
next period, for stage i. Always 0 < S(i, n) < T(i) . {(i, n) is

IEEE ISORC 2000

the latency for frame n at stage i. (i, n) = C(i) + W(i, n) +
S(@i, n) . e(i, n) is the end-to-end latency up to and
including the stage i, for frame n. e(i, n) = Zj— ; /(j, n)

L(n) is the end-to-end latency for the whole pipeline,
for frame n. L(n) = e(N, n) = Zio n {(j, n) = Zio. n C() +
Zio.n W(,n) +Zion S, n)

Definition 1:
The pipeline is in the state Sy , where 0 < k < N, for a
frame X, if for all i = 0..k the relation (1) is true.

e(i, x) £ 2j=.: (C(G) + T()) (1

Observation: If a pipeline is in the state Sy, then it is also
in states Sy.1, Sk.2, Sk, ---» So.

Definition 2:
We define the stable region for the end-to-end latency as
the interval [2o x C(j), Z-on (CGH+TG)) -

We say the pipeline is in the stable region if its end-to-end
latency is within the above interval.

If a pipeline is in the state Sy for frame x then it is in
the stable region, because:

Zion CO) LX) £ Zjon(C(G) +T())

The left limit for L(x) is evident, because
L(x) = Zizo nC() + Zi=o.n W(, X) + Zizo.x S(j, X) and
szO..N W(], X) >0 y and ZjZO..N S(], X) > 0.

From the application point of view it is important the
pipeline latency be limited by an upper bound, because
this guarantees it does not increase infinitely over time.
The stable region of a pipeline corresponds to optimal
pipeline behavior, in the sense that the end-to-end frame
latency is bounded. We present next two theorems: the
first refers to stability and the second handles the
condition for convergence.

But before that, Lemma 1 proves a relation useful for
the theorems’ proofs.

Lemma 1:

If W(i, n) > 0 then the following relation is true:
e(in)=e(i,n-l)+T0G) — T 2)

Proof:

W@, n)> 00 W(@, n) = te,(i, n-1) - te,(i-1, n)

tout(i, n-1) >ty (i-1, n) O S(i, n) = T() — C(i)

I(i, n) = C(i) + W(i, n) + S(i, n) =

=C(i) + W(i, n) + T(i) — C(i) = W(, n) + T()

W(l, 1’1) = tout(ia n'l) - tsensor(n'l) - tout(i'la n) + tsensor(n'l)
where ton(X) is the time instance when the sensor sends
frame x.

W(lr Il) = e(ia n'l) - (tout(i'ls Il) - tsensor(n'l) -T) -T= e(i,
n-1)—e(i-1,n)-T

W(@, n) =e(i, n-1) - (e(i-1, n) + [(i, n)) + /i, n) - T O
W(, n) =e(,n-1)—e(i,n) +/(i,n)—T.

Implies e(i, n) = e(i, n-1) + T(i) — T.

O

Theorem 1 refers to the case when pipeline is in the
stable region. It proves that it is enough to maintain the
sensor input period greater than the period of each stage
in order to keep the pipeline in the stable region.

Theorem 1 (stability):
If the pipeline is in the stable region for frame n-1 and the
sensor input period T = max;_g_y T(i), then the pipeline
stays in the stable region for frame n.
Proof:
We show more generally, that if the pipeline is in the state
Sy for a frame n-1, 0 < k < N, and the input period
T = max;— T(i), then the pipeline is in the state S, for
frame n.

We show by induction that e(i, n) < Zi— i (C() + T())
Oi=0.k
Stepl: for i=0. We show that e(0, n) < C(0) + T(0)).
We have one of the cases:
e W(0,n)=00 S(0,n) <TO) O W(0, n) + S0, n) +
C(0)<T(0)+C(0) O e(0,n)<T(0)+ C(0)
e W(, n) >0 0O e@O,n) = e, n-1) + T(0) - T (use
relation 2). T =2 max;_o ¢ T(@) O T(0)-T<00 e(0,n)<
¢(0, n-1). The pipeline is in state Sy for frame n-1 [J
e(0,n-1)<T(0)+C(0) O e(0,n)<T(0)+C(0)

Step2: suppose e(i, n) £ Yo i TG) + C()), fori <k. We
show that e(i+1,n) < Y i-_ini(TG) + C())
We have one of the cases:
o W(itl,n)=0.S(>i+1,n) < T@+1) O W(+1, n)+S(i+1,
n) + C(i+1) < T(i+1) + C(i+1)
We know that e(i, n) < i TG) + C()). Implies
e(i+1,0) € Y10 i TG) + C(1)).
o W(i+l,n) > 0 O e(i+1, n) = e(i+1, n-1) + T(i+1) — T,
(use relation 2). T = maxj— x T(G) O T(@+1) - T<0,
implies e(i+1, n) < e(i+1, n-1)
The pipeline is in state Sy for frame n-1 O
e(i+1, 1) < Y0 (TG + CG))
Implies that e(i+1, n) < Y i=0_i1(TG) + C()).
O

