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Abstract. This paper presents the Real Time Adaptive Resource Management 
system (RTARM1), developed at the Honeywell Technology Center. RTARM 
supports provision of integrated services for real-time distributed applications 
and offers management services for end-to-end QoS negotiation, QoS 
adaptation, real-time monitoring and hierarchical QoS feedback adaptation. In 
this paper, we focus on the hierarchical architecture of RTARM, its flexibility, 
internal mechanisms and protocols that enable management of resources for 
integrated services. The architecture extensibility is emphasized with the 
description of several service managers, including an object wrapper build 
around the NetEx real-time network resource management. We use practical 
experiments with a distributed Automatic Target Recognition application and a 
synthetic pipeline application to illustrate the impact of RTARM on the 
application behavior and to evaluate the system performance. 

1 Introduction 

Current distributed mission-critical environments employ heterogeneous resources 
that are shared by a host of diverse applications cooperating towards a common 
mission goal. These applications are generally a mix of hard-, soft- and non-real-time 
applications with different levels of criticality and have a variety of structures, 
ranging from periodic independent tasks, multimedia streams and parallel pipelines, to 
event-driven method-invocation communicating components. The applications 
usually tolerate a range of Quality of Services (QoS) and are ready to trade off QoS in 
favor of the most critical functions they perform. The distributed systems must be able 
to evolve and adapt to the high variability in resource demands and criticality of the 
applications as well as to the changing availability of resources. 

The current industry trend is to build distributed environments for mission-critical 
applications using “Common-Off-The-Shelf” (COTS) commercial hardware and 
software components. A middleware layer above the COTS components provides 
consistent management for the system resources, decreases complexity and 
development costs.  
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This paper presents the Real Time Adaptive Resource Management system 
(RTARM), developed at the Honeywell Technology Center, that implements a 
general middleware architecture/framework for adaptive management for integrated 
services aimed to real-time mission-critical distributed applications.  

The RTARM system has the following basic features [5]: (1) scalable end-to-end 
criticality-based QoS contract negotiation that allows distributed applications to share 
common resources while maximizing their utilization and execution quality; (2) end-
to-end QoS adaptation that dynamically adjusts application resource utilization 
according to their availability while optimizing application QoS; (3) integrated 
services for CPU and network resources with end-to-end QoS guarantees; (4) real-
time application QoS monitoring for integrated services and (5) plug-and-play 
architecture components for easy extensibility for new services.  

The resource management architecture for RTARM uses an innovative approach 
that unifies heterogeneous resources and their management functions into a 
hierarchical uniform abstract service model [5]. The building block of the architecture 
is the Service Manager (SM). It encapsulates a set of services and their management 
functions and exports a common interface to clients and other service managers. This 
facilitates recursive hierarchies, in which heterogeneous services are integrated 
bottom-up. A higher-level service manager aggregates services provided by itself and 
its lower-level SMs and provides clients with a higher-level QoS representation. 

In this paper, we focus on the architecture, protocols and implementation of an 
RTARM prototype that supports integrated services for real-time distributed 
applications. It runs as a middleware on a network of workstations and uses CORBA 
for portable communication. A major contribution of our work is the hierarchical 
feedback adaptation mechanism [1] that provides efficient dynamic QoS control for 
distributed data-flow applications. We illustrate the RTARM capabilities with a 
practical experiment with an Automatic Target Recognition (ATR) distributed 
application [9] and with a synthetic pipeline demonstration application. 

The DARPA Quorum program [11] provides an extensive framework for QoS-
related research projects. Similar efforts for building adaptive management systems 
for heterogeneous resources are GRMS [6,7], ARA [9,12], and QualMan [10]. GRMS 
is a precursor of RTARM. It introduced the uniform resource model and the atomic 
ripple scheduling protocol. Its hierarchical architecture reflects the application data 
flow and does not offer feedback adaptation. ARA considers a discrete set of runtime 
configurations for distributed applications and does feedback adaptation by resource 
reallocation. The ARA architecture is non-recursive and differs considerably from the 
uniform RTARM architecture by using proxies for specific service providers. 
QualMan is designed for multimedia applications and defines two basic resource 
management components, the resource scheduler and the QoS broker, that adhere to a 
uniform resource model without considering deeper recursive structures and QoS 
composition. [2] introduces a portable and QoS-enabled middleware platform suitable 
for building multimedia and real-time distributed applications. 

The rest of this paper is organized as follows. Section 2 describes the RTARM 
hierarchical architecture, system models and interfaces. Section 3 presents the 
architecture of a Service Manager and describes the CPU, network and a higher-level 
SM. Section 4 continues with experiments involving an ATR application and 

416

IFIP/ACM Middleware 2000



  417 

synthetic pipeline applications that emphasize the RTARM capabilities. The paper 
concludes in Section 5 with a discussion and future plans. 

