
Campus Assistant Application on an Android

Platform

Mihaela Cardei, Iana Zankina, Ionut Cardei, and Daniel Raviv

Department of Computer and Electrical Engineering and Computer Science

Florida Atlantic University

Boca Raton, FL 33431, USA

E-mail: {mihaela@cse., izankina@, icardei@cse., ravivd@}fau.edu

Abstract—College campuses can be large, confusing, and
intimidating for new students and visitors. Finding the
campus may be easy using a GPS unit or Google Maps
directions, but this changes when you are actually on
the campus. There is no service that provides directional
assistance within the campus itself. This paper presents
the architecture and design specifications for a campus
assistant application on an Android platform. Scenarios
are illustrated for the Florida Atlantic University - Boca
Raton campus.

Keywords: campus assistant, Android platform, campus
map editor, ubiquitous computing, Google map.

I. INTRODUCTION AND RELATED WORKS

Recent technological advancements have gain popu-

larity finding many applications in everyday activities.

There are many devices and different applications that

focus on directing the user to desired locations. Today’s

drivers are well equipped for travel thanks to the GPS

units [4] many have in their cars. GPS applications allow

users to enter a destination and based on their current

coordinates display the fastest way to the destination

[8]. Additional features have evolved over time, such as

displaying congested routes, which allow users to make

smart driving decisions and improve driving safety. This

saves time and stress when going to unfamiliar places or

taking long trips.

Google Maps and GPS systems have become indis-

pensable in recent years, with vast amounts of users

relying on them for directions [6], but their capabilities

have not yet been fully applied to university campuses.

Directions within campuses are not available using the

Google maps application. Taking for example the Boca

Raton campus at Florida Atlantic University (FAU),

when the Engineering East Building, which is the home

of the Computer and Electrical Engineering and Com-

puter Science Department, is entered as the Destination

no complete directions are provided. The directions lead

to the FAU campus, but not to the building. In addition,

not all the buildings and parking lots are shown on

Google Maps.

Campuses can be quite large and confusing. Visitors,

new students, and staff can have a difficult time get-

ting around. Even when they are asking for directions,

they often time cannot find the destination because the

directions involve knowing the surrounding buildings

and landmarks of the campus. In addition, some of the

campuses, such as the Boca Raton campus at FAU, are

growing fast, with new buildings and facilities being

added. This can get quite stressful, especially considering

people are often on a schedule and need to get to a

certain location on time. Eliminating this stress and

confusion would improve the overall atmosphere on

campus. Since smartphones are a ubiquitous technology

nowadays, it makes sense to use them to facilitate

campus directions.

The problem that we address in this paper is on

using the current advances in technology to provide a

mechanism to facilitate users navigation in campuses.

Our objective is to design and implement a user-friendly

system that provides driving directions to buildings and

parking lots. The system provides both driving and

walking directions to the destination. The user has the

option to select a parking lot close to the destination

building, based on the user type (e.g. visitor, staff, or

student).

One of the most popular smartphone platforms is

Android [1], which is a Linux-based operating sys-

tem designed primarily for touchscreen mobile devices.

Google has released its code as open source, triggering

a large community of developers to write applications

that extend the functionality of the device using a cus-

tomized version of Java. Due to its superior technological

capabilities, we propose to develop the campus assistant

application on the Android platform.

There are some initiatives related to our project.

Researchers from The University of California at Santa

Barbara are working on an Interactive Map Project [7].

Their map allows users to select buildings to zoom into

and locate, as well as finding a room within a building.

This project does not support navigation.

Another application is the University of California,



Fig. 1. Campus Map Architecture

San Diego campus map. This map is accessed through

a web browser and allows the user to select a source

location and a destination. When this information is

submitted, the shortest path is outlined on the map, and

the distance and expected walking time is shown [5].

This web-based application does not allow however for

driving directions within the campus.

There are also several apps [2] that provide campus

maps for a number of universities and offer services

such as a directory of buildings and locations, building

photograph gallery, display of current location, zoom

in/out. None of these applications however implement

both driving and walking directions, navigation, consid-

ering the user type.

II. CAMPUS ASSISTANT APPLICATION

ARCHITECTURE

In this section we present the architecture for the

campus assistant application. We derive the following

requirements for the system:

• The application is available on the Android plat-

form.

• The application allows a user to select a source and

destination locations and displays the shortest path.

The user can select whether this is a walkable or

drivable path. This feature is especially useful on

campus, since people often walk between buildings.

Alleys and various shortcuts can be used in this

case.

