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I. INTRODUCTION

The need for midrange, high throughput data networks in 
the  undersea  environment  is  evident  for  a  variety  of 
applications, including sensor networks and remote control and 
telemetry for unmanned underwater vehicles.  While research 
continues into undersea acoustic and radio frequency networks, 
results show that these suffer from low data rates (in the case 
of the former) or severe range limitations (in the case of the 
latter)  [1].  Free  space  optical  technology  provides  a  good 
balance  between  data  throughput  and  potential  distance 
between  communicating  nodes;  given  the  cost  of  deploying 
and testing these types of networks, however, it is necessary to 
develop  accurate  models  that  allow  us  to  simulate  digital 
communication between nodes, facilitating the development of 
optimal protocols at  low cost.  One important component of 
such a system is an accurate model for the noise in the detector 
output signal.  This paper evaluates one such model [2] for its 
suitability in predicting shot noise (the random variation in the 
detector  output  signal  that  is  caused  by  the  random  arrival 
times  of  the  photons  at  the  detector  photocathode)  and  the 
noise introduced by a Photomultiplier Tube (PMT) detector.  

We analyze the noise in a new high-efficiency PMT, and 
compare the experimental signal-to-noise ratio (SNR) with the 
SNR obtained using two different theoretical models.  The first 
model, referred to in this paper as the standard model, arrives 
at an average SNR value for a particular input signal by using 
Poisson counting statistics,  which is generally accepted as a 
predictor for shot-noise-limited devices such as PMTs [3][4]. 
The alternative approach models the detector output signal as a 
compound Poisson stochastic process, which adds noise to a 
clean signal on a per-sample basis.  This is much more useful 
than an average predicted SNR, as it allows us to simulate the 
actual  bit  error  rate  (BER),  based on received  samples,  and 
obtain  a  simulation  framework  for  predicting  BER  as  a 
function  of  SNR  (and  thus  to  predict  BERs  for  various 
scenarios  involving  different  geometric  and  environmental 
parameters).  

Our  setup  uses  a  continuous  wave  laser  operating  at  a 
wavelength of λ=532 nm. The photon flux entering the PMT is 
varied using neutral density filters, while the gain voltage is 
varied to obtain several sets of data captured by an analog-to-
digital  converter  (ADC).   This  data  was  then  analyzed  to 

produce  experimental  SNR measurements.   For  each  of  the 
experimental  SNR  measurements,  we  then  calculated  the 
predicted  SNR  using  both  the  standard  model  and  the 
stochastic  process  model,  and  compare  both  against  the 
experimental SNR measurements. 

We show that the stochastic process noise model is more 
accurate in predicting average SNR at low-power conditions 
than the accepted standard model for average SNR of a shot-
noise-limited PMT.  By validating the average SNR predictions 
of  the stochastic model vs the standard model,  we conclude 
that the stochastic model is appropriate for use in simulating 
the noise in a signal produced by a PMT.  This ultimately will  
allow us to build accurate physical layer simulations of free-
space optical undersea communication networks, which in turn 
will  allow  us  to  simulate  and  optimize  the  higher  layer 
protocols in the network stack.  

We continue this paper in Section II with an introduction to 
the  standard  average  SNR model  and  in  Section  III  with  a 
discussion of the novel compound stochastic noise model.  In 
Section IV we discuss the laboratory setup for the experimental 
validation and in Section V we discuss the numeric results.  We 
conclude this paper and discuss future directions for research 
in Section VI.

II. STANDARD TEXTBOOK NOISE MODEL

The standard model  for predicting the average SNR of a 
photon detector is defined as [4]:

SNR=
(G ηF q P /h f )2 RL

G2 2 q RLΔ f ( I D+ηF q P /h f )+4kTΔ f
(1)

Where  G is  the  applied detector  gain,  η is  the quantum 
efficiency of the photocathode,  F is the collection efficiency 
of the detector ( ηF is the overall detector efficiency), q is the 
elementary  charge,  P is  the  optical  power  incident  on  the 
photocathode,  h is Planck's constant,  f is the frequency of the 
light,  RL is  the  resistance  over  which  a  voltage  signal  is 
measured,  Δ f  is  the  detector  bandwidth,  ID is  the  dark 
current, k is the Boltzmann constant, and T is the temperature.

