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Abstract In this paper, we consider an adaptive energy efficient sensor scheduling

mechanism. We consider a wireless sensor network where the sink sends queries form

time to time, and sensors are equipped with one or more sensing components. Our goal

is to design an adaptive sensor scheduling mechanism to choose sets of active sensors

to work alternatively such that different types of queries are served, the global con-

nectivity requirements can be met, and network lifetime is maximized. A connected

dominating set (CDS) based localized mechanism is proposed. Initially, a basic back-

bone is constructed, then when a query is issued, new sensors are activated locally such

that to meet the requirements of the query and global connectivity. When a query ex-

pires, some sensors return to sleep and the CDS is restored. Our simulation results

show that the solution is effective and it improved network lifetime.

Keywords Wireless sensor networks · composite event detection · coverage ·

connectivity · connected dominating set

1 Introduction and related works

A Wireless Sensor Network (WSN) [1] can detect single (or atomic) events or composite

events [8]. Taking the sensor productions of Crossbow Technology Inc. as an example, a

sensor equipped with MTS400 multi sensor board [10] can sense temperature, humidity,

barometric pressure, and ambient light.

Let us consider a single sensing component, for example, the temperature. If the

sensed temperature value exceeds a predefined threshold, we say that an atomic event

occurred. A composite event is a combination of several atomic events. For example,
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the composite event fire may be defined as the combination of the temperature and

light. The composite event fire occurs only when both the temperature and the light

exceed some predefined thresholds.

In this paper, we consider a publish-subscribe scenario as discussed in [4]. The sink

sends queries as interests towards sensors in the monitored area. When sensors receive

a query, if they can satisfy the interests and serve the query, then they are activated to

perform the sensing task. The intermediate sensors help route sensed data toward the

sink. The query includes {type, interval, rect, timestamp, expire} fields, where type

shows what kind of sensing components are required, interval the frequency the sensor

reports, rect indicates what rectangle area of interest to users, timestamp shows when

the query is sent and expire shows when the query is expired.

Sensors are battery powered and in general, it is hard to recharge them. Energy

management is an important issue in WSNs. We focus on a sensor scheduling mech-

anism that serves different queries. To prolong network lifetime, some sensors can go

to sleep. A connected dominating set (CDS) based localized mechanism is proposed.

Initially, a basic backbone is constructed so that a query can be propagated along

the backbone into the whole network. When a new query is issued, sensors adaptively

awake sleeping sensors in the area of interest such that to meet the requirements of the

query. When a query expires, some sensors return to sleep, while the CDS backbone

remains active.

In [8], Vu et al. propose an algorithm to construct a set of tree-structured detection

sets to achieve energy efficient and reliable surveillance. To achieve reliable surveillance,

each atomic event part of the composite event must be watched by at least k sensors.

Their algorithm works in a greedy manner. At each step, the sensor node with the

greatest contribution is added into the tree. The algorithm is repeated to find as many

detection sets as possible, based on the sensors’ energy constraint. Different detection

sets work alternatively to achieve energy efficiency and to maximize network lifetime.

[9] proposes a localized solution for building a CDS in ad hoc wireless networks. The

basic idea is a mark and prune process where each node decides locally, based on its

neighborhood information, if it can go to sleep without breaking the overall connectivity

requirement. Using a CDS based backbone provides an efficient mechanism to achieve

global connectivity using a localized mechanism. In our paper, the objective is to use

the CDS based backbone for global connectivity, while being able to satisfy different

queries’ sensing requirements.

Our work combines the main features of [4,8,9] to obtain a energy efficient data

gathering mechanism that uses sensor scheduling to increase network lifetime. Different

than [4], we use a sensor scheduling mechanism and apply the attribute-based data

gathering mechanism on top of the active sensor backbone.

2 Network model and problem definition

In this paper, we consider that sensors can have single or multiple sensing components.

Taking MTS400 multi sensor board of Crossbow Technology Inc. [10] as an example,

it can sense temperature, humidity, barometric pressure, and ambient light. When we

consider a single sensing component, for example the temperature, if it rises above

some predefined threshold then an atomic event is detected. A composite event is a

combination of several atomic events. For example, consider a fire-detection application.

