
Hierarchical Architecture for Real-Time Adaptive
Resource Management

Ionut Cardei1, Rakesh Jha2, Mihaela Cardei1, Allalaghatta Pavan2

Honeywell Technology Center
3660 Technology Drive, Minneapolis, MN 55418, USA

1{ionut, mihaela}@cs.umn.edu, 2{jha, pavan}@htc.honeywell.com

Abstract. This paper presents the Real Time Adaptive Resource Management
system (RTARM1), developed at the Honeywell Technology Center. RTARM
supports provision of integrated services for real-time distributed applications
and offers management services for end-to-end QoS negotiation, QoS
adaptation, real-time monitoring and hierarchical QoS feedback adaptation. In
this paper, we focus on the hierarchical architecture of RTARM, its flexibility,
internal mechanisms and protocols that enable management of resources for
integrated services. The architecture extensibility is emphasized with the
description of several service managers, including an object wrapper build
around the NetEx real-time network resource management. We use practical
experiments with a distributed Automatic Target Recognition application and a
synthetic pipeline application to illustrate the impact of RTARM on the
application behavior and to evaluate the system performance.

1 Introduction

Current distributed mission-critical environments employ heterogeneous resources
that are shared by a host of diverse applications cooperating towards a common
mission goal. These applications are generally a mix of hard-, soft- and non-real-time
applications with different levels of criticality and have a variety of structures,
ranging from periodic independent tasks, multimedia streams and parallel pipelines, to
event-driven method-invocation communicating components. The applications
usually tolerate a range of Quality of Services (QoS) and are ready to trade off QoS in
favor of the most critical functions they perform. The distributed systems must be able
to evolve and adapt to the high variability in resource demands and criticality of the
applications as well as to the changing availability of resources.

The current industry trend is to build distributed environments for mission-critical
applications using “Common-Off-The-Shelf” (COTS) commercial hardware and
software components. A middleware layer above the COTS components provides
consistent management for the system resources, decreases complexity and
development costs.

1 Funded by DARPA under NRaD Contract number N66001-97-C-8524.

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 415-434, 2000.
© Springer-Verlag Berlin Heidelberg 2000

415

IFIP/ACM Middleware 2000

416

This paper presents the Real Time Adaptive Resource Management system
(RTARM), developed at the Honeywell Technology Center, that implements a
general middleware architecture/framework for adaptive management for integrated
services aimed to real-time mission-critical distributed applications.

The RTARM system has the following basic features [5]: (1) scalable end-to-end
criticality-based QoS contract negotiation that allows distributed applications to share
common resources while maximizing their utilization and execution quality; (2) end-
to-end QoS adaptation that dynamically adjusts application resource utilization
according to their availability while optimizing application QoS; (3) integrated
services for CPU and network resources with end-to-end QoS guarantees; (4) real-
time application QoS monitoring for integrated services and (5) plug-and-play
architecture components for easy extensibility for new services.

The resource management architecture for RTARM uses an innovative approach
that unifies heterogeneous resources and their management functions into a
hierarchical uniform abstract service model [5]. The building block of the architecture
is the Service Manager (SM). It encapsulates a set of services and their management
functions and exports a common interface to clients and other service managers. This
facilitates recursive hierarchies, in which heterogeneous services are integrated
bottom-up. A higher-level service manager aggregates services provided by itself and
its lower-level SMs and provides clients with a higher-level QoS representation.

In this paper, we focus on the architecture, protocols and implementation of an
RTARM prototype that supports integrated services for real-time distributed
applications. It runs as a middleware on a network of workstations and uses CORBA
for portable communication. A major contribution of our work is the hierarchical
feedback adaptation mechanism [1] that provides efficient dynamic QoS control for
distributed data-flow applications. We illustrate the RTARM capabilities with a
practical experiment with an Automatic Target Recognition (ATR) distributed
application [9] and with a synthetic pipeline demonstration application.

The DARPA Quorum program [11] provides an extensive framework for QoS-
related research projects. Similar efforts for building adaptive management systems
for heterogeneous resources are GRMS [6,7], ARA [9,12], and QualMan [10]. GRMS
is a precursor of RTARM. It introduced the uniform resource model and the atomic
ripple scheduling protocol. Its hierarchical architecture reflects the application data
flow and does not offer feedback adaptation. ARA considers a discrete set of runtime
configurations for distributed applications and does feedback adaptation by resource
reallocation. The ARA architecture is non-recursive and differs considerably from the
uniform RTARM architecture by using proxies for specific service providers.
QualMan is designed for multimedia applications and defines two basic resource
management components, the resource scheduler and the QoS broker, that adhere to a
uniform resource model without considering deeper recursive structures and QoS
composition. [2] introduces a portable and QoS-enabled middleware platform suitable
for building multimedia and real-time distributed applications.

The rest of this paper is organized as follows. Section 2 describes the RTARM
hierarchical architecture, system models and interfaces. Section 3 presents the
architecture of a Service Manager and describes the CPU, network and a higher-level
SM. Section 4 continues with experiments involving an ATR application and

416

IFIP/ACM Middleware 2000

 417

synthetic pipeline applications that emphasize the RTARM capabilities. The paper
concludes in Section 5 with a discussion and future plans.