For so-called shot-noise-limited photon detectors,  such as 
PMTs, the shot noise is significantly larger than both the dark 
current and the thermal noise, so these other noise sources are 



ignored, and the SNR is typically defined in terms of the root-
mean-squared  (rms)  shot-noise  current  that  manifests  as  a 
result of a dc current flow, iavg,, as given in [3]:

σ i=√ 2q iavg Δ f (2)

and the SNR is given by:

SNR signal−shot−limit=
iavg

i noise , rms

=
iavg

√2q iavg Δ f
(3)

III. COMPOUND POISSON STOCHASTIC PROCESS MODEL

Shot noise is  the random variation in the detector  output 
signal that is caused by the random arrival times of the photons 
at  the  detector  photocathode.   As  such,  the  electrical  signal 
output  from  the  detector  can  be  regarded  as  a  continuous 
random function driven by a discrete Poisson counting process. 
Below we outline the derivation of  the mean,  variance,  and 
autocovariance  of  the  stochastic  shot  noise  process.   The 
derivation is similar to the presentations in van Etten [5] and 
Ross [6], and is fully documented in reference [2].  

The  photomultiplier  output X (t) is  modeled  as  a  non-
stationary compound Poisson process,

X (t ) = ∑
k=1

N (t )

G k h(t−S k ) (4)

where N ( t ) is  the  number  of  photons  striking  the 
photocathode  up  to  time t , S k is  the  arrival  time  of  the  kth 

photon,  Gk is  the  random  amplifier  gain,  and h is  the 
electrical  impulse  response  of  the  detector.   The  average 
photon arrival rate γ(t ) is time-dependent, and we define

υ(t ) = E [N (t )] = ∫0

t
γ(s)ds. (5)

where E [ ] denotes  the  expectation.  The  arrival  time 
distribution is (for n≥0 )

P {N (s+t )−N (s)=n }

= exp (−[υ(t+s)−υ(s)])
[υ(t+s)−υ(s)]n

n!
,

(6)

so  that  the  increments  are  independent.   Note  that 
P {N (t )=n} = exp (−υ( t )) (υ(t))n/n! .   The  arrival  times 

over  the  interval  s∈[0,t ]  are  distributed  according  to  the 
probability density function (see [7] and references therein)

f S k
(s) =

γ(s)
υ(t)

, (7)

which is independent of the number of arrivals N ( t) over the 
interval. 

The detector impulse response, h  for t≥0 , is assumed to 
be  deterministic  and  stationary  so  that  the  pulse  shape  is 
always the same.  The autocorrelation of the impulse response 
is denoted by

Ch(τ) = ∫
−∞

+∞

h (t−τ) h (t )d τ . (8)

We  consider  a  detector  with  random  fluctuations  in 
amplification  so  that {G k} is  a  sequence  of  independent, 
identically  distributed  random  variables.   The  moment 
generating function for G is

ΦG( y) = E [exp (y G )] , (9)

where the mean, or expectation,  is μG=ΦG
'
(0) and variance is

σG
2
=ΦG

' '
(0)−μG

2 .  

The moment generating function for the shot noise process 
can be derived using the conditional expectation and invoking 
the independence of the random variables,

ΦX (u) = E [exp (uX )]

= exp {∫0

t
γ(s)[ΦG(u h (t−s))−1] ds} (10)

From this we can calculate the mean and variance of the shot 
noise process,

μX (t) = ΦX
'
(0) = E [G ]∫0

t
γ(s) h(t−s) ds (11)

σ X
2
(t) = ΦX

''
(0)−μX

2
= E [G 2

]∫0

t
γ(s) h2

(t−s ) ds (12)

where E [G ] and E [G 2
] are  the  first  and second moments  of 

the  random  detector  gain.   To  derive  the  joint  moment 
generating function for the shot noise process we consider

X 1(t ) =∑
k=1

N (t 1)

Gk h (t−S k )  for t≥t1 (13)

and

X 2(t) =∑
k=1

N (t 2)

G k h(t−S k )  for t≥t 2 (14)

where t 2≥t 1 .  We can now write

X 2(t ) = X 1(t) + ∑
k=N (t1)+1

N (t 2)

Gk h( t−S k ) = X 1(t )+ X̄ 2(t) (15)

where X 1 and X̄ 2 are independent random variables [6].  The 
joint  moment generating function is then