2 The RTARM System Architecture 

We have designed and implemented the RTARM system prototype as a middleware 
layer above the operating system and network resources. The middleware approach 
provides the benefit of flexibility and portability but the increased distance to the 
basic resources makes fine-grained control difficult. The RTARM servers, developed 
in C++, run as user-level processes on Windows NT workstations and export a 
CORBA (Orbix [8]) interface to clients and applications. The RTARM model 
differentiates between clients and applications. A client is any entity that issues a 
request for services and negotiates a QoS contract that defines the allocated services. 
An application consumes services reserved by a client on its behalf and continuously 
cooperates with the resource management system to achieve the best available QoS 
while maintaining its runtime parameters within the contracted region. The QoS 
contract may change during the application lifetime. 

2.1 The Service Manager Hierarchy 

The RTARM system employs a hierarchical resource management architecture that 
facilitates provision of integrated services over heterogeneous resources. The uniform 
resource model [5] defines a recursive structural entity called Service Manager (SM) 
that encapsulates a set of resources and their management mechanism. At the bottom 
of the hierarchy are SMs that provide management functions for basic resources, such 
as CPU or network resources, and directly control resource utilization by application 
components. Higher level services are assembled on top of lower-level services, 
giving rise to a service hierarchy.  

Integrated
Service

CPU SM Network
SM

Clients

APP1 APP2

HSM2

SM1

 

Fig. 1. Sample RTARM hierarchy consisting of one network SM, one CPU SM and two
integrated service managers  
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Resources as well as negotiation requests are treated uniformly across the entire 
hierarchy. Higher-level service managers (HSM) may act as clients for lower-level 
SMs (LSM). The hierarchy allows dynamic configuration as new service managers 
can join the system at any time. A request for an integrated service sent to an HSM 
may require resources from lower-level service providers. The admission protocol 
builds a virtual reservation tree over the SM hierarchy that remains valid for the entire 
application lifetime. The SM hierarchy forms a directed acyclic graph, with SM as 
nodes and edges represented by the “uses-services-from” relation. 

Figure 1 illustrates a simple RTARM hierarchy with two LSMs, a CPU and a 
Network SM, at the bottom of the hierarchy. Two clients request services from the 
two HSMs while applications are consuming CPU and network resources. Section 3 
describes the service managers in more detail. 

There are several benefits from a hierarchical, recursive, resource management 
architecture. First, services with complex, composite QoS representations are easier to 
implement on top of basic services. Complex distributed applications benefit from a 
richer representation of QoS. It simplifies the application design and facilitates 
consistent resource management for QoS-incompatible applications. Regardless of 
how complex the application architecture and QoS semantics are at the top of the SM 
hierarchy, at the bottom of the hierarchy everything translates to QoS requests for 
basic services (CPU and network in our prototype). 

The hierarchical architecture of RTARM scales well with large distributed 
environments. Many SMs grouped in clusters may benefit from service localization 
and avoid communication bottlenecks. Sharing of LSMs between HSMs adds 
redundancy, fault tolerance and load balancing. In contrast, the centralized approach 
for heterogeneous resource management in distributed environments may introduce 
the drawbacks of a central controller: communication and processing bottleneck, one 
point of failure and decreased flexibility, but has certain performance benefits and 
lower latency. 

A potential shortcoming for deep RTARM hierarchies derives from the increased 
distance between the top-most-level SM and bottom layer in the hierarchy. This may 
cause high latency for time sensitive RTARM functions, such as feedback adaptation 
and application control in case of deep SM hierarchies. 

Issues related to deadlock prevention and distributed SM synchronization have 
been studied for the GRMS project [6,7] and can be easily extended to the RTARM 
model. 

2.2 RTARM System Models 

2.2.1 QoS Model and Translation. The quality of the interaction of a mission-critical 
application with a dynamic environment directly reflects its performance. The wide 
magnitude of this interaction requires a range for the quality measures. RTARM 
supports a multidimensional QoS representation, each dimension specifying an 
acceptable range [Qmin, Qmax] of a quality parameter for the application. A set of range 
specifications, one per dimension, defines a QoS region. This QoS model facilitates 
resource negotiation and makes resource management more flexible.  
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In the RTARM recursive hierarchy, the QoS representation at a SM reflects the 
type of services provided by that SM. An HSM translates a QoS request for integrated 
services into individual QoS requests for services provided by itself and its lower-
level SMs. When the SM receives replies from its LSMs, it reassembles the returned 
QoS into its own QoS representation in a process called QoS reverse-translation. 
RTARM uses a unique implementation for QoS, which is independent of the 
addressed service. We define a QoS parameter as a set of name-value pairs, where the 
value part is a sequence of one or more scalar primitive data values (string, short, 
double, etc.) and the name indicates the specific QoS dimension, such as “rate”, 
“workload”,  “latency”, etc.. 