2 The RTARM System Architecture

We have designed and implemented the RTARM system prototype as a middleware
layer above the operating system and network resources. The middleware approach
provides the benefit of flexibility and portability but the increased distance to the
basic resources makes fine-grained control difficult. The RTARM servers, developed
in C++, run as user-level processes on Windows NT workstations and export a
CORBA (Orbix [8]) interface to clients and applications. The RTARM model
differentiates between clients and applications. A client is any entity that issues a
request for services and negotiates a QoS contract that defines the allocated services.
An application consumes services reserved by a client on its behalf and continuously
cooperates with the resource management system to achieve the best available QoS
while maintaining its runtime parameters within the contracted region. The QoS
contract may change during the application lifetime.

2.1 The Service Manager Hierarchy

The RTARM system employs a hierarchical resource management architecture that
facilitates provision of integrated services over heterogeneous resources. The uniform
resource model [5] defines a recursive structural entity called Service Manager (SM)
that encapsulates a set of resources and their management mechanism. At the bottom
of the hierarchy are SMs that provide management functions for basic resources, such
as CPU or network resources, and directly control resource utilization by application
components. Higher level services are assembled on top of lower-level services,
giving rise to a service hierarchy.

Integrated
Service

CPU SM Network
SM

Clients

APP1 APP2

HSM2

SM1

Fig. 1. Sample RTARM hierarchy consisting of one network SM, one CPU SM and two
integrated service managers

417

IFIP/ACM Middleware 2000

418

Resources as well as negotiation requests are treated uniformly across the entire
hierarchy. Higher-level service managers (HSM) may act as clients for lower-level
SMs (LSM). The hierarchy allows dynamic configuration as new service managers
can join the system at any time. A request for an integrated service sent to an HSM
may require resources from lower-level service providers. The admission protocol
builds a virtual reservation tree over the SM hierarchy that remains valid for the entire
application lifetime. The SM hierarchy forms a directed acyclic graph, with SM as
nodes and edges represented by the “uses-services-from” relation.

Figure 1 illustrates a simple RTARM hierarchy with two LSMs, a CPU and a
Network SM, at the bottom of the hierarchy. Two clients request services from the
two HSMs while applications are consuming CPU and network resources. Section 3
describes the service managers in more detail.

There are several benefits from a hierarchical, recursive, resource management
architecture. First, services with complex, composite QoS representations are easier to
implement on top of basic services. Complex distributed applications benefit from a
richer representation of QoS. It simplifies the application design and facilitates
consistent resource management for QoS-incompatible applications. Regardless of
how complex the application architecture and QoS semantics are at the top of the SM
hierarchy, at the bottom of the hierarchy everything translates to QoS requests for
basic services (CPU and network in our prototype).

The hierarchical architecture of RTARM scales well with large distributed
environments. Many SMs grouped in clusters may benefit from service localization
and avoid communication bottlenecks. Sharing of LSMs between HSMs adds
redundancy, fault tolerance and load balancing. In contrast, the centralized approach
for heterogeneous resource management in distributed environments may introduce
the drawbacks of a central controller: communication and processing bottleneck, one
point of failure and decreased flexibility, but has certain performance benefits and
lower latency.

A potential shortcoming for deep RTARM hierarchies derives from the increased
distance between the top-most-level SM and bottom layer in the hierarchy. This may
cause high latency for time sensitive RTARM functions, such as feedback adaptation
and application control in case of deep SM hierarchies.

Issues related to deadlock prevention and distributed SM synchronization have
been studied for the GRMS project [6,7] and can be easily extended to the RTARM
model.

2.2 RTARM System Models

2.2.1 QoS Model and Translation. The quality of the interaction of a mission-critical
application with a dynamic environment directly reflects its performance. The wide
magnitude of this interaction requires a range for the quality measures. RTARM
supports a multidimensional QoS representation, each dimension specifying an
acceptable range [Qmin, Qmax] of a quality parameter for the application. A set of range
specifications, one per dimension, defines a QoS region. This QoS model facilitates
resource negotiation and makes resource management more flexible.

418

IFIP/ACM Middleware 2000

 419

In the RTARM recursive hierarchy, the QoS representation at a SM reflects the
type of services provided by that SM. An HSM translates a QoS request for integrated
services into individual QoS requests for services provided by itself and its lower-
level SMs. When the SM receives replies from its LSMs, it reassembles the returned
QoS into its own QoS representation in a process called QoS reverse-translation.
RTARM uses a unique implementation for QoS, which is independent of the
addressed service. We define a QoS parameter as a set of name-value pairs, where the
value part is a sequence of one or more scalar primitive data values (string, short,
double, etc.) and the name indicates the specific QoS dimension, such as “rate”,
“workload”, “latency”, etc..

2.2.2 Adaptation Model. RTARM recognizes three situations when application QoS
may be changed after admission [5]: (1a) QoS shrinking/reduction of lower criticality
applications when a new application comes; (1b) QoS expansion/improvement when
applications depart and release resources, and (2) feedback adaptation. While (1a) and
(1b) imply contract changes and involve other applications, feedback adaptation does
not change the contract but only varies the current operational point of the application
within the contracted QoS region. Feedback adaptation is like closed loop control. It
relies on monitoring of delivered QoS and uses the difference between delivered and
desired QoS to adapt the application behavior.