ΦXX (u1,u2) = E [exp {u1 X 1( t1)+u 2 X 2(t 2)}]
= E [exp {u 1 X 1(t 1)+u2 X 1(t 2)}]E [exp {u2 X̄ 2(t 2)}]

. (16)

The first term can be expressed as

E [exp {u1 X 1(t1)+u 2 X 1(t 2)}]
= exp{∫0

t 1

γ(s)[ΦG (u1 h(t 1−s)+u2 h(t 2−s))−1 ]ds}
, (17)

and the second term is



E [exp {u 2 X̄ 2(t 2)}]
= exp{∫t 1

t 2

γ(s) [ΦG (u2 h(t 2−s))−1]ds}
, (18)

and finally we have

ΦXX (u1, u2) = exp {∫0

t 1

γ(s) [ΦG (u1 h (t1− s)+u2 h( t2−s ))−1 ]ds}
×exp{∫t1

t 2

γ(s) [ΦG (u2 h (t 2− s) )−1] ds}
(19)

The autocovariance function is then given by

C XX (t 1,t 2) = ∣ ∂
2
Φ XX

∂u1 ∂u2
∣
u1, u2=0

−μX (t 1)μX (t 2)

= E [G 2
]∫0

t 1

γ( s) h (t 1−s) h(t 2−s) ds

. (20)

Higher-order statistics can also be derived from the moment 
generating function.

For the simulations we take Gk to be Gaussian distributed. 
The  detector  impulse  response  h  is  approximated  with  a 
Gaussian shape. If  the  mean  radiant  power  incident  on  the 
detector surface is P (t ) , the mean photon arrival rate is given 
by  ϕ̄(t)=P( t )/(ℏ ω)  ,  where  h=6.63×10−34 J∙s  is  Planck's 
constant, ℏ=h/ 2π , the frequency of light for a wavelength of
λ meters  is ν=c/λ Hz,  the  angular  frequency  is ω=2π ν , 

and c=3×108 m/s  is  the  speed  of  light  in  a  vacuum.   The 
average rate of photon arrivals at the photocathode resulting in 
a pulse at the anode is then γ(t )=ϕ̄(t )ηF .

For  the  detector  output  signal  we  consider  samples 
x k=x (t k) at  times t k=k Δ t  for  k=0,1,2,… .  We  let
x n=( x0, x1,… , xn)

T  be the  vector  of  samples  up to  time t n , 
where  superscript  'T'  indicates  the  transpose.   The  detector 
output  signal X (t k ) is  modeled  as  a  multivariate  Gaussian 
distribution, which is easy to implement but results in some 
(non-physical) negative values for the output current.  Noting 
that the correlation between nearby samples is  much greater 
than  that  between  more  distant  samples,  we  truncate  the 
number  of  samples  considered  simultaneously  in  the  joint 
density at some limit p .  

The following outlines the procedure used to the simulate 
detector output signal.  The joint probability density for signal 
samples is then

f X (x n)=
1

(2π)n/2
∣Σ∣

1 /2 exp(−1
2
(x n−μ)

T
Σ
−1
( xn−μ)) (21)

where the vector of mean values is 

μX=(μn− p ,… ,μn)
T
=μG(γn− p ,… ,γn)

T , (22)

where μk=μX ( tk ) and γk=γ(t k ) , and the covariance matrix is

Σ = [
C n−p ,n− p ⋯ C n−p ,n

⋮ ⋱ ⋮
Cn , n− p ⋯ C n ,n

] (23)

where C j , k=C XX (t j , t k ) .   We  consider  the  vector  of  prior 
samples x̃=(xn−1 ,… , xn−1)

T  and define

μ̃=(μ n− p ,… ,μn−1)
T and s̃=(C n− p ,n ,… ,C n−1, n)

T , (24)

and 

Σ̃ = [
Cn− p ,n−p ⋯ C n−p , n−1

⋮ ⋱ ⋮
Cn−1, n− p ⋯ Cn−1, n−1

] . (25)

The conditional density is then 

f X (xn∣x̃)=
1

√2π σ̄n

exp(−1
2
(xn−μ̄n)

2

σ̄n
2 ) (26)

with

μ̄n =μ n + s̃
T
Σ̃
−1
( x̃−μ̃) and σ̄n

2
= σn

2
− s̃T

Σ̃
−1 s̃ .(27)

Given the mean power incident on the receiver aperture at the 
discrete sample times we can use equation (26), together with 
the definitions in (27), to make consecutive random draws for 
the samples.

