
Using Sink Mobility to Increase Wireless Sensor Networks Lifetime

Mirela Marta and Mihaela Cardei ∗

Department of Computer Science and Engineering

Florida Atlantic University

Boca Raton, FL 33431, USA

E-mail: {mmarta@, mihaela@cse.}fau.edu

Abstract

A critical issue for data gathering in wireless sensor net-

works is the formation of energy holes near the sinks. Sen-

sors near the sinks have to participate in relaying data on

behalf of other sensors and thus will deplete their energy

very quickly, resulting in network partitioning and limita-

tion of the network lifetime. The solution that we propose

in this paper is to use mobile sinks that change their loca-

tion when the nearby sensors’ energy becomes low. In this

way the sensors located near sinks change over time. In de-

ciding a new location, a sink searches for zones with richer

sensor energy.

First, we study the improvement in network lifetime when

sinks move on a predetermined path, along the perimeter of

a hexagonal tiling. Two cases are considered for data gath-

ering when sinks stop in the hexagon’s corners and when

the sinks stop on multiple locations on the hexagon perime-

ter. This study shows an improvement of up to 4.86 times

in network lifetime. Second, we design a distributed and

localized algorithm used by the sinks to decide their next

movement location such that the virtual backbone formed

by the sinks remains interconnected at all times. Simulation

results are presented to verify our approaches.

Keywords: Wireless sensor networks, energy-efficiency,

data gathering, sink mobility, network lifetime.

1 Introduction and Related Work

This paper addresses the topic of energy efficient data

gathering in wireless sensor networks (WSNs) consisting

of sensor nodes deployed randomly in large number and

several mobile sinks used to collect data from the sensors.

We consider that the sinks have two transceivers, one to

communicate with the sensors, and another to communicate

∗This work was supported in part by NSF grant CCF 0545488.

with the other sinks. Sensors send their data to the sinks us-

ing multi-hop communication.

In WSNs, sensors closer to a sink tend to consume

more energy than those farther away from the sinks. This

is mainly because, besides transmitting their own packets,

they forward packets on behalf of other sensors that are lo-

cated farther away. As a result, the sensors closer to the sink

will drain their energy resources first, resulting in holes in

the WSN. This uneven energy consumption will reduce net-

work lifetime.

WSN lifetime can be significantly improved if the en-

ergy spent in data relaying is reduced. One method to avoid

formation of energy holes is to use sink mobility. When the

energy of the sensors near a sink becomes low, the sink can

move to a new location in a zone with richer sensor energy.

This approach will balance the energy consumption and will

increase network lifetime. Recent advances in the field of

robotics [2, 5] make it possible to integrate robots as sinks

(or gateways) in WSNs [11].

Adding mobile devices to WSNs infrastructure has at-

tracted increased attention recently. Much of the work has

been conducted on data gathering applications, where the

mobile sinks move randomly ([10, 12]), using predeter-

mined paths ([7, 11, 3]), or autonomously ([1]). A random

moving sink is not aware of the sensor residual energy, and

thus might threaten the energy balance among the sensors.

The predetermined path models lack flexibility and scala-

bility with network size. The moving strategies where the

sinks take the moving decisions autonomously can better

adapt to various network conditions.

In [7], the authors consider a WSN with a mobile base

station which repeatedly relocates to change the bottleneck

nodes closer to the base-station. Various predetermined tra-

jectories are considered in the search for a combined op-

timum on the moving and routing strategies. Another ap-

proach is presented in [11], where authors consider a mobile

base station which moves along a predetermined path. The

sensor nodes are organized in clusters, where cluster-heads

are the nodes closest to the mobile node trajectory. Cluster-
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heads are in charge of collecting data from their clusters and

sending them to the mobile node when it passes by. A pro-

totype using Mica 2 motes and the packbot mobile platform

is developed and tested.

Another related work [3] explores the impact of pre-

dictable sink movement when the sink is mounted on a bus

moving on a predictable schedule. Data is pulled by the

sink which wakes up the nodes when it gets closer to them.