2.3 RTARM Interfaces

Each SM implements and exports three interfaces: (1) Negotiator for admission
control, collateral adaptation, QoS expansion and application control, such as
suspend, resume and end; (2) Service Manager for SM hierarchy set up
(register/deregister SM) and (3) Monitor for application monitoring and event
propagation.

For admission control and adaptation RTARM uses a modified version of the
GRMS Ripple Scheduling algorithm [6,7]. A detailed description with examples
follows in Section 3.4. Briefly said, RTARM admission and adaptation employ a
transaction-based two-phase commit protocol applied recursively at each SM. The
first phase executes a service availability test starting from the SM that received the
admission request, down on the reservation tree that resulted from the QoS translation
and request dispatch process. The available, reserved QoS propagates back to the
initiator SM from the lowest SM layer, being reverse-translated along the way. In the
second phase, the initiator SM assesses the success status of the reservation phase and
the transaction is committed or aborted, implying service reservations along the
spanning tree to be committed, or to be cancelled, respectively. If not enough
resources are available, a SM will try to adapt lower criticality applications to their
minimum contracted QoS and use the released resources for the new application.
Later, when resources become available, the SM expands the QoS for the most critical
applications.

Sometimes in order to admit a new, more critical application, it is enough to
squeeze the QoS of only a part of an existing distributed application. Then, changes in
the high-level QoS may require collateral adaptation of other components of the

419

IFIP/ACM Middleware 2000

420

application that do not directly impact admission of the new application. For instance,
for a multimedia stream application having frame rate as QoS parameter, if one
processing stage is adapted to the minimum rate, than all other stages will run at the
same low rate, too.

The next section presents the object architecture of the SM and details the
implementation of a CPU, a Network and a Higher-level SM.

3 RTARM Service Managers

3.1 The Service Manager Architecture and Implementation

The unified resource model provides the benefits of a uniform internal architecture for
all service managers (Figure 2) and a common interface between them.

The arrows in the figure indicate object service requests. The components in a SM are
as follows:
• Negotiator: brokers contract admission, delegates responsibilities to other

components and exports the external RTARM CORBA interface.
• Translator: translates higher-layer integrated QoS into lower-layer QoS

representation.
• Allocator: handles resource allocation/release when no adaptation is necessary.
• Adapter: handles resource allocation/release with adaptation and QoS

expansion/contraction.
• Scheduler: determines whether allocation of resources and expansion of

application QoS are feasible.
• Enactor: enforces changes in application QoS or status.

Fig. 2. The internal object architecture of a service manager

Translator

Negotiator

Enactor

Allocator

Adapter

Scheduler
FB-Adapter Detector

Monitor

Shared Data Structures:
SMs, Application Contracts,
FB-Adaptation and Monitoring

Involved in Admission
Control and Cross-

Application Adaptation

Involved In Feedback
Adaptation Only

Configuration Manager

420

IFIP/ACM Middleware 2000

 421

• Monitor: keeps an eye on applications in execution and passes status information
and QoS usage to the Detector. Exports external RTARM CORBA interface.

• Detector: uses application runtime information (e.g. current QoS operational point)
to detect significant changes in application operation (e.g. overload,
underutilization, contract violation). Triggers Feedback Adapter actions.

• Feedback Adapter: decides corrective actions for applications when their runtime
status changes significantly.

Additional data structures exist to hold information regarding application contracts,

other service managers and available services.
Applications implement a simple CORBA interface that allows SMs to change

their QoS and status. LSMs keep proxies for the application CORBA server objects.
All RTARM CORBA servers and applications are started in the shared, multi-client
activation mode.

A SM component class has the same object interface regardless of the SM position
in the hierarchy or the resources the SM controls. For instance, the Adapter object
implements the same functions in all SMs, but in a way that depends actually on the
scope of the SM. Not all components are required within a SM. For example, a
Translator may exist only inside an HSM.

RTARM provides a common object oriented execution framework that allows
users to dynamically load SM components from shared libraries during runtime
configuration. A configuration manager uses a mechanism similar to a Factory
Method [4] to instantiate SM components. It also passes configuration information
extracted from a configuration file to the SM components during their initialization.

For all SMs there is a single executable program that originally contains the empty
SM framework and the configuration manager. By loading specialized components
from shared libraries, the configuration manager practically starts different SMs. We
use this technique when we initialize the CPU, Network and Higher-level SMs with
components from specific Windows NT DLLs.

The flexibility of this plug-and-play feature permits implementation of a new SM
by just replacing a set of components that realize a particular SM component
interface, without rewriting the whole program. Writing a new SM component only
requires the header file with the object interface, the executable program (common
execution framework) and its corresponding library.

3.2 The CPU Service Manager

The CPU SM provides periodic applications access to a processor resource. Each
computing node has a CPU SM, allowing concurrent applications to share a CPU. The
application QoS is bi-dimensional: application execution rate (R) and iteration
execution time (W) (Figure 3). The COP (Current Operational Point) represents the
current values for the multidimensional QoS.

421

IFIP/ACM Middleware 2000

422

3.2.1 Admission and Adaptation. The specific CPU scheduling policy is isolated
within the Scheduler object and the Monitor keeps track of application CPU
utilization. The invariant condition for admission and schedulability for n applications
is Σi=1..nRiWi < 100% processor utilization. A more sophisticated CPU SM can be
implemented at any time, by just using the plug-and-play feature, replacing the default
Scheduler component with one specific to the scheduling discipline used.