There can be two atomic events temperature > th1 and smoke > th2, where “th”
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Fig. 1 Sensors deployed in a square area.

denotes the threshold for the corresponding attribute. A composite event fire might be

defined as fire = (temperature > th1) ∧ (smoke > th2). It is more accurate to report

the fire when both atomic events occur, instead of the case when only one attribute is

above the threshold.

Let us consider that M atomic events x1, x2, ..., xM form a composite event. Fig. 1

shows an example. For example, x1, x2, and x3 are temperature, light, and smoke

respectively. For a sensor which has only the temperature and light sensing components,

we use the set {x1, x2} to denote its sensing ability. We assume a sensor can be equipped

with at most one sensing component of each type. All of a sensor’s sensing components

turn on or off simultaneously.

Sensor nodes may be equipped with different numbers and types of sensing com-

ponents due to the following reasons [7]: they might be manufactured with different

sensing capabilities, a sensor node might be unable to use some of its sensing compo-

nents due to the lack of memory for storing data, or some sensor components might

fail over time.

We consider a publish-subscribe scenario as discussed in [4]. The sink sends a query

as interest towards sensors in the monitored area. When sensors receive a query, if they

can satisfy the interests and meet the query, then they activate to perform the sensing

task. The intermediate sensors help route sensed data towards the sink and the results

are finally reported to the sink. For example, assume that we are interested in whether

a fire will happen in the next 2 hours, using the interest query:

type = temperature ∧ smoke

interval = 1min

rect = [(50, 70), (90, 90)]

timestamp = 01 : 30 : 00

expiresAt = 03 : 30 : 00

The sensors that can sense the temperature and/or smoke and are within the

rectangle with the lower left end (50, 70) and the upper right end (90, 90) are activated

and report data every 1 minute from time 01: 30: 00 to 03: 30: 00. In general, the type

field in the interest query is the combination of one or more sensing components, i.e.,

x1 ∧ x2 ∧ ... ∧ xl.

More than one query can be sent to the monitored area. For example, another

query can be issued as follows:
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type = temperature

interval = 2min

rect = [(30, 60), (70, 80)]

timestamp = 03 : 00 : 00

expiresAt = 04 : 00 : 00

The areas of interest for the two queries intersect, thus some sensors might report

data for both queries. The active sensors have to satisfy both the coverage and the

global connectivity requirements.

An important issue in WSNs is energy management. Sensor nodes are battery

powered and in general, it is hard to recharge them. It takes a limited time before they

deplete their energy and become nonfunctional. One of the major components that

consume energy is the radio, which can be in one of the following modes: transmit,

receive, idle, and sleep. A radio is in the idle mode when the host is not transmitting

or receiving data, and usually the power consumption is as high as in the receive mode.

A radio is in the sleep mode when both the transmitter and the receiver are turned

off, which is the most energy efficient state.

The objective of this paper is to design a sensor scheduling algorithm that allows

sensors not actively participating in sensing or data relaying to go to sleep in order to

conserve energy and to prolong the network lifetime. The sensor scheduling mechanism

adaptively decides the set of active sensor nodes such that both the coverage and the

connectivity requirements are met.

The coverage requirement requires that as queries are propagated to the monitored

area, related sensors in the area of interest are activated to perform the sensing tasks.

This is an adaptive mechanism: as new query requests arrive, new sensors might be

activated, and as queries expire, sensors in the area of interest might go to sleep.

The connectivity requirement requires that the set of active sensors to be connected

all the time. This condition is necessary for the communication between sensors and

the sink in operations such as data reporting, query propagation, and forwarding of

control messages.

In this paper we address the following problem: given a WSN where sensors are

equipped with one or more sensing components (attributes) from the set {x1, x2, . . . , xM},

design an adaptive sensor scheduling mechanism such that the set of active sensors

change over time such that to satisfy the coverage and connectivity requirements, while

WSN lifetime is maximized.

3 Adaptive Sensor Scheduling in WSNs

We propose to use a localized Connected Dominating Set (CDS)-based solution, called

Adaptive Sensor Scheduling in WSNs (ASW). A dominating set is a subset of sensors

with the property that every sensor is either in the subset or has a neighbor in the

subset. A connected dominating set requires that the sensors in the dominating set

be connected. In our solution, at each time the active nodes form a CDS such that

to satisfy the current coverage requirements. We design an adaptive CDS that change

over time as new requests arrive or expire.