This paper assumes that the sink comes within direct radio

range of all the sensors during its movement, thus data is

collected directly from the sensors. Using this approach,

the power consumption for data relaying is saved.

Paper [1] considers a WSN with one mobile sink that

moves proactively towards the node that has the highest

residual energy in the network, in an effort to balance sen-

sors’ energy consumption. When the sink reaches a new lo-

cation, it broadcasts a notification message and sensor data

is collected using multi-hop communication.

In our paper, we consider a WSN consisting of a large

population of sensors and multiple mobile sinks deployed

for data gathering. We first study the improvement in net-

work lifetime when sinks move on a predetermined path.

Then we design a distributed and localized algorithm to de-

termine sinks new locations in zones with richer sensor en-

ergy, while maintaining sinks connectivity.

Our work differs from the previous works by consider-

ing a multi sink design. We consider that the sinks form

a virtual backbone and are concerned with maintaining the

backbone connectivity as result of sinks’ movements. In ad-

dition, compared to [1], when a sink moves, our algorithm

searches for zones of sensors with high energy, not only the

highest energy sensor.

The remainder of this paper is organized as follows. We

present the network model and the MS-NLI problem defini-

tion in section 2. We continue in section 3 with a study on

the sinks mobility with pre-established trajectories. Section

4 presents the design of our distributed and localized algo-

rithm for autonomous sinks movement. Section 5 presents

our simulation results and section 6 concludes our paper.

2 Network Model and Problem Definition

2.1 Network Model

In this paper, we consider a heterogeneous WSN consist-

ing of sensors and sinks. The sinks are deployed in the sens-

ing area, they are connected, and their main task is to relay

data from the sensor nodes to the user application. We make

the following assumptions regarding the network model:

• We consider a periodic data gathering application where

data is sensed and b data bits are transmitted by each sensor,

in each time period T , to the closest sink. The data is
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Figure 1. Wireless Sensor Network Organiza-

tion and Coronas Division

forwarded to the sink using multihop communication.

• Sensor nodes are uniformly and randomly distributed.

• All sensor nodes have the same transmission range of

r units. All sinks have the same transmission range of R
units.

• Ideal MAC layer with no collisions and retransmissions.

• Each link has enough capacity to transfer the data.

• Sinks have movement capabilities.

Paper [6] considers a similar network model for a WSN

with only one static sink. The energy model of a sensor

includes the power for sensing, power for receiving, and the

power for transmission. The energy to sense, transmit, and

receive b bits is computed as follows:

Esense = α1b
ETX = (β1 + β2r

n)b
ERX = γ1b
According to [9], some typical values for the parameters

are:

α1 = 60 × 10−9 J/bit

β1 = 45 × 10−9 J/bit

β2 = 10 × 10−12 J/bit/m2, when n = 2
β2 = 0.001 × 10−12 J/bit/m4, when n = 4
γ1 = 135 × 10−9 J/bit.

We consider that sinks have unlimited energy resources

and thus we do not account the energy spent by the sinks.

We define the network lifetime as the time interval until a

sensor dies as result of depleting its energy resources.

In section 2.2, we discuss network lifetime for the case

when sinks are static. This motivates our problem defined

in section 2.3.

2.2 Network Lifetime using Static Sinks

For the case when the sinks are static, we consider that

the sensing area is divided into hexagonal tiling, with the
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Figure 2. Wireless Sensor Network with Static Sinks

sinks being located in the hexagon centers, as illustrated in

the Figure 1.

Using this model, each sensor sends its data to the clos-

est sink. In order to compute the energy consumed by each

sensor, we use a corona-based model, similar to [6, 8]. The

area around a sink is divided into coronas of width d, where

d = r. A data message transmitted from corona Ci is sent

to the closest sink using multihop communication, and it is

forwarded by sensor nodes in coronas Ci−1, Ci−2, and so

on until it reaches corona C1 from where it is transmitted to

the sink (see Figure 1b). Corona width is chosen such that

a message is forwarded by only one sensor in each corona.

As remarked in [6, 8], sensors suffer an uneven energy de-

pletion, with sensors in the first corona being the first to

die. This results in network partitioning, with other sensors

being unable to report their data to the sink.