 
2.2.2 Adaptation Model. RTARM recognizes three situations when application QoS 
may be changed after admission [5]: (1a) QoS shrinking/reduction of lower criticality 
applications when a new application comes; (1b) QoS expansion/improvement when 
applications depart and release resources, and (2) feedback adaptation. While (1a) and 
(1b) imply contract changes and involve other applications, feedback adaptation does 
not change the contract but only varies the current operational point of the application 
within the contracted QoS region. Feedback adaptation is like closed loop control. It 
relies on monitoring of delivered QoS and uses the difference between delivered and 
desired QoS to adapt the application behavior. 

2.3 RTARM Interfaces 

Each SM implements and exports three interfaces: (1) Negotiator for admission 
control, collateral adaptation, QoS expansion and application control, such as 
suspend, resume and end; (2) Service Manager for SM hierarchy set up 
(register/deregister SM) and (3) Monitor for application monitoring and event 
propagation. 

For admission control and adaptation RTARM uses a modified version of the 
GRMS Ripple Scheduling algorithm [6,7]. A detailed description with examples 
follows in Section 3.4. Briefly said, RTARM admission and adaptation employ a 
transaction-based two-phase commit protocol applied recursively at each SM. The 
first phase executes a service availability test starting from the SM that received the 
admission request, down on the reservation tree that resulted from the QoS translation 
and request dispatch process. The available, reserved QoS propagates back to the 
initiator SM from the lowest SM layer, being reverse-translated along the way. In the 
second phase, the initiator SM assesses the success status of the reservation phase and 
the transaction is committed or aborted, implying service reservations along the 
spanning tree to be committed, or to be cancelled, respectively. If not enough 
resources are available, a SM will try to adapt lower criticality applications to their 
minimum contracted QoS and use the released resources for the new application. 
Later, when resources become available, the SM expands the QoS for the most critical 
applications. 

Sometimes in order to admit a new, more critical application, it is enough to 
squeeze the QoS of only a part of an existing distributed application. Then, changes in 
the high-level QoS may require collateral adaptation of other components of the 
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application that do not directly impact admission of the new application. For instance, 
for a multimedia stream application having frame rate as QoS parameter, if one 
processing stage is adapted to the minimum rate, than all other stages will run at the 
same low rate, too. 

The next section presents the object architecture of the SM and details the 
implementation of a CPU, a Network and a Higher-level SM. 

3 RTARM Service Managers 

3.1 The Service Manager Architecture and Implementation 

The unified resource model provides the benefits of a uniform internal architecture for 
all service managers (Figure 2) and a common interface between them.  

The arrows in the figure indicate object service requests. The components in a SM are 
as follows: 
• Negotiator: brokers contract admission, delegates responsibilities to other 

components and exports the external RTARM CORBA interface. 
• Translator: translates higher-layer integrated QoS into lower-layer QoS 

representation. 
• Allocator: handles resource allocation/release when no adaptation is necessary. 
• Adapter: handles resource allocation/release with adaptation and QoS 

expansion/contraction. 
• Scheduler: determines whether allocation of resources and expansion of 

application QoS are feasible. 
• Enactor: enforces changes in application QoS or status. 

Fig. 2. The internal object architecture of a service manager  

Translator

Negotiator

Enactor

Allocator

Adapter

Scheduler
FB-Adapter Detector

Monitor

Shared Data Structures:
SMs, Application Contracts,
FB-Adaptation and Monitoring

Involved in Admission
Control and Cross-

Application Adaptation

Involved In Feedback
Adaptation Only

Configuration Manager
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• Monitor: keeps an eye on applications in execution and passes status information 
and QoS usage to the Detector. Exports external RTARM CORBA interface. 

• Detector: uses application runtime information (e.g. current QoS operational point) 
to detect significant changes in application operation (e.g. overload, 
underutilization, contract violation). Triggers Feedback Adapter actions. 

• Feedback Adapter: decides corrective actions for applications when their runtime 
status changes significantly. 

 
Additional data structures exist to hold information regarding application contracts, 

other service managers and available services.  
Applications implement a simple CORBA interface that allows SMs to change 

their QoS and status. LSMs keep proxies for the application CORBA server objects. 
All RTARM CORBA servers and applications are started in the shared, multi-client 
activation mode. 

A SM component class has the same object interface regardless of the SM position 
in the hierarchy or the resources the SM controls. For instance, the Adapter object 
implements the same functions in all SMs, but in a way that depends actually on the 
scope of the SM. Not all components are required within a SM. For example, a 
Translator may exist only inside an HSM. 

RTARM provides a common object oriented execution framework that allows 
users to dynamically load SM components from shared libraries during runtime 
configuration. A configuration manager uses a mechanism similar to a Factory 
Method [4] to instantiate SM components. It also passes configuration information 
extracted from a configuration file to the SM components during their initialization.  