The CPU SM service allocation unit for each periodic application is the fraction of
CPU utilization (R x W). The CPU SM communicates this information to applications
and assumes they are well behaved and keep their process utilization below the
allocated limits. The SM scheduler only assigns application rates and does not control
the underlying OS scheduler. This policy works fine on a larger time scale and for our
experimental purposes. For real-time performance one solution is to implement a soft
real-time CPU scheduling server above the OS scheduler [10]. Commercial operating
systems with soft real-time capabilities, like Windows NT and Solaris, limit the
scheduler granularity to 10-20ms.

The CPU SM implements the Ripple Scheduling admission protocol. Because it is
at the bottom of the SM hierarchy and has no LSMs, it does not make any other
recursive calls. Adaptation and collateral adaptation reduce the application rate to the
minimum contracted value. QoS expansion increases the application contracted QoS
(rate) to the best available value.

3.2.2 Feedback Adaptation. The CPU SM controls the task rate in real-time. It
cannot change the workload, which is left exclusively under application control.
Applications send their current QoS operational point as events to the CPU SM
monitor at the end of each periodic iteration. At any moment, the QoS COP may vary
so that R x W ≤ L, where L is the fraction of the contracted processor utilization. The
CPU SM adjusts the COP as follows: (1) increase rate when workload decreases; (2)
decrease rate on overload, when the workload pushes the COP outside the contracted
region.

Workload

Requested
region

Feasible
region

Rate

C.O.P

RxW=%CPU utilization=constant

Fig. 3. CPU Service Manager QoS representation

422

IFIP/ACM Middleware 2000

 423

3.3 The Network Service Manager

We integrated the NetEx real-time network management system [3,13] from Texas
A&M University into the RTARM system. NetEx runs as middleware and provides
connection-oriented real-time communication with guaranteed delay and bandwidth
over COTS network infrastructure, such as ATM and switched 10/100 Mbps Ethernet.
NetEx uses a tri-dimensional QoS: period, delay and message size and adds the
connection source and destination network addresses to the connection contract. The
NetEx resource management interface is, however, incompatible with the RTARM
interfaces. It has different semantics and it does not export the two-phase commit
protocol.

We built an object-oriented wrapper [4] around NetEx that hides the
incompatibilities and exports the RTARM interface to clients, applications and HSMs
(Figure 4). The wrapper method can be used to integrate any service provider in the
RTARM architecture.

The wrapper implements three SM components, Negotiator, Adapter and Enactor,
that map the RTARM interface calls for admission, adaptation and expansion to the
native NetEx API. NetEx does not provide feedback adaptation for connections, so
the wrapper SM does not implement feedback adaptation either. It is important to
note, however, that our HSM for integrated services for parallel pipeline applications
implements hierarchical feedback adaptation. This is detailed in the next section.

3.4 The Higher-Level Service Manager for Integrated Services

Within the RTARM service manager hierarchy, HSMs aggregate services from LSMs
(CPU, Network or any other type of SM) and provide RTARM services to

Negotiator

Adapter Enactor

NetEx Library

Allocator Scheduler

HSM

NetEx Object
Wrapper

Application

Fig. 4. The object wrapper for NetEx communication manager

423

IFIP/ACM Middleware 2000

424

applications that need a more complex QoS representation. The unified resource
model enables recursive deployment of HSMs. Our HSM implementation is generic
and is able to support various types of distributed applications with arbitrary QoS
representations that map to available LSM QoS. The only restriction is that the Ripple
Scheduling admission and adaptation procedure and the hierarchical feedback
adaptation must not contradict the application semantics. The QoS Translator SM
component inside an HSM is responsible for translating a QoS request into something
the LSMs understand. Replacing the translator component with a different one (for a
different QoS representation) produces a HSM capable of supporting different
integrated services.

3.4.1 Admission and Adaptation. The Negotiator implements the recursive two-
phase admission protocol that runs at the heart of each HSM. The code for the first
phase, reservation, follows next:

test_reservation(in reqQos, out avQos, in candidates,
 out adaptedApps)
// reqQoS is the requested QoS region
// avQoS is the returned (acceptable) QoS region
// candidates is the list of applications that may be
// adapted in order to accommodate the current request
// adaptedApps is the list of adapted applications
{
translate reqQos into:
 LS – list of requested services from LSMs, and
 LreqQos – corresponding QoS per service.

 for each service S from LS {
 for each LSM lsm that provides service S {
 success = lsm->test_reservation(LreqQoS[lsm],
 lsmAvQos[S],
 candidates that run on lsm,
 lsmAdaptedApps[S])
 if success then mark admitted service
 and continue with next service S from LS
 }
 if service S was not admitted then {
 cancel all previous successful reservations

 return false
 }
 }
 // now all services from LS have been admitted

 reverse-translate and maximize the returned QoS from
 lsmAvQos into avQoS

 perform collateral adaptation if necessary
 return true

}

The second phase that commits the resource reservation from phase I is

implemented like this:

424

IFIP/ACM Middleware 2000

 425

commit_reservation(in committedQos, in adaptedApps)
// commitedQos is the QoS region to commit
// adaptedApps is a list of applications (adapted in phase
// I) whose adaptations have to be committed
{
 translate commitedQos into:

Llsm – list of LSMs and
LcommittedQos – committed QoS per service

 for each lsm from Llsm {
 lsm->commit_reservation(LcommitedQos[lsm],
 adaptedApps that run on lsm)
 }

 save committedQos into the application contract
}

The cancel_reservation() call is similar to commit_reservation() and is

omitted here.