Let us denote with k the number of coronas and ρ the

sensor density. The traffic load of a sensor includes both the

data sensed by that sensor as well as the data forwarded on

behalf of other sensors in higher coronas. The traffic load of

a sensor in corona Ci, i = 1 . . . k, is computed as follows:

Loadi = traffic from coronas Ci,Ci+1,...,Ck

number of sensors in Ci

Loadi = ρ(π(kr)2−π((i−1)r)2)b
ρ(π(ir)2−π((i−1)r)2) = k2−(i−1)2

i2−(i−1)2 b

It follows that the energy consumed by a sensor in corona

Ci, i = 1 . . . k, is computed as:

Ei = Esense + ETX + ERX = α1b + (β1 +

β2r
n)Loadi + γ1

traffic from coronas Ci+1,...,Ck

number of sensors in Ci
= α1b +

(β1 + β2r
n)k2−(i−1)2

i2−(i−1)2 b + γ1
k2−i2

i2−(i−1)2 b

To show the difference in energy consumption between

sensors in different coronas, we conducted a Matlab simu-

lation for a heterogeneous WSN, using the parameters from

Table 1. We measured the energy consumption of each sen-

sor during a time period T .

Symbol Name Value

A Deployment area 46 × 46
square units

N Number of sensors 2116 = 462

M Number of sinks 7
R Sink communication range 20 units

r Sensor communication

range

1.5 unit

Rh Radius of the hexagon in the

hexagon tiling

10.7 units

k Number of coronas 7
b Bits sent by each sensor in

time T
2000 bits

Table 1. Simulation Parameters

As illustrated in the Figure 2b, the largest energy con-

sumption takes place for the sensors in corona C1. This

happens because these sensors have the highest load, be-

ing involved in forwarding data generated from coronas

C2, C3, . . . , Ck. In our simulation results in Figure 2b,

the energy consumed by the sensors in the seven coronas

is: E1 = 0.0175 J, E2 = 0.0056 J, E3 = 0.0031 J,

E4 = 0.0019 J, E5 = 0.0012 J, E6 = 0.0006 J, and

E7 = 0.0002 J. A sensor in corona C1 consumes more than

three times compared to a sensor in corona C2. This re-

sult shows that network lifetime is limited by the sensors in
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Figure 3. Wireless Sensor Network with Mobile Sinks (6-Positions Sink Movement).

corona C1 which will deplete their energy resources first,

triggering network partitioning and impossibility to collect

sensor data.

2.3 Problem Definition

The study in section 2.2 motivates our work on using

sink mobility to increase network lifetime by balancing sen-

sor energy consumption.

The problem of Sink Mobility for Network Lifetime In-

crease (SM-NLI) is formalized as follows: Given a hetero-

geneous WSN consisting of N sensors randomly deployed

for periodic monitoring of an area and M sinks with mobil-

ity capabilities, design a sink movement plan such that the

network lifetime is maximized and the sinks remain inter-

connected all the time.

The objective of the SM-NLI problem is to design the

sinks movements to balance the sensors energy consump-

tion and to vary the set of sensors located in first coronas.

This will have a direct impact on network lifetime measured

as the time until the first node depletes its energy resources.

Another important requirement is to maintain the sinks in-

terconnected. The sinks can be viewed as forming a virtual

sink backbone, used for inter-sink communication and user

data access.

In this paper, we propose two approaches for a sink

movement path. In section 3, we address the case when

sinks move on a predetermined path along a hexagon

perimeter. In section 4 we propose a distributed and local-

ized algorithm for sinks movements. Simulation results are

presented in section 5.

3 Sink Mobility with Pre-established Mobil-

ity Path

In this section we consider the case when sinks move

along the hexagon perimeters. We assume that sinks’ move-

ments are synchronized, therefore the sinks relative posi-

tions remain the same at all the time. Assuming that the

sink backbone was initially connected, it follows that the

backbone remains connected at all times during the sinks

movement. In our simulations, we took R = 20 units, re-

sulting that each sink is connected with each of its six neigh-

bor sinks.