For all SMs there is a single executable program that originally contains the empty 
SM framework and the configuration manager. By loading specialized components 
from shared libraries, the configuration manager practically starts different SMs. We 
use this technique when we initialize the CPU, Network and Higher-level SMs with 
components from specific Windows NT DLLs.  

The flexibility of this plug-and-play feature permits implementation of a new SM 
by just replacing a set of components that realize a particular SM component 
interface, without rewriting the whole program. Writing a new SM component only 
requires the header file with the object interface, the executable program (common 
execution framework) and its corresponding library. 

 

3.2 The CPU Service Manager 

The CPU SM provides periodic applications access to a processor resource. Each 
computing node has a CPU SM, allowing concurrent applications to share a CPU. The 
application QoS is bi-dimensional: application execution rate (R) and iteration 
execution time (W) (Figure 3). The COP  (Current Operational Point) represents the 
current values for the multidimensional QoS. 
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3.2.1 Admission and Adaptation. The specific CPU scheduling policy is isolated 
within the Scheduler object and the Monitor keeps track of application CPU 
utilization. The invariant condition for admission and schedulability for n applications 
is Σi=1..nRiWi < 100% processor utilization. A more sophisticated CPU SM can be 
implemented at any time, by just using the plug-and-play feature, replacing the default 
Scheduler component with one specific to the scheduling discipline used.  

The CPU SM service allocation unit for each periodic application is the fraction of 
CPU utilization (R x W). The CPU SM communicates this information to applications 
and assumes they are well behaved and keep their process utilization below the 
allocated limits. The SM scheduler only assigns application rates and does not control 
the underlying OS scheduler. This policy works fine on a larger time scale and for our 
experimental purposes. For real-time performance one solution is to implement a soft 
real-time CPU scheduling server above the OS scheduler [10]. Commercial operating 
systems with soft real-time capabilities, like Windows NT and Solaris, limit the 
scheduler granularity to 10-20ms. 

The CPU SM implements the Ripple Scheduling admission protocol. Because it is 
at the bottom of the SM hierarchy and has no LSMs, it does not make any other 
recursive calls. Adaptation and collateral adaptation reduce the application rate to the 
minimum contracted value. QoS expansion increases the application contracted QoS 
(rate) to the best available value. 

3.2.2 Feedback Adaptation. The CPU SM controls the task rate in real-time. It 
cannot change the workload, which is left exclusively under application control. 
Applications send their current QoS operational point as events to the CPU SM 
monitor at the end of each periodic iteration. At any moment, the QoS COP may vary 
so that R x W ≤ L, where L is the fraction of the contracted processor utilization. The 
CPU SM adjusts the COP as follows: (1) increase rate when workload decreases; (2) 
decrease rate on overload, when the workload pushes the COP outside the contracted 
region. 

Workload

Requested
region

Feasible
region

Rate

C.O.P

RxW=%CPU utilization=constant

Fig. 3.  CPU Service Manager  QoS representation 
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3.3 The Network Service Manager 

We integrated the NetEx real-time network management system [3,13] from Texas 
A&M University into the RTARM system. NetEx runs as middleware and provides 
connection-oriented real-time communication with guaranteed delay and bandwidth 
over COTS network infrastructure, such as ATM and switched 10/100 Mbps Ethernet. 
NetEx uses a tri-dimensional QoS: period, delay and message size and adds the 
connection source and destination network addresses to the connection contract. The 
NetEx resource management interface is, however, incompatible with the RTARM 
interfaces. It has different semantics and it does not export the two-phase commit 
protocol.  

We built an object-oriented wrapper [4] around NetEx that hides the 
incompatibilities and exports the RTARM interface to clients, applications and HSMs 
(Figure 4). The wrapper method can be used to integrate any service provider in the 
RTARM architecture. 

The wrapper implements three SM components, Negotiator, Adapter and Enactor, 
that map the RTARM interface calls for admission, adaptation and expansion to the 
native NetEx API. NetEx does not provide feedback adaptation for connections, so 
the wrapper SM does not implement feedback adaptation either. It is important to 
note, however, that our HSM for integrated services for parallel pipeline applications 
implements hierarchical feedback adaptation. This is detailed in the next section. 

3.4 The Higher-Level Service Manager for Integrated Services 

Within the RTARM service manager hierarchy, HSMs aggregate services from LSMs 
(CPU, Network or any other type of SM) and provide RTARM services to 

Negotiator

Adapter Enactor

NetEx Library

Allocator Scheduler

HSM

NetEx Object
Wrapper

Application

Fig. 4. The object wrapper for NetEx communication manager 
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applications that need a more complex QoS representation. The unified resource 
model enables recursive deployment of HSMs. Our HSM implementation is generic 
and is able to support various types of distributed applications with arbitrary QoS 
representations that map to available LSM QoS. The only restriction is that the Ripple 
Scheduling admission and adaptation procedure and the hierarchical feedback 
adaptation must not contradict the application semantics. The QoS Translator SM 
component inside an HSM is responsible for translating a QoS request into something 
the LSMs understand. Replacing the translator component with a different one (for a 
different QoS representation) produces a HSM capable of supporting different 
integrated services. 