IV. LABORATORY TEST SETUP

In our first set of experiments, we used a (Laser Quantum) 
Gem Laser source having a wavelength of 532 nm.  We set the 
output  power  to  a  constant  86mW and used  neutral  density 
(ND) filters to control  the photon flux entering the detector. 
The  detector  itself  was  a  Hamamatsu  R9880U-210  ultra 
bialkali  photomultiplier  tube.   The  detector  output  was 
measured using a National Instruments PXIe-6366 analog-to-
digital converter (ADC), measuring the voltage across a 1kΩ  
load.  We also ran a second set of experiments using a slightly 
lower source output power of 50 mW.

V. LABORATORY TEST RESULTS

To characterize the system noise floor, we covered the PMT 
input window with a screw-on cap to eliminate any light from 
entering the PMT.  For each of the Gain Voltages used in the 
preceding experiments, we measured the detector output.  The 
mean  voltage  measured  by  the  ADC  capture  tool  varied 
between  -636.26 μV and -629.96 μV.

According  to  the  PMT  specifications,  the  Dark  Current 
should be:



Gain 
Voltage

503V 598V 625V 639V 756V 839V 876V 1025V

Dark 
Current

0.004nA 0.015nA 0.017nA 0.02nA 0.08nA 0.2nA 0.3nA 1.25nA

Measured 
Voltage (V 
= IR) with 
R= 1000Ω

0.004μV 0.015μV 0.017μV 0.02μV 0.08μV 0.2μV 0.3μV 1.25μV

Note that,  using a  ±1.25 V scale,  the NI PXIe-6366 has  an 
absolute accuracy at full scale of around 300 μV according to 
the  documentation.   This  implies  that  the  ADC used  is  not 
nearly accurate enough to capture output resulting from Dark 
Current alone. 

The  presence  of  negative  voltages  in  the  noise  floor  is 
unexpected,  since  the  PMT output  should  always  result  in 
positive measured voltage.   We rule out  possible sources of 
negative measured voltage:

• Johnson Noise

V rms=√4 k BT RΔ f

where  kB is  the  Boltzmann  constant,  T is  the 
temperature,  R is  the  resistance  across  which  the 

voltage is measured, and Δ f  approximately equal to 

the reciprocal of twice the sampling interval.  For our 
R = 1kΩ resistor  at  room temperature  and  a  500 ns 
sampling interval, we get Vrms = 4.0431 μV.  Note that 
the measured output mean is over 100 times greater 
than this value.

• Quantization Noise
Total voltage range = 1.25 - (-1.25) = 2.5V
Number of ADC bits = 16
LSB corresponds to:

LSB=
2.5

216 =38.147μV

In the rounding case, Vrms is given by:

V rms=
1

√12
LSB=11.0121μV

(with 0 mean)
In the truncation case, Vrms is given by:

V rms=
1

√3
LSB=22.0242μV

with mean given by:

μ=
1
2

LSB=19.0735μV

Given that neither Johnson noise nor quantization noise can 
account for the negative voltage recorded, we assume that the 
negative voltage is due to miscalibration of the ADC, and all 
subsequent calculations related to mean and standard deviation 
are modified by subtracting the noise floor mean and  noise 
floor standard deviation:

μcorrected=μmeasured−μ noisefloor (28)

σcorrected=√σmeasured
2 −σnoisefloor

2 (29)

Data was recorded in signed 16-bit integers, converted to volts 
(±1.25 V) according to:

V (t)=
2.5 (D(t)+32768)

65535
− 1.25 (30)

I (t )=
V (t )

1000Ω
(31)

and  converted  to  Amps  by  dividing  by  1000  (documented 
resistance used) to obtain the output current measured by the 
detector.   The  following  graphs  were  obtained  for  each 
experiment by taking the mean output current value for each 
gain voltage/neutral density filter (GV/ND) combination, and 
plotting against an 86 mW source signal, attenuated according 
to the documented ND filter values.

The  gain  curves  were  then  calculated  by converting optical 
power to current, 

I (t)=P (t)
λ η

νh e (32)

and comparing the output to the input

Figure 1: Detector response linearity.