Each sink moves along the perimeter of a solid-line

hexagon, as represented in the Figure 3a. The sink stops

in the corners of the hexagon. In each stop, the sink collects

data over a period T and then moves to the new location.

After stopping in the six corners, the movement cycle is

repeated. The movement positions of the middle sink are

denoted with 1, . . . , 6 in the Figure 3a.

For a tiling with radius Rh (dotted-line hexagon), a sink

moves in the corners of a hexagon (solid-line hexagon) with

radius R′
h = Rh − 2√

3
(d + ǫ), where ǫ is a small, pos-

itive constant. R′
h was chosen such that the distance be-

tween the dotted-line hexagon and the solid-line hexagon is

d + ǫ. In this way, when sinks move along the solid-line

hexagon perimeter, we prevent sensors nodes to belong to

first corona of two different (neighbor) sinks.

We used the parameters in Table 1 for our simulation and

we took the constant ǫ = 0.01 units. In Figure 3b, we mea-

sure sensor energy consumption after one cycle, that means

after a sinks gets back to the original location. Thus, these
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Figure 4. Wireless Sensor Network with Mobile Sinks (12-Positions Sink Movement).

results reflect energy consumption after 6T time. As illus-

trated in the figure, the maximum sensor energy consump-

tion during 6T time is 0.0302 J. This is averaged to 0.00503
J energy consumption in time T . Therefore, the 6-positions

sink movement resulted in an 0.0175/0.00503 = 3.48
times improvement in network lifetime compared to the

static sinks case.

The second simulation case that we considered is when

a sink uses more positions in its movement along the solid-

line hexagon, as illustrated in Figure 4a. In this case each

sink moves in 12 positions. The figure shows the movement

positions of the middle sink, denoted with 1, . . . , 12. Sim-

ilar to the previous case, a sink collects sensor data over a

period of time T and then moves to the new location.

The number of sink locations on the solid-line hexagon

perimeter depends on the simulation parameters. Our goal

is to use as many locations as possible while requiring that

no sensor belongs to the first coronas for two different sink

locations. First, we consider that each sink stops in the

corners of its corresponding solid-line hexagon. Since the

hexagon edge length is R′
h, a sink can stop in l = ⌊

R′

h

2d+ǫ
−1⌋

additional locations on each edge, such that the distance be-

tween two consecutive locations is greater than or equal to

2d + ǫ. Sink locations could be computed starting from the

corners, at increment of R′
h/(l+1). In our simulation l = 1,

resulting in a total of 6 + 6 = 12 sink locations.

We used the parameters in Table 1 for our simulation.

Figure 4b measures the energy consumption after one cy-

cle, that means after 12T time. As illustrated in Figure 4b,

the maximum sensor energy consumption is 0.0425 J dur-

ing a cycle of 12T time. This is averaged to 0.0036 energy

consumption during time T . The energy consumption in

this case is more balanced among all the sensors. This case

results in 4.86 and 1.39 times improvement in network life-

time compared with the static sinks case and the 6-positions

sink movement case, respectively.

4 Sink Mobility with Unrestricted Mobility

Path

In section 3 we showed the improvement in network life-

time when each sink follows a predetermined path. There

are applications that assume that each sink can move au-

tonomously, without following a predetermined trajectory.

Such an example is when the sinks are robots or unmanned

vehicles. Using a moving strategy where sinks take move-

ment decisions autonomously can better adapt to various

network conditions, environment conditions, and sensor de-

ployment.

In this section we address the SM-NLI problem for the

case when the sinks move autonomously such that (1) the

sinks remain interconnected all the time forming a virtual

sink backbone, and (2) network lifetime is maximized.

We consider that the data gathering mechanism is or-

ganized in rounds of time T . At the beginning of each

round, data collection trees are established using a cluster-

ing mechanism. Each sink serves as a cluster head and it

broadcasts a CLUSTER INIT (ID, hops=0) message con-

taining the sink id and the number of hops which is ini-

tially zero. Each sensor node maintains information about

the closest sink and forwards only messages from which it

learns about a closer sink:

1: min hops = ∞; cluster id = NIL;

5
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Figure 5. Example of the Distributed Algorithm with 2116 Sensors and 9 Sinks.