Theorem 2 refers to the case when the pipeline is not in
the stable region. It provides a solution to the case when
the pipeline latency is too high, and it proves that it is
enough to adjust the sensor input period in order to bring
the pipeline end-to-end latency into the stable region,
when the latency is superior limited.

Theorem 2 (convergence):

If the pipeline is not in the stable region for frame n-1 and
starting with the frame n the sensor input period
T > max; g n T(i), then the pipeline converges into the
stable region after a finite number of frames.

IEEE ISORC 2000

Proof:

Let us note the pipeline current state I, where I # Sy.
We show by induction that starting with frame n the
pipeline behaves like:

I- So—vsl—>SZ—> ...—»SN
m, m; m, my

where:

m; is the number of frames needed by the pipeline in
state S;; to converge in the state S;, 0<i< N, m;=0,
O0<is<N
Stepl: show that 1 S, after a finite number of frames
m, Suppose I# S, (otherwise we are done, with my = 0).
We show that for each new arriving frame x, e(0,x)
decreases compared with previous frame value, until it
becomes less than T(0) + C(0), at which time the pipeline
is in state S,. We have one of the cases:

* W(O0,x)=0 O e(0, x) = W(0, x) + S0, x) + C(0) <
T(0) + C(0) O starting with this frame x the pipeline is in
state S,.

e W(O,x)>00 e, x)=-e0, x-1) + TO) - T (use
relation 2). T > max;o NT(i) O T(0) — T <0, implies that
e(0, x) <e(0, x-1) O end-to-end latency up to the stage 0
decreases between frames x-1 and x.

The same process happens again over successive
frames, until the pipeline gets in the state S;. The number
of frames after which the pipeline gets in state Sy is :

() - (T +COopd
T -T(0) d

where e(0) is the end to end latency up to stage 0, when
pipeline is in state I.
Note: the greater the input period T, the smaller m,, so the
earlier the pipeline converges to stage S,
Step2: Suppose the pipeline is in the state S;. We show
that after a finite number of frames, m;.; the pipeline
enters state S;;. Suppose the pipeline is not in
S;.1(otherwise we are done with m;,; = 0)
O end to end latency up to the stage i+1 =
= e(i+1)> 3j0 11 T() + CG))

We show that for each new arriving frame x, e(i+1, x)
decreases compared with previous frame value, until it
becomes less than o i+1(T() + C(j)), in which moment
the pipeline is in state Sy, .

We have one of the cases:

e W(i+l, x) = 0 O e(i+l, x) = e(i, x) + W(+I, x) +
S(i+1, x) + C(i+1) < e(i, x) + T(i+1) + C@G+1)

We know that e(i, X) < Y- i(T(G) + C(G)) O e@it+l, x) <
Si0.14(TG) + CG))

O starting with this frame x the pipeline is in state S;;;.

e W(itl, x) >0 0 e(itl, x) = e(i+l, x-1) + T(i+1) - T
(use relation 2). T > maxj— x T(G) 0 T@GE+1)-T <0 O
e(itl, x) <e(i+1,x-1) O end to end delay up to the stage
i+1 decreases between frames x-1 and x. The same
behavior repeats over successive frames, until the pipeline

my, =

gets in the state S;.;. The number of frames after which
the pipeline gets in state S ., is:

D . i+l . . D
e+ =3 (T(H+C(NQ

m,, =0 =0 0
T T-T(+1) 0
0 0

0 0

where e(i+1) is the pipeline end-to-end latency up to the
stage i+1, at the instance the pipeline gets to state S;.
Note: the greater the input period T, the smaller m;.;, so
the earlier the pipeline converges in stage S;.;.

We have proved that by increasing the sensor input
period above the maximum period of all pipeline stages,
the end-to-end latency converges to the stable region. The
theoretical results presented before proved the stability of
our pipeline control method.