Figures 5 and 6 illustrate examples of admission of a new application with id 3 at an
HSM H that has 3 LSMs, L1, L2, L3.

Applications 1 and 2 are already running at H and use services from L1, L2, L3. For
example, application 1 (denoted with 1 at H) runs also at L1 (1.1), at L2 (1.2) and L3

(denoted 1.3). The new application 3 requires two services and maps to 3.1 and 3.2. In
example a) both 3.1 and 3.2 are admitted at L1 and L2. Admission for 3.1 needs
adaptation of application 1.1 on L1. This triggers collateral adaptations for 1.2 as well
as 1.3, as the entire application 1 must be adapted. Calls 4 and 5 (test_adapt) ask
L2 and L3 to adapt collaterally application 1. During the execution of
commit_reservation on H (call number 6), the collateral adaptation of 1 is
committed on L1 and L2 with the two commit_reservation calls plus the extra
commit_adapt call (9) to L3. The example from Figure 6 shows the call sequence
when application 3 is accepted by L1, but rejected both by L2 and L3. HSM H finally
rejects 3 and returns false to the test_reservation call 1.

1, 2

1.1
2.1
3.1

1.2
3.2

1.3
2.2

1-test_reservation(3)

 2
7 3

4
8

5
 9

RTARM calls:
1,2,3 – test_reservation
4,5 – test_adapt
6,7,8 – commit_reservation
9 – commit_adapt

6-commit_reservation(3)

L2L1 L3

H

Fig. 5. Example of successful admission of application 3 at the HSM “H”

425

IFIP/ACM Middleware 2000

426

We have implemented a Pipeline Service Manager (PSM), an HSM that aggregates
services from lower-level SMs (CPU, Network, other HSMs) into a higher-level
integrated representation suited for pipeline applications. Our PSM supports periodic
independent tasks and periodic parallel pipeline applications, consisting of
communicating stages in an arbitrary configuration, with a single source and a single
sink node. We assume a sensor enters periodically data frames in the pipeline. Each
frame is processed by a stage or a composite stage [1] (consisting of parallel strings of
elementary stages) and then sent to the next stage. Such a pipeline application is
depicted in Figure 7.

For periodic pipeline applications, we use a QoS consisting of end-to-end message
latency and rate for the final stage. The admission contract also contains execution
time for each stage as well as the message size for each inter-stage connection. It is
the job of the pipeline translator to decompose the integrated-service pipeline request
into CPU and network admission requests. We assume all stages use the same range
for rate. The pipeline QoS (end-to-end latency, frame rate plus state workloads and
message sizes) translates into CPU QoS parameters for all stages and Network QoS
for all network connections. The CPU QoS rate range is the same as that for the
pipeline frame rate. The pipeline translator uses the same rate range and a fraction of
the end-to-end pipeline latency to generate the Network QoS parameters.

RTARM calls:
1,2,3,4 – test_reservation
5 – cancel_reservation

1, 2

1.1
2.1
3.1

1.2 1.3
2.2

 2
5

3
4

3.2 not admitted

1-test_reservation(3)

H

L2L1 L3

Fig. 6. Example of failed admission of application 3 at the HSM “H”. Stage 3.2 is

denied by both L1 and L2

2

0

1

3 4 5 6

Fig. 7. Sample parallel pipeline application with 7 stages

426

IFIP/ACM Middleware 2000

 427

3.4.2 Hierarchical Feedback Adaptation for Parallel Data-Flow Applications. We
have implemented an innovative and efficient hierarchical feedback adaptation
mechanism for parallel pipeline applications [1]. It performs feedback adaptation at
two levels in the SM hierarchy. The pipeline end-to-end latency is controlled at the
HSM level while the CPU SMs perform CPU feedback adaptation independent of the
HSM.

The pipeline QoS parameter we consider critical and want to control is the end-to-
end latency. As the pipeline evolves in time, rates of intermediate stages may change
as a result of CPU SM feedback adaptation. In normal circumstances, the input sensor
period is maintained at a value greater than the current period of any stage/substage of
the parallel pipeline application, but it can get lower because of independent CPU
feedback adaptation. When accumulation of queues between stages increases the end-
to-end latency beyond a maximum threshold, the PSM sets the input sensor period at
the maximum value from the pipeline contract. A finite state machine in the PSM
maintains this maximal period for a fixed time, allowing the queues to empty. Then,
the PSM sets again the input sensor period to the maximal current period of all stages,
typically lower than maximum period from the contract. We have proved in [1] that
the end-to-end latency decreases, and that after a finite number of frames the pipeline
enters a region of stability where the end-to-end latency and the output frame rate are
within the contracted region.