2: if CLUSTER INIT(ID, hops) message received then

3: if hops+1 < min hops then

4: cluster id = ID

5: min hops = hops+1

6: next hop = sensor from which this message was

received

7: rebroadcast the message CLUSTER INIT(ID,

hops+1)

8: end if

9: end if

Once the clusters have been constructed, sensor data are

collected along the paths formed by the next hop field.

At the end of each round, a sink decides whether or not

it moves to a new location, depending on the energy levels

of its 1-hop sensor neighbors. These are the sensor nodes

that will deplete their energy first since they also have to

forward messages on behalf of other sensors.

Figure 5a shows the initial deployment of an example

with 2116 sensors and 9 sinks. Sensors in different clusters

are represented using different symbols. Figure 5b shows

the virtual backbone after 20 rounds. Sinks move in zones

with higher energy sensor nodes, but they remain intercon-

nected at all times. The Decide-Sink-Movement algorithm

which is executed by a sink Si is presented next:

Decide-Sink-Movement(Si, p, q, Eth, E′
th)

1: if p% of the 1-hop sensors have E ≤ Eth then

2: ⊲ sink Si searches for a new location

3: new-location = Find-Best-Location(Si, E′
th)

4: if new-location 6= ∅ then

5: sink Si moves to the new-location

6: else if Eth ≥ Emin then

7: Eth = β ·Eth

8: go to line 1

9: else

10: sink does not move

11: end if

12: end if

We consider that the sensors 1-hop away from the sink

send their current energy levels to the sink at the end of each

reporting interval. This information can be piggybacked to

a data message. If at lest p% of the sensors have reached

the low threshold energy Eth, then the sink searches for a

new zone where sensors have richer energy resources, using

the algorithm Find-Best-Location. The zone where the sink

moves must have energy at least E′
th, where E′

th = Eth +
α ·Eth and 0 < α < 1. For example, when α = 0.1 (α =
10%), then E′

th = 1.1Eth.

If a new location is found, then the sink moves to that

location. If no new location is found, then the overall en-

ergy level of the nodes has decreased, thus the energy level

Eth adjusts dynamically to a smaller value, Eth = β ·Eth,

where 0 < β < 1. For example, when β = 0.75 (β =
75%), then Eth = 0.75 ·Eth. In this case, first the sink

waits for p% of the 1-hop sensors to have E ≤ Eth, then a

new location is searched. The energy threshold is adaptively

adjusted until it becomes lower than Emin, and after that it

will not change. The algorithm Find-Best-Location(Si) is
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presented next.

Find-Best-Location(Si, E
′
th)

1: nhops = initial value

2: while nhops ≤ nmax do

3: Si broadcasts LOCATION-REQ(Si-ID, req-ID,

nhops, E′
th)

4: wait some specific time and record all sensor reply

messages LOCATION-REPLY(sk, #msg, hops)

5: if one or more LOCATION-REPLY messages are re-

ceived then

6: sort messages in decreasing order of #msg values

let LOCATION-REPLY(sk, #msg, hops) be the

first message in the sorted order

7: if Connected-Backbone(Si, sk) then

8: return new-location = sk

9: else

10: take the next message in the sorted order and go

to line 7
if no more messages, go to line 13

11: end if

12: end if

13: increment nhops

14: end while

15: return ∅

Sink Si uses an incremental ring approach to search for a

new location. We use as candidate sink locations the sensor

locations in Si’s cluster. We use this approach since sen-

sors are densely deployed and a sensor can easily check the

energy level information of its 1-hop neighbors. The num-

ber of hops nhops is set-up initially to a small value, since

the closer the new location is, the smaller the sink move-

ment distance is. If no valid location is found for the sink,

the number of hops nhops is incremented (in line 13) until

eventually the whole cluster is reached.