The next example illustrates how the pipeline end-to-
end latency converges in time to the stable region when
the input sensor period is set above the maximum period
of all stages. Consider the following instance of a 9 stage
pipeline in Figure 3:

waiting time

2 2 3 8 1 1
=>0O=>0>0>0>0>0>0>0>0
T(): 3 5 2 6 3 5 2 1 5
C(i): 2 4 1 4 2 3 2 4 4

Figure 3. Example of linear pipeline

where T(i), C(i), T and the latency are represented in
arbitrary time units. The end-to-end latency is 164, the
stable region is [26, 68], and max; sT(i) = 11. In
conformity with Theorem 2, if the sensor input period is
greater than 11, the end-to-end latency converges to the
stable region. Figure 4 shows the pipeline behavior in
time for T = 12, 13 and 14. We can observe that the
greater the sensor input period T is, the earlier the pipeline
enters the stable region. According to Theorem 1, once

180
160 1|
140
120
100 -
80 -
60 -
40 -
20 1
0,

TIREBERESR

© N~ O O

- - - - - v — -

Latency

-~
-

N N e

Frame number

= Tinput=13

=—Tinput=12])
— inf stable region

Tinput=14)
— sup stable reaion

Figure 4. Latency variation depending on Tjnp,t

IEEE ISORC 2000

the pipeline enters the stable region, it remains there as
longas T=11.

3.2. Generalization for clock-based pipeline with
composite stages

Some distributed data-flow applications have a
complex structure with branches and parallel substages.
One example is the ATR application depicted in Figure 5.
We model these architectures as a linear pipeline with
simple and composite stages. A simple stage represents a
single, indivisible task that processes a frame. A
composite stage i consists of substages arranged in
parallel branches that process parts of a frame. A branch
works like the simple linear pipeline presented in Section
3.1. When the last substage of each branch finishes the
processing, the frame is reassembled at stage i+1.

We proved that for pipelines with composite stages
the results obtained previously for clock-based simple
pipeline are valid: setting the input period greater than the
maximum period of all stages/substages guarantees the
pipeline convergence to the stable region after a finite
number of frames. Once it enters the stable region, the
pipeline remains there as long as the sensor input period is
greater than the maximum period of all stages/substages.
Due to space limitation we do not present here the formal
proofs.

4. RTARM hierarchical feedback adaptation
for pipeline applications

The top-most HSM that receives the admission request
directly from the client remains in control of the
application QoS and its dynamics for its entire lifetime.
That HSM is responsible for maintaining the distributed
application’s QoS within the contracted region and to
improve it when possible using feedback adaptation. The
resource management system must react quickly and
adjust online the application parameters in case of
allocated resource abuse or contract violation.

The RTARM hierarchy consists of a pipeline HSM, a
network SM and several CPU SMs. The network SM does
not provide feedback adaptation. The reserved network
resources must cover the entire range of application rate.
According to our analysis, it is possible to control the end-
to-end frame latency for the entire pipeline just by
controlling the rate of the input sensor or first stage. This
allows the CPU SMs to conduct local feedback adaptation
for each individual pipeline stage in order to provide
locally the best QoS within the contracted range. Thus,
feedback adaptation for the entire pipeline and CPU
stages is conducted independently.

4.1. CPU Service Manager feedback adaptation

CPU SMs run pipeline stages just like any regular
periodic independent task. In fact CPU SMs have no idea
these tasks are part of a higher level entity, and they
perform all RTARM functions in the same way. The CPU
SM QoS consists of rate and iteration workload
(execution time), both specified as intervals [min, max].
The CPU SM can directly control the application rate, but
cannot touch the application workload. The CPU SM uses
the product CPU utilization = Rate X Workload to asses
schedulability. Applications send their actual QoS as
events to CPU SM monitor at the end of each periodic
iteration. The application is allocated a constant fraction L
of the total processor time. At any time the current
operational point (COP) may vary so that R x W < L. The
CPU SM adjusts the current operational point:

- increase rate when workload decreases

- decrease rate on overload

4.2. Pipeline feedback adaptation

The pipeline QoS parameter we consider critical and
want to control is the end-to-end latency. As the pipeline
evolves in time, rates of intermediate stages may change
as a result of CPU SM feedback adaptation. In normal
circumstances the input sensor period is maintained at a
value greater than the period of any stage/substage of the
parallel pipeline application, but it can get lower because
of independent CPU feedback adaptation. When
accumulation of queues between stages increases the end-
to-end latency beyond a maximum threshold, the PSM
sets the input sensor period at the maximum value from
the pipeline contract. A finite state machine in the PSM
maintains this maximal period for a fixed time, allowing
the queues to empty. Then, the PSM sets again the input
sensor rate to the maximal period of all stages. In this
way, we know that the end-to-end latency decreases and
after a finite number of frames the pipeline enters the
stable region. This simple implementation allows the
latency to oscillate within the stable region. A more
sophisticated algorithm, topic for future research, would
use target history and prediction to smooth the latency.