In observing the raw captured data from the detector, we 
can  see  that  for  low  ND  filter  values  (higher  number  of 
photons  striking  the  PMT)  the  distribution  of  samples  is 
Gaussian, implying that the noise is Gaussian as well (since the 
input signal is a constant value and does not have significant 
variation).   As we move to the highest ND filter values, the 
distribution  of  recorded  samples  becomes  more  Poissonian 
(which we would expect in a shot-noise limited device such as 
a PMT), as shown in Figures 3 and 4 below:

The SNR of the captured signals were calculated by taking 
the captured signal, taking the mean, and then taking the mean 
square difference between each sample and the mean.  Then, 
the noise floor mean (as described above) was subtracted from 
the signal mean, and the noise floor variance was subtracted 
from  the  signal  variance  to  get  the  corrected-mean  and 
corrected-variance.

μcorrected = μsignal−μnoisefloor (33)

σ
2
=
∑

t

(V (t)−μv)
2

t
(34)

σcorrected
2

=σ signal
2

−σnoisefloor
2 (35)

SNR dB=10log10(
μcorrected
σcorrected

) (36)

Using the stochastic  model,  we start  with an ideal  signal 
where every sample is  equal to the mean (86mW or 50mW 
depending  on  which  experimental  result  we  are  comparing 
against).   We attenuate the ideal  signal  by 10ND-value,  convert 
from  optical  power  to  number  of  photons,  reduce  by  the 
detector efficiency, then add noise to each sample according to 
equation  (4).   We  convert  this  noisy  signal  to  volts  by 
multiplying by the terminal resistance (1 kΩ).  Average SNR is 
again calculated using equations (33) and (34)

Figure 3: Histogram of captured samples, GV=503V, ND=5.0.

Figure 2: Current gain vs applied gain voltage. Figure 4: Histogram of captured samples, GV=876V, ND=8.7.



Figures 5 and 6 show the difference between the predicted 
average SNR and the observed SNR.  An ideal  noise model 
would have 0 difference between predicted and actual  SNR. 
We can see that for the lowest optical power cases, the new 
model is much closer to the ideal (0 difference).  The size of 
the  circles  in  the  bubble  chart  indicates  the  optical  power 
entering the PMT.  Note that  the optical  power (circle size) 
decreases  as  the  gain  voltage  increases;  This  is  done 
intentionally (with optical power being controlled by applying 
ND filters), to avoid damaging the PMT.   

We can also see that increased PMT voltage output does not 
necessarily  correspond  to  increased  SNR  (Figure  8),  while 
increasing the optical power entering the PMT does (Figure 7). 
This  is  consistent  with  a  shot-noise-limited  device,  as 
increasing the gain will increase both the signal and the noise 
equally, having very little overall effect on the SNR.

 
VI. CONCLUSIONS AND FUTURE WORK

The  stochastic  model  provides  very  encouraging  results, 
particularly in the case of low input power to the detector.  The 
new model is more accurate in predicting the average SNR for 
low power cases than the standard textbook model, by as much 
as  7 dB in the lowest  power case.   However,  more work is 
needed to allow us to apply noise directly to a simulated signal, 
as  can be seen in  Figures  9 and 10 below.    Figure 10 in 
particular  shows  that  our  stochastic  noise  model  produces 
noise that is more evenly distributed about the mean than is the 
case in the raw data output collected from the PMT as shown 

Figure 6: Bubble size indicates optical power (larger bubbles 
mean smaller ND filters used).

Figure 7: SNR vs optical power entering PMT as calculated by  
the measured laser output and attenuated by the ND filter 
value.Figure 5: Optical power as calculated by the measured laser 

output and attenuated by the ND filter value.

Figure 8: SNR vs PMT Voltage Output.  Increased output 
voltage does not necessarily mean increased SNR.



in Figure 9.  In future studies we will investigate what effect 
this discrepancy has on predicting bit error rates.

Our next steps involve applying the noise model to actual 
at-sea  laser-line-scan  imaging  data.   Additionally,  the  non-
stationary  shot  noise  model  will  be  applied  to  pulsed  laser 
sources  to  investigate  digital  modulation  techniques  such  as 
on-off-keying (OOK) and pulse-position-modulation (PPM). 
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Figure 9: Raw data output collected from PMT for 876V Gain 
Voltage and 8.7 ND Filter. Low optical power as a result of the  
high ND filter results in a Poissonian noise distribution.

Figure 10: Simulated data output for 876V Gain Voltage and 
8.7 ND Filter. Noise is more evenly distributed about the mean  
than in the PMT output data (shown in Figure 9)