3.4.1 Admission and Adaptation. The Negotiator implements the recursive two-
phase admission protocol that runs at the heart of each HSM. The code for the first 
phase, reservation, follows next: 

 
test_reservation(in reqQos, out avQos, in candidates,  
                 out adaptedApps)  
// reqQoS is the requested QoS region  
// avQoS is the returned (acceptable) QoS region 
// candidates is the list of applications that may be  
// adapted in order to accommodate the current request 
// adaptedApps is the list of adapted applications 
{ 
translate reqQos into:  
  LS – list of requested services from LSMs, and  
  LreqQos – corresponding QoS per service. 

 for each service S from LS { 
   for each LSM lsm that provides service S { 
     success = lsm->test_reservation(LreqQoS[lsm], 
                        lsmAvQos[S],  
                        candidates that run on lsm, 
                        lsmAdaptedApps[S]) 
     if success then mark admitted service  
                  and continue with next service S from LS 
   } 
   if service S was not admitted then { 
     cancel all previous successful reservations 

          return false 
   } 
       } 
       // now all services from LS have been admitted 

  reverse-translate and maximize the returned QoS from      
                                   lsmAvQos into avQoS 

       perform collateral adaptation if necessary 
       return true 

} 
 
The second phase that commits the resource reservation from phase I is 

implemented like this: 
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commit_reservation(in committedQos, in adaptedApps) 
// commitedQos is the QoS region to commit 
// adaptedApps is a list of applications (adapted in phase  
// I) whose adaptations have to be committed  
{ 
 translate commitedQos into:  

Llsm – list of LSMs and  
LcommittedQos – committed QoS per service 

 for each lsm from Llsm { 
   lsm->commit_reservation(LcommitedQos[lsm],  
                           adaptedApps that run on lsm) 
 } 

 save committedQos into the application contract 
} 

 
The cancel_reservation() call is similar to commit_reservation() and is 

omitted here.  
 

Figures 5 and 6 illustrate examples of admission of a new application with id 3 at an 
HSM H that has 3 LSMs, L1, L2, L3.  

Applications 1 and 2 are already running at H and use services from L1, L2, L3. For 
example, application 1 (denoted with 1 at H) runs also at L1 (1.1), at L2 (1.2) and L3 

(denoted 1.3). The new application 3 requires two services and maps to 3.1 and 3.2. In 
example a) both 3.1 and 3.2 are admitted at L1 and L2. Admission for 3.1 needs 
adaptation of application 1.1 on L1. This triggers collateral adaptations for 1.2 as well 
as 1.3, as the entire application 1 must be adapted. Calls 4 and 5 (test_adapt) ask 
L2 and L3 to adapt collaterally application 1. During the execution of 
commit_reservation on H (call number 6), the collateral adaptation of 1 is 
committed on L1 and L2 with the two commit_reservation calls plus the extra 
commit_adapt call (9) to L3. The example from Figure 6 shows the call sequence 
when application 3 is accepted by L1, but rejected both by L2 and L3. HSM H finally 
rejects 3 and returns false to the test_reservation call 1. 

1, 2

1.1
2.1
3.1

1.2
3.2

1.3
2.2

1-test_reservation(3)

  2
7 3

4
8

5
  9

RTARM calls:
1,2,3 – test_reservation
4,5 – test_adapt
6,7,8 – commit_reservation
9 – commit_adapt

6-commit_reservation(3)

L2L1 L3

H

Fig. 5. Example of successful admission of application 3 at the HSM “H”  
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We have implemented a Pipeline Service Manager (PSM), an HSM that aggregates 
services from lower-level SMs (CPU, Network, other HSMs) into a higher-level 
integrated representation suited for pipeline applications. Our PSM supports periodic 
independent tasks and periodic parallel pipeline applications, consisting of 
communicating stages in an arbitrary configuration, with a single source and a single 
sink node. We assume a sensor enters periodically data frames in the pipeline. Each 
frame is processed by a stage or a composite stage [1] (consisting of parallel strings of 
elementary stages) and then sent to the next stage. Such a pipeline application is 
depicted in Figure 7. 