At the beginning, a CDS algorithm is run among all the sensors in the monitored

area to choose a starting backbone in the network. CDS nodes participate in forwarding

data or any other control messages. When a new request regarding sensing a particular
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rectangular area is received/expires, sensors adaptively update the active nodes in the

required area to satisfy both coverage requirement and global connectivity. The main

operations are described below.

3.1 CDS backbone selection

At the beginning, an initial CDS backbone is selected so that the requests can be

propagated to the monitored area along the backbone. The sensors that are not included

in the backbone go to sleep to save energy.

Each sensor u has associated the following fields: time t(u), a priority p(u), status(u),

CDS(u) and role label r(u). The time data structure stores information regarding the

amount of time that u has to be active. This is based on whether u is part of the

CDS or not and whether u is currently serving any query. When the CDS role ends

or a query expires, then the time that the sensor u has to remain active is updated

accordingly. The sensors will also store additional information, such as the reporting

interval for each query that it is serving.

Sensor priority p(u) is defined as a 2-tuple p(u) = (E(u), ID(u)), where E(u) is

the node u’s residual energy and ID(u) is the node u’s identifier. A node with higher

residual energy has a higher priority. If two nodes have the same residual energy,

then the nodes’ IDs are used to break the tie. We assume that the CDS is updated

periodically after each time interval T . Before re-running the CDS, sensors update their

priority based on the remaining energy. Then for a time T , priority stays unchanged.

The status field can be active or sleeping. For active, t(u) can be used to determine

how long the sensor has to stay active. The field CDS(u) can be TRUE or FALSE,

depending on whether node u is currently in the backbone CDS or not. The field r

keeps information about the role of a sensor: if the node is in the CDS and the set of

queries that it is currently serving.

Sensors collect h-hop neighborhood information by exchanging Hello messages,

where h is a tunable parameter. Each sensor relies only on local information from its

h-hop neighborhood to decide whether it will be a CDS node during the next period

T . All other nodes which are not in the CDS and are not currently serving any query

go to sleep. We assume that an active node can awake its 1-hop sleeping neighbors.

Node u’s h-hop neighborhood is defined as Nh(u) = {v|dist(u, v) ≤ h hops}, where

dist(u, v) is the distance between sensors u and v. The set N ′
h(u) is the set of sensors

within the h-hop neighborhood which have higher priority than u, defined as N ′
h(u) =

{v ∈ Nh(u)|p(v) > p(u)}.

Every sensor u decides whether it will be a CDS node or not during the next

period T as follows. Initially the node u sets CDS(u) = TRUE. Then sensor u sets

CDS(u) = FALSE if the following condition holds:

CDS-LocalRule: For any two of u’s neighbors in N1(u), w and v, w and v are connected

by a path with all intermediate nodes in N ′
h(u).

The intuition behind the rule is that if sensor u’s neighbors can be connected

without the help of u, then u does not have to be in the CDS. When running the

CDS-LocalRule, sensor priorities p(u) = (E(u), ID(u)) are totally ordered, thus the

CDS formation is guaranteed. Sensors with a higher priority have higher chances to be

active. The CDS-LocalRule is a localized algorithm which was first proposed in [9].
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3.2 CDS update mechanisms for serving queries

Let us consider that a query is issued for an area of interest, which we assume for

simplicity as being a rectangle. A query Q is sent by the base station and has the format

Query(type, interval, area R, Tstart, Tend). The field type contains the attributes of

interest that have to be reported, for example type = x1∧x3. The field interval specifies

how often data from the area of interest have to be reported. Since all the time the

active nodes form a connected backbone, data will be forwarded to the sink along the

active nodes. Area represents the query’s area of interest, specified using rectangular

coordinates. The attributes of interest have to be monitored between Tstart and Tend.

The sink sends the query Q towards the area R using controlled flooding or geographical

flooding.

CDS nodes awake the 1-hop sleeping nodes in area R and forward the query infor-

mation. One way to accomplish this step is if each node keeps a list with the location

of its 1-hop neighbors. Then, upon receiving the Query message, the active nodes in

the CDS awake their sleeping nodes in area R. An awaken node checks if it has at least

one of the sensing components from the query type field, then it remains active for the

duration of the query and will report data according to the reporting interval in the

query. The sensor updates its fields: time, status, and role.