Our method is simple and efficient, as the only
parameter to be adjusted is the sensor input period, while
the pipeline stages are controlled only by the
corresponding CPU SM. This mechanism avoids costly
communication and coordination between the HSM and
all the CPU SMs. The information required for pipeline
feedback adaptation is minimal: the end-to-end latency for
the current frame and the maximal period of all stages.

Another option for pipeline feedback adaptation would
have been to let the PSM directly adjust online the rate for
each stage. In this case the PSM would have to keep track
of the current workload and rate, and maybe queue

IEEE ISORC 2000

lengths for all stages, implying extra communication,
processing overhead and lower resource utilization for
CPU service managers.

4.3. The Automatic Target Recognition
experiment

To test the feedback adaptation mechanism we
designed a simple experiment with a true mission-critical
application. The ATR pipeline, depicted in Figure 5,
processes incoming video frames and displays detected
targets. The sensor (stage 0) generates frames that pass
through a sequence of filters and processing elements up
to stage 6 that displays the original image and the targets.
The 8-bit, 360x360 pixel, monochrome frames contain a
variable number of targets (from 3 to 50). Stages 4, 5 and
6 expose a variable workload, proportional to the number
of detected targets. Without pipeline feedback adaptation
this would generate accumulations of frames in queues
with latency increase.

— — time

End-to-End Latency " Frame Arrival Period

Figure 5. ATR pipeline application and QoS

4.4. Performance metrics and algorithm
evaluation

We used three 450MHz NT Dell Workstation 400
machines, connected via a Fore ATM switch with OC-3¢
(155Mbps) links. Each machine runs a CPU SM. Both the
network SM and the pipeline SM run on one of those
three machines, and we consider their own CPU resource
consumption negligible. Inter-SM CORBA signaling uses
a secondary Fast Ethernet network, so that the ATM lines
remain 100% available for the pipeline. For precise time
measurements we used the NT performance counter.

The acceptable output frame period from the ATR
pipeline contract is in [1,5]s, and the frame latency is
[0.7,13]s. The seven ATR stages run at a variable work-
load within [0.02,1.5]s and within the same period
interval [1,5] s.

We first present timing measurements for feedback
adaptation at the CPU SM and PSM SM level. We
measured the processing overhead of the feedback
adaptation code and the time it takes the SM to react from

the moment it receives the current QoS from the
application until its adaptation command is enforced.

For CPU feedback adaptation, detection and enforcing
the QoS adaptation takes around 4.4ms (Table 1), 3.9ms
of the time being spent in a set gos() operation, a two-
way normal CORBA call. The pipeline adaptation en-
forcement includes a set _qos() call to the CPU SM that
controls the sensor (or first stage) that calls directly the
application with a set gos() call. This explains why
enacting pipeline QoS adaptation takes almost double the
time than that for CPU SM QoS.

The actual rate and workload variation of stage 4 is
shown in Figure 6. The stage has a variable workload and
this causes the CPU SM to change the rate. Points A
indicate overload that triggers rate decrease and points B

Table 1. Feedback adaptation performance
results for CPU SM and PSM

Detection and Decision Total
deczszo_n Enactment Time
processing
CPU SM 0.508 ms 3914 ms 4422 ms
Pipeline SM 0.859 ms 6.816 ms 7.675 ms
1.6 4

| L
N

0.2 T == W
O T T T T T T 1
140 150 160 170 180 190 200

Experiment time (seconds)

—e—Workload -®—Rate CPU Load=Rate x Workload

Figure 6. CPU SM feedback adaptation for a
task with variable workload

indicate chronic underutilization that trigger rate increase.

The pipeline feedback adaptation mechanism makes
sure the end-to-end latency and rate stay in the contracted
range for the entire ATR pipeline (Figure 7). In order to
practically demonstrate its effectiveness, we disabled the
pipeline feedback adaptation after some time while
keeping the sensor input period at a sustained low value
of 1.48s (0.67Hz). Accumulation of frames in stage
queues generated an increasing latency. A dotted line
between points A and B marks the time when feedback
adaptation was disabled. When the latency reached 30s,
exceeding the maximal contracted value, we re-enabled

IEEE ISORC 2000

pipeline feedback adaptation. The PSM sensor increased
the sensor input period up at 5s (B). After a brief spike
caused by the inertia of more than 23 frames already in
transit through the pipeline, the latency went rapidly down
(B = C), below the maximal threshold.