For periodic pipeline applications, we use a QoS consisting of end-to-end message 
latency and rate for the final stage. The admission contract also contains execution 
time for each stage as well as the message size for each inter-stage connection. It is 
the job of the pipeline translator to decompose the integrated-service pipeline request 
into CPU and network admission requests. We assume all stages use the same range 
for rate. The pipeline QoS (end-to-end latency, frame rate plus state workloads and 
message sizes) translates into CPU QoS parameters for all stages and Network QoS 
for all network connections. The CPU QoS rate range is the same as that for the 
pipeline frame rate. The pipeline translator uses the same rate range and a fraction of 
the end-to-end pipeline latency to generate the Network QoS parameters. 

RTARM calls:
1,2,3,4 – test_reservation
5 – cancel_reservation

1, 2

1.1
2.1
3.1

1.2 1.3
2.2

   2
5

3
4

3.2 not admitted

1-test_reservation(3)

H

L2L1 L3

Fig. 6. Example of failed admission of application 3 at the HSM “H”. Stage 3.2 is

denied by both L1 and L2 

2

0

1

3 4 5 6

Fig. 7.  Sample parallel pipeline application with 7 stages 
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3.4.2 Hierarchical Feedback Adaptation for Parallel Data-Flow Applications. We 
have implemented an innovative and efficient hierarchical feedback adaptation 
mechanism for parallel pipeline applications [1]. It performs feedback adaptation at 
two levels in the SM hierarchy. The pipeline end-to-end latency is controlled at the 
HSM level while the CPU SMs perform CPU feedback adaptation independent of the 
HSM. 

The pipeline QoS parameter we consider critical and want to control is the end-to-
end latency. As the pipeline evolves in time, rates of intermediate stages may change 
as a result of CPU SM feedback adaptation. In normal circumstances, the input sensor 
period is maintained at a value greater than the current period of any stage/substage of 
the parallel pipeline application, but it can get lower because of independent CPU 
feedback adaptation. When accumulation of queues between stages increases the end-
to-end latency beyond a maximum threshold, the PSM sets the input sensor period at 
the maximum value from the pipeline contract. A finite state machine in the PSM 
maintains this maximal period for a fixed time, allowing the queues to empty. Then, 
the PSM sets again the input sensor period to the maximal current period of all stages, 
typically lower than maximum period from the contract. We have proved in [1] that 
the end-to-end latency decreases, and that after a finite number of frames the pipeline 
enters a region of stability where the end-to-end latency and the output frame rate are 
within the contracted region.  

This method is simple and quite efficient, as the only parameter to be adjusted is 
the sensor input period, while the pipeline stages are controlled only by the 
corresponding CPU SM. This mechanism avoids costly communication and 
coordination between the HSM and all the CPU SMs. The information required for 
pipeline feedback adaptation is minimal: the end-to-end latency for the current frame 
and the maximal current period of all stages.  

In the next section we present experiments with synthetic pipeline applications and 
an Automatic Target Recognition application and we give performance estimates for 
the RTARM system.   

4 Experiments and Performance Evaluations 

In this section we present two preliminary experiments that reflect our current 
research progress. We need further work to fully assess the implication of the 
hierarchical architecture to the overall system performance. The first experiment deals 
with synthetic pipeline applications and yields performance numbers for admission, 
adaptation and QoS expansion for the CPU, Network and Pipeline SMs. The second 
experiment tests feedback adaptation for parallel pipeline applications. The Forward 
Looking Infrared Automatic Target Recognition application provides an excellent 
testbed to prove the efficiency of our hierarchical feedback adaptation technique.  

The runtime environment for these experiments consists of three 450MHz Dell 
Workstation-400 machines, running Windows NT, connected via a Fore ATM switch 
with OC-3c (155Mbps) links. Each machine hosts a CPU SM. Both the network SM 
that controls the inter-stage communication and the pipeline SM run on one of the 
three machines. We consider their own CPU resource consumption negligible. All 
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inter-SM CORBA communication uses a secondary Fast Ethernet network, so the 
ATM lines remain 100% available for inter-stage communication. We used the NT 
performance counter for precise time measurements. 

4.1 Performance for Admission and Adaptation 

For evaluating admission, adaptation and expansion performance for pipeline 
applications we devised two scenarios.  

Scenario 1. 
1. We tested admission of three-stage pipelines on a SM hierarchy with one HSM (P), 

one NSM (N) and two CPU SMs (C1, C2), as illustrated in Figure 8. The sequence 
of events is: 

2. admit pipeline 1; no adaptation required. 
3. admit pipeline 2 with higher criticality; stage 1.1 is adapted due to CPU constraints 

on SM C1; stages 1.2, 1.3 and network connections are adapted collaterally. 
4. terminate pipeline 2; pipeline 1 is expanded back to its original QoS (all stages and 

the network connections). 
5. try admission for pipeline 3 with lower criticality than 1; not enough CPU 

resources, admission is denied. 
6. terminate pipeline 1. 

Scenario 2 runs on the same environment as Scenario 1 and is similar, except the 
pipeline applications now have two stages and adaptation is caused only by network 
bandwidth constraints, not by CPU resource insufficiency. 