When a query ends, the reporting sensors check their role field. If a sensor is part

of the CDS or is serving another query, then it remains active. Otherwise it returns

to sleep. In addition, the node updates its fields time, status, and role to remove the

expired query.

One case that can occur regards overlapping queries. A sensor may serve multiple

queries if the reporting areas intersect. The frequency of reporting is done according to

the requesting queries and this field will update as queries expire or new queries arrive.

After a period of time, some sensors in the CDS may lower their energy or even run

out of energy. To better balance the energy consumption, the CDS is updated every

time interval T . All the sleeping nodes in the monitoring area awake and update their

priority based on the remaining energy, p(u) = (E(u), ID(u)) for a node u. Then they

update their h-hop neighborhood by exchanging Hello messages. The CDS-LocalRule

is executed to decide the new CDS for the next period T . All the nodes participate in

the new CDS selection and update their fields accordingly depending on whether they

will be part of the CDS or not. The nodes serving queries will continue to be active

and to perform their sensing tasks. Nodes which are not in the CDS or serving queries

go to sleep.

Implementing the scheduling mechanism using a CDS has several advantages. It

provides an energy-efficient mechanism which constructs a connected backbone on

which queries, data messages, and control messages can be exchanged between sen-

sor nodes and the sink. The CDS has the property that each sleeping node is one hop

away from a node in the CDS. Thus, when queries arrive for an area of interest, the

CDS nodes can easily awake their sleeping neighbors. Rotating the nodes in the CDS

is also important in balancing the energy consumption. Using a localized mechanism

to decide the nodes in the CDS is an important property since it scales well with a

large number of sensor nodes.
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4 Simulations

In this section, we present the simulation results. We study the average number of

active sensors, the overhead, the average dissipated energy, the delay, and the remain-

ing energy level of sensors. We evaluate the performance of the ASW algorithm and

compare it with the directed diffusion (DD) [4].

4.1 Simulation environment

Sensors are randomly deployed in a square area of 300 × 300 area units. The trans-

mission range of sensors is 35 units. The queries’ inter-arrival time uses exponential

distribution. The query’s duration is a random number between 1 and 2.5 hours. The

queries’ interest area is 150 × 150 area units and the locations of the queries are ran-

domly chosen. A total of 20 queries are served by the network and after 10 queries the

ASW updates the CDS-based backbone.

In the simulations, we compute the transmission and receiving energy consump-

tion similar to LEACH [2]. The energy consumption for transmitting and receiving a

message is ETx = 50 × 10−9 × msg length + 100 × 10−12 × msg length × r2 J and

ERx = 50 × 10−9 × msg length J, where r is the transmission range and msg length

is the length of the message. The initial energy of each sensor is 200J. Similar to [6],

we assume that the packet size of a data message is 64 bytes and the size of a control

message is 16 bytes. Hello messages used to form the CDS backbone and messages

used to propagate interests into the monitoring area are control messages.

The energy consumed to transmit and to receive a data message is 8.832 × 10−5J

and 2.56 × 10−5J respectively. The energy consumed to transmit and to receive a

control message is 2.208 × 10−5J and 0.64 × 10−5J respectively. We take the data

rate of 250 kbps, similar to ZigBee [11]. Since the packet size is 64 bytes for a data

message and 16 bytes for a control message, the duration to transmit (or receive) a

data packet is 64∗8
250∗103 = 2.048ms and the duration to transmit (or receive) a control

packet is 0.512ms. Any time a sensor is not transmitting or receiving, it is in the idle

state. A sensor in idle state consumes 2mW [6]. We consider that the energy consumed

for sensing an event is 5 × 10−5J. This is for example the sensing energy used by an

acceleration sensor to take a sample of 10ms [3].

Active sensors form a data delivery tree in order to deliver the sensed data to the

sink which is located on the left bottom corner of the deployment area. The tree is

formed using controlled flooding initiated by the sink . The sink broadcasts a message

containing the number of hops. When an active sensor receives the message, it records

the shortest path (the minimum number of hops) to the sink, keeps a reference to the

parent from which the message was received, increases the number of hops by one, and

forwards the message. A message is forwarded only if it has a shorter path to the sink.