This method is simple and quite efficient, as the only parameter to be adjusted is
the sensor input period, while the pipeline stages are controlled only by the
corresponding CPU SM. This mechanism avoids costly communication and
coordination between the HSM and all the CPU SMs. The information required for
pipeline feedback adaptation is minimal: the end-to-end latency for the current frame
and the maximal current period of all stages.

In the next section we present experiments with synthetic pipeline applications and
an Automatic Target Recognition application and we give performance estimates for
the RTARM system.

4 Experiments and Performance Evaluations

In this section we present two preliminary experiments that reflect our current
research progress. We need further work to fully assess the implication of the
hierarchical architecture to the overall system performance. The first experiment deals
with synthetic pipeline applications and yields performance numbers for admission,
adaptation and QoS expansion for the CPU, Network and Pipeline SMs. The second
experiment tests feedback adaptation for parallel pipeline applications. The Forward
Looking Infrared Automatic Target Recognition application provides an excellent
testbed to prove the efficiency of our hierarchical feedback adaptation technique.

The runtime environment for these experiments consists of three 450MHz Dell
Workstation-400 machines, running Windows NT, connected via a Fore ATM switch
with OC-3c (155Mbps) links. Each machine hosts a CPU SM. Both the network SM
that controls the inter-stage communication and the pipeline SM run on one of the
three machines. We consider their own CPU resource consumption negligible. All

427

IFIP/ACM Middleware 2000

428

inter-SM CORBA communication uses a secondary Fast Ethernet network, so the
ATM lines remain 100% available for inter-stage communication. We used the NT
performance counter for precise time measurements.

4.1 Performance for Admission and Adaptation

For evaluating admission, adaptation and expansion performance for pipeline
applications we devised two scenarios.

Scenario 1.
1. We tested admission of three-stage pipelines on a SM hierarchy with one HSM (P),

one NSM (N) and two CPU SMs (C1, C2), as illustrated in Figure 8. The sequence
of events is:

2. admit pipeline 1; no adaptation required.
3. admit pipeline 2 with higher criticality; stage 1.1 is adapted due to CPU constraints

on SM C1; stages 1.2, 1.3 and network connections are adapted collaterally.
4. terminate pipeline 2; pipeline 1 is expanded back to its original QoS (all stages and

the network connections).
5. try admission for pipeline 3 with lower criticality than 1; not enough CPU

resources, admission is denied.
6. terminate pipeline 1.

Scenario 2 runs on the same environment as Scenario 1 and is similar, except the
pipeline applications now have two stages and adaptation is caused only by network
bandwidth constraints, not by CPU resource insufficiency.

Throughout the tests we measured the time required to complete the RTARM
interface calls for admission, adaptation and expansion for the CPU, Network and

Fig. 8. Scenario 1. SM configuration and stage mapping

Client

P

1.1
1.2

1.3

2.1
2.2

2.3

Pipeline 1

Pipeline 2

C2C1 N

428

IFIP/ACM Middleware 2000

 429

Pipeline SM. The measured time consists of the actual processing overhead and time
to complete nested calls to: (1) application CORBA servers for the CPU SM; (2) the
NetEx management subsystem and application CORBA servers for the Network SM
(NetEx wrapper) and (3) LSMs for the Pipeline SM.

The performance measurements for the Pipeline SM are listed in Table 1, for the
CPU SM in Table 2 and for the Network SM in Table 3. All values are expressed in
milliseconds.

For the PSM the “Total Time” columns include the sequence of recursive RTARM

CORBA calls to the LSMs and the algorithm processing overhead. Some calls may

Table 1. Performance measurements for the Pipeline Service Manager

w/o Adaptation with Adaptation
Total time Processing time* Total time Processing time

test_reservation 99.159 17.972 118.344 18.899
commit_reservation 2239.02 6.366 2376.34 11.338
cancel_reservation 7.102 0.313

test_expansion 212.751 4.508
commit_expansion 39.987 4.921

end_app 252.325 1.414 460.348 4.145

w/o Adaptation with Adaptation
with CORBA w/o CORBA with CORBA w/o CORBA

test_reservation 0.447 0.707
commit_reservation 525.165 0.474 544.796 1.397
cancel_reservation 0.146 0.168

test_adapt 0.234
test_expansion 0.189

commit_expansion 3.132 0.112
end_app 4.619 0.846

Table 2. Performance measurements for the CPU Service Manager

 w/o Adaptation with Adaptation
Total
time

Processing
time

CORBA
time

NETEX
time

Total
time

Processing
time

CORBA
time

NETEX
time

test_reservation 22.475 3.147 0 19.328 48.414 3.901 0 44.513
commit_reservation 45.434 0.637 44.797 0 49.962 1.105 48.857 0
test_adapt 0.056 0.056 0 0
test_expansion 33.093 0.355 0 32.738
commit_expansion 0.697 0.697 0 0
end_app 10.08 0.289 0 9.791

Table 3. Performance measurements for the Network Service Manager

429

IFIP/ACM Middleware 2000

430

require adaptation of lower criticality applications, such as test_reservation() at
step 2 in scenario 1; other calls, like the expansion operations, are 100% with
adaptation. From Table 1 we notice that the reservation operations and end_app()
require extra processing work if adaptation is involved. Also the processing time for
test_reservation() is considerably larger than all other calls since it involves
back-and-forth QoS translation and reverse-translation. But what stands out is the
large total time consumed for commit_reservation() for a three stage pipeline
application, approximately 2.3 seconds. This time includes the duration for
commit_reservation() calls to the CPU SM that take more than 500ms for each
pipeline stage (see Table 2). A CPU commit_reservation() call actually generates
a set_qos() call with the committed application QoS to the application stage
CORBA server. The stages are not up and running when admission happens.