Throughout the tests we measured the time required to complete the RTARM 
interface calls for admission, adaptation and expansion for the CPU, Network and 

Fig. 8.  Scenario 1. SM configuration and stage mapping  
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Pipeline SM. The measured time consists of the actual processing overhead and time 
to complete nested calls to: (1) application CORBA servers for the CPU SM; (2) the 
NetEx management subsystem and application CORBA servers for the Network SM 
(NetEx wrapper) and (3) LSMs for the Pipeline SM.  

The performance measurements for the Pipeline SM are listed in Table 1, for the 
CPU SM in Table 2 and for the Network SM in Table 3. All values are expressed in 
milliseconds. 

 
For the PSM the “Total Time” columns include the sequence of recursive RTARM 

CORBA calls to the LSMs and the algorithm processing overhead. Some calls may 

Table 1. Performance measurements for the Pipeline Service Manager  

w/o Adaptation with Adaptation
Total time Processing time* Total time Processing time

test_reservation 99.159 17.972 118.344 18.899
commit_reservation 2239.02 6.366 2376.34 11.338
cancel_reservation 7.102 0.313

test_expansion 212.751 4.508
commit_expansion 39.987 4.921

end_app 252.325 1.414 460.348 4.145

w/o Adaptation with Adaptation
with CORBA w/o CORBA with CORBA w/o CORBA

test_reservation 0.447 0.707
commit_reservation 525.165 0.474 544.796 1.397
cancel_reservation 0.146 0.168

test_adapt 0.234
test_expansion 0.189

commit_expansion 3.132 0.112
end_app 4.619 0.846

Table 2. Performance measurements for the CPU Service Manager  

                        w/o Adaptation                          with Adaptation
Total  
time

Processing 
time

CORBA 
time

NETEX 
time

Total  
time

Processing 
time

CORBA 
time

NETEX 
time

test_reservation 22.475 3.147 0 19.328 48.414 3.901 0 44.513
commit_reservation 45.434 0.637 44.797 0 49.962 1.105 48.857 0
test_adapt 0.056 0.056 0 0
test_expansion 33.093 0.355 0 32.738
commit_expansion 0.697 0.697 0 0
end_app 10.08 0.289 0 9.791

Table 3. Performance measurements for the Network Service Manager  
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require adaptation of lower criticality applications, such as test_reservation() at 
step 2 in scenario 1; other calls, like the expansion operations, are 100% with 
adaptation. From Table 1 we notice that the reservation operations and end_app() 
require extra processing work if adaptation is involved. Also the processing time for 
test_reservation() is considerably larger than all other calls since it involves 
back-and-forth QoS translation and reverse-translation. But what stands out is the 
large total time consumed for commit_reservation() for a three stage pipeline 
application, approximately 2.3 seconds. This time includes the duration for 
commit_reservation() calls to the CPU SM that take more than 500ms for each 
pipeline stage (see Table 2). A CPU commit_reservation() call actually generates 
a set_qos() call with the committed application QoS to the application stage 
CORBA server. The stages are not up and running when admission happens.  

The Orbix daemon [8] starts the stage process and passes the CORBA server IIOP 
TCP port number and IP address to the CPU SM. Only after the stage is up and 
initialized it is able to respond to the set_qos() CORBA call from the CPU SM. 
The time to start a Windows GUI application (the pipeline stage) on Windows NT 4.0 
is around half a second for our test configuration.  

Table 3 shows time measurements for the Nework SM These are more complex 
since the NetEx wrapper communicates through TCP/IP with the NetEx Host Traffic 
Manager [3,13] and stages through set_qos() CORBA calls (only during 
commit_reservation()). The communication latency overhead caused by NetEx 
is comparable to CORBA communication overhead, between 10 and 45ms.  

We conclude that operation of the RTARM system is efficient, except the 
commit_reservation() call for CPU applications. This major delay can be 
completely avoided by pre-loading the applications before the client submits the 
pipeline contract to the HSM. The overall system performance may further improve 
by using a faster CORBA implementation that guarantees real-time operation 
deadlines. 

4.2 Performance for Hierarchical Feedback Adaptation 

4.2.1 The Automatic Target Recognition Experiment. We tested the RTARM 
feedback adaptation mechanism on a true mission-critical application. The ATR 
application, schematically shown in Figure 9, processes video frames captured by a 
camera and displays recognized targets on a display. Stage 0 (the sensor) generates 
frames that are passed through a series of filters and processing elements up to stage 
6, which displays the original image and the identified targets. The frames are 8-bit, 
360x360 pixels, monochrome images, and contain a variable number of targets (from 
3 to 50), depending on the frame. Stages 4, 5 and 6 expose a variable workload, 
proportional to the number of targets, that without feedback adaptation would cause 
queue accumulations with negative effect on the end-to-end frame latency. 
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4.2.2 Performance Metrics and Evaluation. The ATR pipeline contract requires an 
acceptable output frame period interval of [1,5] s, and a frame latency of 0.7-13 s. The 
seven ATR stages run at a variable workload between 0.02s and 1.5s and within the 
same period interval [1,5] s. We first present timing measurements for the feedback 
adaptation at the CPU SM and PSM SM level (Figure 10). We measured the 
processing overhead of the feedback adaptation code (part 2 in Figure 10) and the 
time it takes the SM to react from the moment it receives the current QoS from the 
application until its adaptation command is enforced (part 2 + part 3).  