We study the following metrics in the simulation:

– The average number of active sensors shows the average number of active sen-

sors over time. It is computed as
|ActiveSet1|×t1+|ActiveSet2|×t2+...|ActiveSetn|×tn

t ,

where |ActiveSeti| is the number of sensors active during the time ti and t is the

total duration from the time the first query begins to the time the last query ends.

– Overhead shows how many control messages are sent and received, which also im-

plies the energy consumption in transmitting and receiving control messages.
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Fig. 2 (a) An example. (b) Queries’ timing.
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Fig. 3 (a) The average number of active sensors. (b) Overhead.

– Average dissipated energy measures the ratio of total energy consumption per sen-

sor in the network to the number of reports received by the sink. It is computed as
eConsume1+eConsume2+...+eConsumen

n×NumReport , where eConsumei is the energy consump-

tion of sensor i, n is the total number of sensors in the network, and NumReport

is the total number of reports received by the sink.

– Delay measures the number of hops from the source sensor to the sink along the

path in the data delivery tree, which implies the one-way latency observed between

transmitting a report and receiving it at the sink.

– The number of sensors in different remaining energy level measures the remaining

energy for each sensor in the network as time passes. Energy level 1 means that

the remaining energy is less than or equal to 100J. Energy level 2 means that the

remaining energy is greater than 100J and less than or equal to 200J.

We conduct the simulation on a custom discrete event simulator. All the tests are

repeated 50 times. The collected data is averaged and reported in the following figures.
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Fig. 4 (a) Average dissipated energy. (b) Delay.
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Fig. 5 (a) Energy level for the ASW. (b) Energy level for the directed diffusion.

4.2 Simulation results

Fig. 2 shows an example of running the ASW algorithm. Totally 600 sensors are ran-

domly deployed in the monitored area to serve 5 queries. Fig. 2b shows the timing and

duration of each query, for example, query 1 starts at time 0.5 and ends at time 2. Fig.

2a shows the number of active sensors, for example, at the very beginning from time 0

to time 0.5 there is no query in the network and only backbone sensors are active. At

time 0.5, more sensors are active since query 1 starts and more sensors are activated

for sensing purpose. Fig. 2a shows that using ASW only a small number of sensors has

to be active for sensing and delivering reports to the sink.

Fig. 3 compares the average number of active sensors and overhead between ASW

and directed diffusion. Fig. 3a shows that our algorithm has fewer number of active

sensors. Fig. 3b shows that directed diffusion has more overhead. That is because

every time when a new query comes, directed diffusion propagates the interest to

every sensor in the network, while in ASW the query is only propagated over the

active sensors including backbone nodes and a few nodes active for sensing purpose.

The sleeping sensors will not receive and forward the control messages. Therefore, the

overall overhead is reduced.
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Fig. 4 compares the average dissipated energy and delay between ASW and direct

diffusion. Fig. 4a shows that ASW consumes less energy for delivering a data message

compared with directed diffusion. This is because in directed diffusion, more energy is

consumed in transmitting and receiving control messages and more sensors are in the

idle state, which consume considerable energy. On the other hand, in ASW less energy

is wasted on control messages. Most sensors are put to sleep and and as a result they

consume much less energy compared to the idle state. Fig. 4a shows that ASW is more

energy efficient. Fig. 4b shows that ASW has a comparable but longer deliver path.

This is because in the directed diffusion all sensors are active, while in ASW only part

of the sensors are active, and as a result the directed diffusion may form a shorter data

delivery path.

Fig. 5 compares sensors’ remaining energy level. 600 sensors are deployed in the

monitored area. The lines in the figures show the percentage of sensors with remaining

energy in levels 1 or 2. With the time passing, the number of sensors with higher

remaining energy (energy level 2) decreases, while more sensors have lower energy

(energy level 1). Compared to ASW, directed diffusion consumes energy more quickly.

At time 32.5 ASW still has sensors in energy level 2 while all sensors in the directed

diffusion are in the level 1.

To summarize, compared with the directed diffusion, ASW is more energy efficient,

it generates less overhead, however, it may have a longer delivery delay.

5 Conclusions

In this paper, we propose an adaptive energy efficient sensor scheduling mechanism to

choose sets of active sensors to work alternatively such that different types of queries

are served and global connectivity requirements are met. A connected dominating set

(CDS) based localized mechanism is proposed. Our simulation results show that the

solution is effective and energy efficient.
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