• The application provides navigation capabilities

based on the user type. A user enters the destination

location and based on the current location a shortest

driving or pedestrian path is displayed. If the desti-

nation is a building, then based on the user type (e.g.

student, staff, visitor) a path to a compatible parking

lot is provided. This is particularly important in

campuses, where there are different parking lots

assigned to visitors, students, and staff.

• The application provides rerouting if the user de-

parts from the projected path.

Figure 1 presents the architecture of our campus as-

sistant application. Since Google Maps does not provide

any information on campus locations (e.g. buildings,

parking lots), we have to build the map data structures

that describe campus locations, roads, alleys, traffic

signs, everything needed for directions and navigation.

We designed a MapEditor tool to edit and manage

campus maps. These maps are stored on the server as

XML files.

The MapEditor tool uses HTML 5, JavaScript, and

jQuery. Google Maps API v3 is used to display the

map tiles and the various markers representing campus

map concepts (buildings, etc.). This web-based tool is

stored on the Mapping Server and can be accessed from

smartphones and PCs using popular web browser such

as Opera, FireFox, Internet Explorer, and Chrome.

The MapEditor tool allows fast and easy manipulation

of a map and its XML file. Since buildings, streets and

other aspects of the campus are not searchable on Google

Maps, this has to be done manually by the MapEditor

User. The MapEditor lets the user edit a campus map

superimposed on the Google Map and saves it as an

XML file on the server. It also has version management

for existing XML files and also allows users to directly

manipulate the map XML representation.

2



Fig. 2. FAU Campus Map Opened in the MapEditor

When the campus assistant app is deployed, the

MapEditor is used to keep the campus map up to

date. Smartphone users automatically download the most

recent version of a map and this simplifies maintenance.

Map editing is useful when new locations (e.g. buildings)

are being added to the campus or locations change their

names.

The following features are available to the MapEditor

User: load an existing campus map, edit map features

(create/edit buildings, parking lots, road/alley segments,

traffic signs), save a map to the Mapping Server as

an XML file, display the map XML representation.

Figure 2 shows a screenshot with a section of the FAU

campus map loaded in the MapEditor, with icons for

buildings (“B” markers), parking lots (“P” markers),

walkable (green), and drivable (blue) segments. These

map features will be discussed in section III.

The main component of our architecture is the Cam-

pus Assistant smartphone app that runs on Android

phones. The app user interface prompts the user to enter

relevant information such as user type, campus map, and

destination location. The app provides both directions

and walking/driving navigation capabilities while on

campus. The app relies on a JSON/HTTP protocol to

request an XML map file from the Mapping Server.

This XML file is parsed and the map graph features

are constructed. The smartphone GPS device is used to

determine the user’s current location or the user can

indicate a source location. If the user wants driving

directions, the app will direct the user to the compatible

parking lot nearest to the intended destination.

The app then computes the shortest path between

source and destination, and displays it on the user’s

screen on top of google maps. Icons identify the user’s

current location and the destination. More details will be

discussed in section IV.

III. THE MAP SCHEMA AND THE MAPEDITOR

We represent a map as a graph where vertices describe

map features (locations such as buildings, parking lots,

and intermediary segment ends) and edges describe

walkable and drivable segments between vertices: alley

or road segments. A map is stored as an XML file on the

Mapping Server. The XML schema defines the hierarchy

of objects and attributes from a map graph. We present

this hierarchy in a UML class diagram in Figure 3.

The root of the class hierarchy is the CampusMapOb-

ject class from which all other objects inherit, except the

LatLng class. The root class provides every descendant

with an individual id attribute. This id is used for

referring to map graph elements.

The Vertex class represents a location (map feature)

at the most basic level. A vertex has an attribute called

names that is an array of strings to store the names of

that particular location. Buildings and parking lots have

an official designation (e.g. Engineering East Building)

and several other common names, such as “EE96” or

“Green Building”, “Engineering Green Building”, “New

3



Fig. 3. UML Campus Map Class Diagram

Engineering Building”, commonly used by the academic

community. The abbrev vertex attribute is used to display

a label on the mapping user interface and usually is

set to the official location abbreviation, such as “EE96”

for the Engineering East building. A vertex indicates its

location on the map using the LatLng object that stores

the latitude and longitude as double numbers.

Vertices are specialized on whether they are reachable

by car or not. A WalkSegmentEnd object describes a

location that is not reachable by car, but only by walking.

This type of object is used in large numbers to build

multi-segment alley paths that connect map features and

are accessible only to pedestrians.