For a specific nhops value, sink Si broadcasts a

LOCATION-REQ message in its nhops-neighborhood. Each

sensor receiving the message decrements nhops value and

forwards the message along the cluster tree. Each sensor

will temporary store the (Si-ID, req-ID) values of the most

recent LOCATION-REQ message received. When a sensor

sk receives a LOCATION-REQ message, it checks the (Si-

ID, req-ID) values. If they are the same as the values sk

has stored, then no action is taken other than forwarding the

message. Otherwise, sk exchanges HELLO messages with

its 1-hop sensor neighbors, containing the current energy

levels. If all sk’s neighbors have the energy at least E′
th,

then sk is a candidate location for the sink and thus it sends

a LOCATION-REPLY(sk, #msg, hops) message back to

the sink. hops is the number of hops between sk and Si,

and #msg represents the number of messages transmitted

by the node sk in one round.

After the sink Si has sent the request, it waits a specific

time for sensor replies. This waiting time is proportional to

the size of the search neighborhood, characterized by nhops.

After the waiting time has expired, the sink sorts the re-

ceived LOCATION-REPLY messages in decreasing order of

the #msg field. The sink gives priority to the sensor loca-

tions that forward a large number of messages since these

sensors deplete their energy at the fastest rate.

The sink considers the LOCATION-REPLY messages in

the decreasing order of the #msg field and checks if the

candidate location satisfies the sink backbone connectivity

requirement. This algorithm is presented in the Connected-

Backbone procedure. If the sink connectivity is satisfied

then the sink Si returns sk’s location as its new location.

If no candidate location is valid due to the connectiv-

ity requirement, then Si increments nhops in order to in-

crease the search neighborhood. When a new LOCATION-

REQ message is sent by Si, the sensors which have received

the previous request message, and thus have stored the (Si-

ID, req-ID) values will not compete as candidate locations.

They only participate in message forwarding.

If, after the whole cluster has been searched, no candi-

date location has been found, then the sink does not move

to a new location. The algorithm to determine if a new sink

location maintains backbone connectivity is presented next.

Connected-Backbone(Si, sk)

1: Si computes its l-hop sink neighborhood, denoted

Γ(Si)
2: Construct a graph G with one vertex for each sink in

Γ(Si). Add one more vertex for Si’s tentative new lo-

cation sk. Add an edge between every two vertices if

their distance is at most R.

3: Run BFS(G) to check graph connectivity

4: if G is connected then

5: return TRUE

6: else

7: return FALSE

8: end if

We assume that each sink has two transceivers, one for

communication with sensor nodes and the other for com-

munication with other sinks. A sink communication range

is denoted R. A sink Si determines its l-hop sink neighbor-

hood Γ(Si), by exchanging HELLO messages with its sink

neighbors with TTL = l. We take l an input parameter

that usually has small values (e.g. l = 1 or l = 2). We as-

sume that each sink knows its current location and that this

information is included in the HELLO messages.

Sink Si then constructs the undirected graph G where

one vertex is allocated for every sink in Γ(Si) and one ver-

tex is allocated for Si’s tentative location sk. Edges are

added between any two vertices if the corresponding sinks

locations are at distance less than or equal to R.

To determine if Si is still connected to the graph G in
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the new location, the sink Si runs the Breadth-First-Search

(BFS) algorithm [4] for the graph G. If the resultant BFS

tree is connected, then the algorithm returns TRUE, other-

wise it returns FALSE.

Another issue that we need to consider is avoiding multi-

ple neighbor sinks to move simultaneously. For this, we can

use a locking mechanism. If BSF tree is connected, the sink

sends a LOCK message to its Γ(Si) neighbors. Then, after

the sink Si moves to the new location, it sends an UNLOCK

message to the sinks in Γ(Si). The UNLOCK message will

also contain Si’s new location.

The algorithm run by a sink to decide its movement is a

localized algorithm. In a local solution, a decision at each

node is based on local information, without any information

propagation in the whole network. Localized algorithms

are important for WSNs, being scalable with the number of

nodes in the network. In the Decide-Sink-Movement algo-

rithm, the sink movement decision is based on the energy

level of its 1-hop sensor neighbors. To find the best location

to move, a sink considers locations in its own cluster. The

closer locations are considered first, using an incremental

ring search approach. To check if the new location satisfies

the sink connectivity requirement, the Connected-Backbone

algorithm is invoked. This is a localized algorithm where

the sink uses its l-hop neighbor information.