The measured times are displayed in Table 4.  For the CPU feedback adaptation, 
detection and enforcing the QoS adaptation takes around 4.4ms. Most of the time, 
3.9ms, is spent in a set_qos() operation, a two-way normal, local CORBA call. 
The pipeline adaptation enforcement includes a set_qos() call to the CPU SM that 
controls the sensor (or first stage) that calls directly the first stage with a 
set_qos()call. This explains why enacting pipeline QoS adaptation takes almost 
double than for CPU SM QoS. 

Figure 11 displays CPU feedback adaptation for stage 4 in the ATR pipeline. The 
stage has variable workload that triggers its CPU SM to change its rate. Points A 

Application

1 3

set_qos(newQoS)event(COP)

CPU SM

2

CPU SM

1 3

set_qos(newQoS)event(COP)

Pipeline SM

2

...
Fig. 10.  Measuring feedback adaptation performance 

Fig. 9. ATR pipeline application and its high-level QoS  
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indicate overload that triggers rate decrease and points B indicate chronic 
underutilization that determines rate increase. 

While running the ATR application, the pipeline feedback adaptation mechanism 
makes sure the end-to-end latency and rate stay in the contracted range (Figure 12). In 
order to practically demonstrate its effectiveness, we disabled the pipeline feedback 
adaptation after some time while keeping the sensor input period at a sustained low 
value of 1.48s (0.67Hz). This caused accumulation of frames in stage queues that 
translated into an increasing end-to-end frame latency. While feedback adaptation was 
disabled we actually did not get latency measurements, so we drew a dotted line 
between points A and B. When the latency reached 30s, way above the contracted 
value, we re-enabled pipeline feedback adaptation. Immediately the PSM sensor 
increased the sensor input period up to 5s. The latency went rapidly down (B � C), 
below the threshold, after a brief spike caused by the inertia of the more than 23 
frames already in transit through the pipeline.  

Table 4.  Feedback adaptation performance results for CPU SM and PSM 

Detection and

decision processing (2)

Decision

Enactment (3)

Total Time

(2+3)

CPU SM
0.508 ms 3.914 ms 4.422 ms

Pipeline SM
0.859 ms 6.816 ms 7.675 ms

Fig. 11.  CPU SM feedback adaptation for a task with variable workload  
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The feedback adaptation algorithm we implemented tends to keep the intermediary 
stage queues empty while changing the input sensor period only. This is effective but 
introduces high oscillations for latency. Further research will use control theory to 
design more efficient algorithms that use target history and prediction, able to smooth 
down the end-to-end latency oscillations without compromising overall performance 
and response time. 

Our hierarchical feedback adaptation algorithm proved to be effective and efficient. 
Detection, decision and enforcement take less than 8ms and involve only the CPU 
SMs for the sensor and the last stage that actually reports the latency and rate.  

5 Conclusions 

This paper presents the middleware architecture and implementation of the RTARM 
system. We have first focused on the architectural elements that enable RTARM 
support for integrated services: (1) the uniform service management recursive 
hierarchy and protocols, (2) the common architecture of a Service Manager that 
facilitates rapid object-oriented prototyping, massive code reuse and features plug-
and-play support for SM components. Then we detailed the specific service managers 
that constitute the RTARM hierarchy. The clean and flexible architecture of a SM 
allowed us to integrate quickly a new service provider in the RTARM hierarchy. We 
built an object wrapper around the incompatible interface of the NetEx network 
management system that provided the same CORBA interface implemented by all 
RTARM service managers.  

Finally, we presented experiments that illustrate the practical use of the RTARM 
system and its effectiveness for a real-world Automatic Target Recognition 

Fig. 12.  Latency variation for ATR with and without pipeline feedback adaptation  
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application. We demonstrated that our hierarchical feedback adaptation mechanism is 
able to efficiently control in real time the dynamic behavior of a parallel pipeline 
distributed application. 

We plan to port RTARM to a real-time CORBA implementation, such as WUStL 
TAO [14] and to optimize its performance. We also intend to develop more 
sophisticated feedback adaptation mechanisms with prediction features which would 
further decrease the system reaction time while optimizing the application QoS. 
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