A RoadSegmentEnd object represents locations that

are directly reachable by car. Parking lots, buildings (in

general), and vertices used to model roads in multi-

segment paths are RoadSegmentEnds. We consider that

a location accessible by car is also accessible by foot,

so we made the RoadSegmentEnd subclass of WalkSeg-

mentEnd. This object has a boolean attribute canUturn

that indicates whether it is possible to make a U-turn at

that vertex.

The Building class models campus buildings, includ-

ing lecture halls, residence halls, facility plants, gyms,

and the stadium. The Parking class holds the information

for a parking lot on campus – the permit type in addition

to its abbreviation, and list of names. Our university

issues separate permit types for faculty and staff, stu-

dents, and visitors. The Campus Assistant app can find

directions to the nearest parking lot that can be used by

the user with the corresponding permit type.

A Segment object connects two map graph vertices

and represents an edge in the map graph. A Segment

object stores its cost computed from the distance on

the map between its two endpoints expressed in meters.

The direction attribute indicates whether a segment is

navigable in one direction, end1 → end2, in reverse, or

in both directions. Direction for a segment is meaningful

also for WalkSegmentEnds such as escalators, so this

attribute was factored out to the Segment base class.

The WalkSegment class inherits from Segment and, as

expected, represents a segment between two locations

that can be navigated only by foot, not by car. The

RoadSegment class describes a segment that can be

navigated by car. A RoadSegment is associated with one

Street object or none, as some segments in parking lots

or next to buildings don’t belong typically to a street. A

Street object can have multiple names, as it is common

in the USA for county and state highways.

We represent traffic signs in our schema with the Traf-

ficSign class. A TrafficSign object has a LatLng location

and a direction attribute indicating the driving direction

in which the sign applies, relative to the RoadSegment’s

end1 → end2 direction.

4



The schema supports a number of classes inherit-

ing from TrafficSign: Crossing (direction=0), Stop Sign

(direction=±1), Semaphore (direction=0), Speed Bump

(direction=0), SpeedLimit (direction=±1), and Yield (di-

rection=0). These classes are used to augment the user

experience in the navigation app with audible and visual

indicators when the user approaches a traffic sign and

gives no sign that he/she will slow down.

The MapEditor is a tool we developed to allow

authorized users to edit features on a campus map. We

expect the tool to be used initially to create the map

for a campus, enhanced with features needed for driving

and walking navigation. After that, the tool is used

occasionally when updates are necessary, such as when a

new building is inaugurated, a feature changes its name,

a new traffic sign is added, and so on.

The MapEditor user can add new objects and edit their

properties by interacting with the objects’ view displayed

superimposed as markers and lines on a google map. For

example, a left click on the map places a new vertex; a

click on a vertex toggles selection state; right-click on a

map marker or on a segment overlay edits its properties.

With a vertex created, the user can create a new segment

to another vertex by left-clicking it. A left-click on a

RoadSegment toggles its direction attribute; a right-click

on any segment deletes it, and so on.

The MapEditor tool is implemented in HTML 5 and

JavaScript. The Google Maps API v3 provides conve-

nient map display in a browser, zoom-in/out, and an

API for manipulating latitude/longitude and for comput-

ing geographic distances. The MapEditor uses a JSON

based protocol to send/receive map XML files and map

metadata to/from the Mapping Server.

Figure 2 shows the FAU campus map open for editing

in the MapEditor, with markers representing vertices and

colored lines representing segments.

IV. CAMPUS ASSISTANT APPLICATION FOR THE

ANDROID PLATFORM

The Campus Assistant app offers directions and walk-

ing/driving navigation on one’s Android smartphone.

The steps performed by the app are as follows:

• Prompts the user for information: the user type

(student, staff, or visitor), the campus (e.g. Boca

Raton, Davie), and the destination location – usually

a building or a parking lot.

• Downloads the campus’ map XML file from the

Mapping Server using HTTP.

• Parses the campus map XML file and builds the

campus map graph data structure.

• Calculates the shortest path from the source to

the destination (detailed below). The current GPS

location is used as the source. The destination is

computed based on the user type. For example, if a

driving path to a building is selected, then driving

directions to the closest parking lot where the user

is permitted to park are provided.

• Directions and navigation prompts are displayed on

the campus map on the Android smartphone. The

shortest path is displayed, overlaid on the google

map view. The current user location is displayed

using a car/pedestrian icon. In addition, the user has

the following options: select drivable or walkable

path, select a new destination using the phone’s

touchscreen by tapping on the destination vertex

marker, and zoom in/out with pinch gestures.