5 Simulation

In this section, we analyze and compare the performance

of the three algorithms that we have presented in the paper

for the SM-NLI problem, versus the static case. In sum-

mary, we consider the following sink movement decision

algorithms:

1. Static, from section 2.2, where sinks do not move.

2. 6-Positions, the algorithm from section 3, where each

sink moves along the perimeter of a hexagon, stopping

in the hexagon’s corners.

3. 12-Positions, the algorithm from section 3, where each

sink stops in 12 positions, following the perimeter of a

hexagon.

4. Distributed, the algorithm from section 4.

We have simulated the algorithms using a custom Java ap-

plication. In order to compare the four algorithms, we have

used the energy model described in section 2.1. In all four

simulated algorithms, data gathering is performed using the

clustering mechanism described in section 4, where sinks

serve as cluster-heads.

The sensors are randomly deployed in a 46 × 46 area

units. All sensor nodes have the same capabilities. In our

simulations, we have considered the cases when sensors
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Figure 6. Network lifetime and power con-
sumption per round for all algorithms when

sensors are deployed using a random uni-

form distribution.

are deployed using a random uniform distribution and a bi-

variate Gaussian distribution. The sinks are uniformly dis-

tributed in a hexagonal tiling. At the network start-up, each

sensor has an initial energy of 0.5 units. Unless otherwise

specified, we used the following values for the distributed

algorithm: p = 1, Eth = 0.4, α = 0.05, and β = 0.75. In

our simulations we measure only the energy consumed on

sensing, data transmission, and data reception. We do not

account the energy spent by sensors during the sinks relo-

cation mechanism.

In the simulations we vary the following parameters:

1. The network size N is varied to examine the scalabil-

ity of the network. The size of the network is varied

between 1000 and 6000.

2. The number of sinks M is varied between 1 and 9.

3. The data aggregation factor is varied between 0 and

0.75 to analyze network lifetime in the distributed

case.

4. Parameter p in the distributed algorithm takes the val-

ues: 1, 5%, 10%, 15%, and 30%. Parameter p has the

following meaning: when p percentage of the sink’s

1-hop sensors have reached the low energy threshold,

the sink moves to a new location. In the case p = 1,

the sink moves when at least one sensor has reached

the low energy threshold.

5. The sensor communication range r takes values be-

tween 1 and 4.

For each tunable parameter, each simulation was re-

peated 10 times and the results averaged. Network activity

is organized in rounds, with each sensor sending one packet

in each round. At the end of each round, every sink decides

if it moves to a new location based on its movement deci-

sion criteria. The main performance metric is the network

lifetime. We define the network lifetime as the number of

rounds until the first sensor node dies.
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Figure 7. Network lifetime and power con-
sumption per round for all algorithms when

sensors are deployed using a bivariate Gaus-

sian distribution.

In the simulations we have used sensor communication

range r = 2 units and sink communication range R = 20
units. In all figures, except Figure 8a, the topology contains

9 sinks which are uniformly distributed using a hexagonal

tiling, similar to the sink deployment in Figure 2a.

Figure 6a compares the network lifetime of the three al-

gorithms versus the Static case. Sensors are deployed using

a random uniform distribution. All the three algorithms that

employ sink movement perform better than the static case,

when the sinks do not move. The best results are obtained

for the cases when the sinks move on the hexagonal, pre-

determined trajectory. The distributed algorithm is a local-

ized solution and it obtains a shorter network lifetime than

the predetermined trajectory cases. In that case, the sinks

movement is synchronized, thus the data collection trees

are more balanced. Figure 6b shows the variation of the

minimum sensor energy over time for a network with 1000
sensors. The minimum sensor energy after 1 to 20 rounds is

plotted. This result is consistent to Figure 6a, with the static

case reducing the energy most abruptly.

Figure 7a compares the algorithms’ performance for the

case when sensors are deployed using a bivariate Gaussian

distribution. Consistent with the previous results, the cases

when the sinks move result in an improved network life-

time. The distributed algorithm has the best performance,

followed by the predetermined-paths cases. This graph

shows the benefit of using a distributed algorithm which

adapts with the deployed network topology.