The Orbix daemon [8] starts the stage process and passes the CORBA server IIOP
TCP port number and IP address to the CPU SM. Only after the stage is up and
initialized it is able to respond to the set_qos() CORBA call from the CPU SM.
The time to start a Windows GUI application (the pipeline stage) on Windows NT 4.0
is around half a second for our test configuration.

Table 3 shows time measurements for the Nework SM These are more complex
since the NetEx wrapper communicates through TCP/IP with the NetEx Host Traffic
Manager [3,13] and stages through set_qos() CORBA calls (only during
commit_reservation()). The communication latency overhead caused by NetEx
is comparable to CORBA communication overhead, between 10 and 45ms.

We conclude that operation of the RTARM system is efficient, except the
commit_reservation() call for CPU applications. This major delay can be
completely avoided by pre-loading the applications before the client submits the
pipeline contract to the HSM. The overall system performance may further improve
by using a faster CORBA implementation that guarantees real-time operation
deadlines.

4.2 Performance for Hierarchical Feedback Adaptation

4.2.1 The Automatic Target Recognition Experiment. We tested the RTARM
feedback adaptation mechanism on a true mission-critical application. The ATR
application, schematically shown in Figure 9, processes video frames captured by a
camera and displays recognized targets on a display. Stage 0 (the sensor) generates
frames that are passed through a series of filters and processing elements up to stage
6, which displays the original image and the identified targets. The frames are 8-bit,
360x360 pixels, monochrome images, and contain a variable number of targets (from
3 to 50), depending on the frame. Stages 4, 5 and 6 expose a variable workload,
proportional to the number of targets, that without feedback adaptation would cause
queue accumulations with negative effect on the end-to-end frame latency.

430

IFIP/ACM Middleware 2000

 431

4.2.2 Performance Metrics and Evaluation. The ATR pipeline contract requires an
acceptable output frame period interval of [1,5] s, and a frame latency of 0.7-13 s. The
seven ATR stages run at a variable workload between 0.02s and 1.5s and within the
same period interval [1,5] s. We first present timing measurements for the feedback
adaptation at the CPU SM and PSM SM level (Figure 10). We measured the
processing overhead of the feedback adaptation code (part 2 in Figure 10) and the
time it takes the SM to react from the moment it receives the current QoS from the
application until its adaptation command is enforced (part 2 + part 3).

The measured times are displayed in Table 4. For the CPU feedback adaptation,
detection and enforcing the QoS adaptation takes around 4.4ms. Most of the time,
3.9ms, is spent in a set_qos() operation, a two-way normal, local CORBA call.
The pipeline adaptation enforcement includes a set_qos() call to the CPU SM that
controls the sensor (or first stage) that calls directly the first stage with a
set_qos()call. This explains why enacting pipeline QoS adaptation takes almost
double than for CPU SM QoS.

Figure 11 displays CPU feedback adaptation for stage 4 in the ATR pipeline. The
stage has variable workload that triggers its CPU SM to change its rate. Points A

Application

1 3

set_qos(newQoS)event(COP)

CPU SM

2

CPU SM

1 3

set_qos(newQoS)event(COP)

Pipeline SM

2

...
Fig. 10. Measuring feedback adaptation performance

Fig. 9. ATR pipeline application and its high-level QoS

2

0

1

3 4 5 6

Frame Arrival PeriodEnd-to-End Latency

time

431

IFIP/ACM Middleware 2000

432

indicate overload that triggers rate decrease and points B indicate chronic
underutilization that determines rate increase.

While running the ATR application, the pipeline feedback adaptation mechanism
makes sure the end-to-end latency and rate stay in the contracted range (Figure 12). In
order to practically demonstrate its effectiveness, we disabled the pipeline feedback
adaptation after some time while keeping the sensor input period at a sustained low
value of 1.48s (0.67Hz). This caused accumulation of frames in stage queues that
translated into an increasing end-to-end frame latency. While feedback adaptation was
disabled we actually did not get latency measurements, so we drew a dotted line
between points A and B. When the latency reached 30s, way above the contracted
value, we re-enabled pipeline feedback adaptation. Immediately the PSM sensor
increased the sensor input period up to 5s. The latency went rapidly down (B � C),
below the threshold, after a brief spike caused by the inertia of the more than 23
frames already in transit through the pipeline.

Table 4. Feedback adaptation performance results for CPU SM and PSM

Detection and

decision processing (2)

Decision

Enactment (3)

Total Time

(2+3)

CPU SM
0.508 ms 3.914 ms 4.422 ms

Pipeline SM
0.859 ms 6.816 ms 7.675 ms

Fig. 11. CPU SM feedback adaptation for a task with variable workload

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

100 110 120 130 140 150 160 170 180 190 200

Experiment time (seconds)

W orkload Rate CPU Load=Rate x W orkload

A

B

A

B

432

IFIP/ACM Middleware 2000

 433

The feedback adaptation algorithm we implemented tends to keep the intermediary
stage queues empty while changing the input sensor period only. This is effective but
introduces high oscillations for latency. Further research will use control theory to
design more efficient algorithms that use target history and prediction, able to smooth
down the end-to-end latency oscillations without compromising overall performance
and response time.