We implemented the app in Java using the Android

SDK. For this project we used the Eclipse IDE and

utilized the ADT plugin to edit files and manage the

project. The Android API provides many useful packages

that allow users to access the vast functionality of the

Android device, such as the classes for the user interface

and for accessing the compass and the GPS device. The

Eclipse environment has excellent integration with the

Android platform and allows users to debug applications

running directly on the phone.

An important step in our application is parsing the

XML map file to create the map graph data structures.

A parser basically reads the XML document, identifies

the tags, and extracts the data between the tags. This

allows a computer program to access and use the data

from the XML file. We used Document Object Model

(DOM) to perform parsing. As result of parsing, we

build data structures storing the campus map objects and

their attributes, such as vertices (e.g. Buildings, Parking

lots, etc.) and segments (e.g. road segments, walking

segments).

We compute the shortest-path between source and

destination using Dijkstra’s algorithm [3]. The original

algorithm presented in [3] computes shortest-paths from

a source vertex to all other vertices in the graph. The

weight a path is computed as the sum of the cost of all

segments on the path. The algorithm stores the vertices

to which the shortest-path has not been computed yet in a

minimum-priority queue. At each step, one vertex with

the minimum weight is removed, and its shortest-path

calculation is completed.

Since we are interested to compute the shortest-path

to a single destination vertex, in order to reduce the run-

time complexity, we keep only the next step candidate

vertices in the minimum-priority queue. In addition,

our algorithm stops as soon as the shortest-path to

the destination is computed. The shortest-path is then

displayed on the user interface overlayed on top of the

campus Google Map in map or satellite view.

In our case, the weight of a segment is the Euclidean

distance, which is one of the attributes (e.g. denoted as

the cost) of a driving/walk segment. We plan to use more

5



Fig. 4. Campus Assistant App

sophisticated cost functions for driving directions that

consider the estimated driving time based on the number

of turns, traffic signs on the path, and speed limit. This

cost function can be further enhanced by real-time traffic

updates from the University Police department, in case

of sport events, construction work, etc.

The user has the option to choose between walking

and driving paths. For driving paths, only road segments

are considered for the shortest path computation, while

for a walking path both road segments and walk seg-

ments are presented as candidates for edge relaxation in

Dijkstra’s algorithm. The complexity of Dijkstra’s algo-

rithm [3] using minimum-priority queue implementation

is O(E·lgV ). For the test map in the screenshot with 330

vertices, the runtime for the shortest path algorithm was

3 ms measured on a Samsung Galaxy S Blaze phone.

Figure 4 shows some scenarios of running our appli-

cation on the same type of phone. Figure 4 a. shows the

walking path between the College of Nursing Building

and the Engineering East Building. Figures 4 b. and

c. show driving directions with two options, when the

underneath graph is displayed or not.

V. CONCLUSIONS

In this paper we presented a campus assistant appli-

cation developed on an Android platform. The applica-

tion provides walking/driving directions and navigation

services to users at Florida Atlantic University campus.

We also designed a campus editor that allows authorized

users to add new campus maps or update existent ones.

Currently we are working on adding new features to our

application, such as speech directions and voice activated

navigation control.

REFERENCES

[1] Android-Discover Android, http://www.android.com/about/, last
accessed Dec. 2012.

[2] Campus Mapping Applications,
https://play.google.com/store/search?q=campus+map&c=apps, last
accessed Dec. 2012.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, Third Edition, MIT Press, 2009.

[4] GPS.gov Roads and Highways,
http://www.gps.gov/applications/roads/, last accessed Dec. 2012.

[5] M. Kelly and D. Lindquist, Campus Map,
http://campusmap.michaelkelly.org/map, last accessed Dec. 2012.

[6] J. Kincaid, Marissa Mayer: 40% Of Google Maps Usage
Is Mobile (And There Are 150 Million Mobile Users),
http://techcrunch.com/2011/03/11/marissa-mayer-40-of-google-
maps-usage-is-mobile-and-there-are-150-million-mobile-users/, last
accessed Dec. 2012.

[7] UCSB Interactive Campus Map, http://code.google.com/p/ucsb-
icm/, last accessed Dec. 2012.

[8] T. D. Wood, How to Use a Hand Held GPS Receiver,
Aug. 2012, http://www.rei.com/learn/expert-advice/gps-receiver-
howto.html, last accessed Dec. 2012.

6