The sinks in the 6-Positions and 12-Positions mecha-

nisms move synchronized and they follow the hexagonal

trajectories. In this case, the sinks do not partition the sensor

network as regularly as it was for the simulations in Figure

6. Even if a node is the root of a large (or small) data collec-

tion tree, the sink will visit that position regularly. Such a

situation is avoided in the distributed algorithm, where sinks

move when 1-hop neighbors are energy-depleted. Figure 7b

shows the minimum sensor energy for a network with 1000
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Figure 8. Network lifetime when we vary the
number of sinks and the aggregation factor.

sensors, when the number of rounds vary between 1 and 90.

The next graphs, Figures 8 to 10, show the simulation re-

sults for the distributed algorithm with random uniform sen-

sor deployment, when we vary different parameters. Figure

8a compares network lifetime when we vary the number of

sinks between 1 and 9. We can observe that a larger num-

ber of sinks helps in improving network lifetime. A larger

number of sinks results in more clusters, with smaller data

collection trees.

All the previous simulations assume that no data aggre-

gation is performed. In Figure 8b we study network life-

time for different aggregation factors f = 0, 0.25, 0.5, and

0.75. The aggregation is done at the packet level. An ag-

gregation factor f means that (1 − f) × 100% of the pack-

ets are forwarded by a sensor. Thus, an aggregation factor

f = 0, means that no aggregation is used. As illustrated

in the graph, the larger the aggregation factor, the larger the

network lifetime is.

In Figure 9, we vary the parameter p in the distributed

algorithm, when M = 9 sinks. In the distributed algorithm,

if at least p% of the 1-hop sensors of a sink have reached

the low energy theshold Eth, then the sink moves to a new

location. 1-Distributed is the case when the sink moves if at

least one 1-hop sensor has reached the low energy thresh-

old. In Figure 9a, the largest network lifetime is obtained

for 1-Distributed. In general, a larger number of rounds is

obtained for smaller p. As illustrated in the Figure 9b, the

trade-off is an increase in the number of sink moves for the

1-Distributed. Figure 9b represents the average number of

sink movements in the network.

Figure 10 measures network lifetime when we vary the

sensor communication range r between 1 and 4. In general,

r = 2 and r = 3 produce better results. A small com-

munication range will increase the number of hops that a

message has to travel and thus will increase the number of

forwarded messages. On the other hand, a large communi-

cation range reduces the number of forwarded messages but

increases the energy spent on message transmission.
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Figure 9. Network lifetime and number of sink

movements when we vary the parameter p in

the distributed algorithm.

The simulation results can be summarized as follows:

• Using sink mobility provides an effective mecha-

nism to prolong network lifetime. When the sen-

sors are deployed using a random uniform distribution,

then a predetermined trajectory (6-Positions and 12-

Positions) produces the best results. When the sensors

are deployed using a Gaussian distribution, then the

distributed algorithm produces the largest number of

rounds.

• A larger number of sinks results in an increased net-

work lifetime.

• Data aggregation is another effective method to in-

crease network lifetime.

• Various selections of the parameter p can trade-off net-

work lifetime with the number of sink movements.

6 Conclusions

In this paper we have studied the effect of using mo-

bile sinks for data gathering in wireless sensors networks.

If the sinks are static, the sensors near the sinks will de-

plete their energy first, resulting in an early disconnection

of the network. One method to alleviate this problem and

to obtain a more balanced energy consume is to use mo-

bile sinks. We have first studied the improvement in net-

work lifetime considering a hexagonal tiling, where sinks

move along the hexagon perimeter. Our simulation study

shows an improvement by 4.86 times in network lifetime

compared with the static sinks case.

We have also proposed a distributed and localized solu-

tion to decide sinks movements when the movement path is

not predetermined. When the sensors closed to sink have

scarce energy resources, sinks moves to zones where sen-

sors have richer energy resources and forward a large num-

ber of messages. Simulations results show significant im-
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provements in network lifetime compared to the static sinks

case.
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