Our hierarchical feedback adaptation algorithm proved to be effective and efficient.
Detection, decision and enforcement take less than 8ms and involve only the CPU
SMs for the sensor and the last stage that actually reports the latency and rate.

5 Conclusions

This paper presents the middleware architecture and implementation of the RTARM
system. We have first focused on the architectural elements that enable RTARM
support for integrated services: (1) the uniform service management recursive
hierarchy and protocols, (2) the common architecture of a Service Manager that
facilitates rapid object-oriented prototyping, massive code reuse and features plug-
and-play support for SM components. Then we detailed the specific service managers
that constitute the RTARM hierarchy. The clean and flexible architecture of a SM
allowed us to integrate quickly a new service provider in the RTARM hierarchy. We
built an object wrapper around the incompatible interface of the NetEx network
management system that provided the same CORBA interface implemented by all
RTARM service managers.

Finally, we presented experiments that illustrate the practical use of the RTARM
system and its effectiveness for a real-world Automatic Target Recognition

Fig. 12. Latency variation for ATR with and without pipeline feedback adaptation

0

5

10

15

20

25

30

35

40

350 450 550 650 750 850
Elapsed Time (seconds)

s
e
c
o
n
d
s

Disable pipeline feedback
adaptation at t=460s

Enable pipeline
feedback adaptation at
t=764s

A

B

C

Sensor Input
Period

End-to-end
Latency

Threshold

433

IFIP/ACM Middleware 2000

434

application. We demonstrated that our hierarchical feedback adaptation mechanism is
able to efficiently control in real time the dynamic behavior of a parallel pipeline
distributed application.

We plan to port RTARM to a real-time CORBA implementation, such as WUStL
TAO [14] and to optimize its performance. We also intend to develop more
sophisticated feedback adaptation mechanisms with prediction features which would
further decrease the system reaction time while optimizing the application QoS.

References

1. Cardei, M., Cardei, I., Jha, R., Pavan, A., “Hierarchical Feedback Adaptation For Real-Time
Sensor-based Distributed Applications”, to appear in the Proceedings of the 3rd IEEE
International Symposium on Object-Oriented Real-time distributed Computing, 2000

2. Coulson, G., “A Configurable Multimedia Middleware Platform”, IEEE Multimedia, Vol 6,
No 1, 1999

3. Devalla, B., Sahoo, A., Guan, Y., Li,C., Bettati, R., Zhao, W., “Adaptive Connection
Admission Control for Mission Critical Real-Time Communication Networks”, to appear in
International Journal of Parallel and Distributed Systems and Networks, Special Issue On
Network Architectures for End-to-end Quality-of-Service Support

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J., “Design Patterns. Elements of Reusable
Object-Oriented Software”, Addison-Wesley, 1994

5. Huang, J., Jha, R., Heimerdinger, W., Muhammad, M., Lauzac, S., Kannikeswaran, B.,
Schwan, K., Zhao, W., Bettati, R.. “RT-ARM: A Real-Time Adaptive Resource
Management System for Distributed Mission-Critical Applications”, Proceedings of the
IEEE Workshop on Middleware for Distributed Real-Time Systems and Services, December
1997

6. Huang, J., Wang, Y., Cao, F., “On Developing Distributed Multimedia Services for QoS and
Criticality Based Resource Negotiation and Adaptation”, Journal of Real-Time Systems,
May 1999

7. Huang, J., Wang, Y., Vaidyanathan, N.R., Cao, F., “GRMS: A Global Resource
Management System for Distributed QoS and Criticality Support”, Proceedings of the 4th
IEEE International Conference on Multimedia Computing and Systems, June 1997

8. IONA Technologies, “The Orbix Programmer’s Guide”, 1997
9. Jha, R., Muhammad, M., Yalamanchili, S., Schwan, K., Rosu, D., deCastro, C., “Adaptive

Resource Allocation for Embedded Parallel Applications”, Proceedings of the 3rd
International Conference on High Performance Computing, December 1996

10. Nahrstedt, K., Chu, H., Narayan., S., “QoS-aware Resource Management for Distributed
Multimedia Applications”, to appear in Journal on High-Speed Networking, Special Issue on
Multimedia Networking

11. Quorum, http://www.darpa.mil/ito/research/quorum
12. Rosu, D., Schwan, K., Yalamanchili, S., “FARA – A Framework for Adaptive Resource

Allocation in Complex Real-Time Systems”, Proceedings of the 4th IEEE Real-Time
Technology and Applications Symposium, June 1998

13. Sahoo, A., Li, C., Devalla, B., Zhao, W., “Design and Implementation of NetEx: A Toolkit
for Delay Guaranteed Communications”, Proceedings of Milcom, December 1997

14. Schmidt, D., Levine D., Mungee S., “The Design of the TAO Real-Time Object Request
Broker”, Computer Communications Special Issue on Building Quality of Service into
Distributed Systems, Elsevier Science, 1998

434

IFIP/ACM Middleware 2000