401 Enable pipeline B
35— feedback
30 adaptation - ‘N/[
. Disable pipeline __input
o 25 feadback period
o 20— adaptation at = — latency
g 15— t=460|5 \ C sup limit
OV AN
5 A
NN N
0350 450 550 650 750 850

Elapsed Time (seconds)

Figure 7. Latency variation for ATR with and
without pipeline feedback adaptation

The preliminary ATR experiment shows that our
hierarchical feedback adaptation algorithm proves to be
effective and efficient. Detection, decision and
enforcement at the pipeline level take less than 8ms and
involve only the CPU SMs for the sensor stage and the
last stage that actually reports the latency and rate. Still,
further research would be necessary to fully assess the
impact of the SM hierarchy on feedback adaptation
performance.

5. Conclusion

This paper presented an innovative feedback
adaptation mechanism for distributed data-flow
applications with real-time requirements in the context of
the RTARM project. We defined an analytical model and
we proved its correctness and stability. We demonstrated
its effectiveness by running an Automatic Target
Recognition parallel pipeline application on a network of
workstations managed by the RTARM system. Our
hierarchical pipeline control method uses minimal
information about the current state of the application and
requires only one action to correct the end-to-end frame
latency, while allowing feedback adaptation at the CPU
level to function independently.

A direction for future work is to add prediction
features to the current feedback adaptation method. Right
now, it only takes corrective actions when the QoS falls
below a threshold. Preventive actions would further
decrease the overall pipeline reaction time. We also plan
to study feedback adaptation for parallel pipeline
applications where several pipeline HSMs have exclusive

control over parts (sub-pipelines) of the entire distributed
application.

References

[1] Cardei, I., Jha, R., Cardei, M., Pavan, A., “Hierarchical
Architecture for Real-Time Adaptive Resource Management”, to
appear in Proceedings of the IFIP/ACM Middleware 2000
conference

[2] Devalla, B., Sahoo, A., Guan, Y., Li,C., Bettati, R., Zhao,
W., “Adaptive Connection Admission Control for Mission
Critical Real-Time Communication Networks”, to appear in
International Journal of Parallel and Distributed Systems and
Networks, Special Issue On Network Architectures for End-to-
end Quality-of-Service Support

[3] Huang, J., Jha, R., Heimerdinger, W., Muhammad, M.,
Lauzac, S., Kannikeswaran, B., Schwan, K., Zhao, W., Bettati,
R., “RT-ARM: A Real-Time Adaptive Resource Management
System for Distributed Mission-Critical ~Applications”,
Proceedings of the IEEE Workshop on Middleware for
Distributed Real-Time Systems and Services, December 1997
[4] Huang, J., Wang, Y., Cao, F., “On Developing Distributed
Multimedia Services for QoS and Criticality Based Resource
Negotiation and Adaptation”, Journal of Real-Time Systems,
May 1999

[5] Huang, J., Wang, Y., Vaidyanathan, N.R., Cao, F., “GRMS:
A Global Resource Management System for Distributed QoS
and Criticality Support®, Proceedings of the 4" IEEE
International Conference on Multimedia Computing and
Systems, June 1997

[6] Jha, R., Muhammad, M., Yalamanchili, S., Schwan, K.,
Rosu, D., deCastro, C., “Adaptive Resource Allocation for
Embedded Parallel Applications”, Proceedings of the 3™
International Conference on High Performance Computing,
December 1996

[7] Li, B., Nahrstedt, K., “A Control Theoretical Model for
Quality of Service Adaptations”, Proceedings of Sixth
International Workshop on Quality of Service, 1998

[8] Li, B., Xu, D., Nahrstedt, K., “Optimal State Predication for
Feedback-Based QoS Adaptation”, Proceedings of Seventh
IEEE International Workshop on Quality of Service, 1999

[9] Nahrstedt, K., Chu, H., Narayan., S., “QoS-aware Resource
Management for Distributed Multimedia Applications”, to
appear in Journal on High-Speed Networking, Special Issue on
Multimedia Networking

[10] Rosu, D., Schwan, K., Yalamanchili, S., “FARA — A
Framework for Adaptive Resource Allocation in Complex Real-
Time Systems”, Proceedings of the 4th IEEE Real-Time
Technology and Applications Symposium, June 1998

[11] Rosu, D., Schwan, K., Yalamanchili, S., Jha, R., “On
Adaptive Resource Allocation for Complex Real-Time
Applications”, Proceedings of the IEEE Real-Time
Systems Symposium, December 1997

[12] Sahoo, A., Li, C., Devalla, B., Zhao, W., “Design and
Implementation of NetEx: A Toolkit for Delay Guaranteed
Communications”, Proceedings of Milcom, December 1997

