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Abstract. Consensus algorithms are a prominent component in de-
centralized systems involving multiple unreliable nodes. Since the days
Blockchain was first introduced, decentralized systems have been used
in many applications such as supply chain management and information
sharing paradigms. Raft is a consensus algorithm based on ‘Paxos’ that
is used for replicated state machines when a group of nodes is required
to have the same state at any moment. This paper therefore proposes
an alternative version of the Raft consensus algorithm to allow sharing
information among nodes in a secured fashion while maintaining the se-
curity features of the original Raft algorithm even in the presence of
adversarial nodes. The proposed model can be implemented to improve
cooperation among parties, especially, in resource-constrained platforms
where a regular encrypted communication method can heavily affect the
system. Our analysis illustrates that the proposed model is practical to
be used in many worldwide applications.
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1 Introduction

With the development of information sharing technology and its increasing
threats, various secure information sharing techniques have been developed over
years. One challenge is to design a closed network system where information can
be shared in a secured way under the assumption that data is tamper-proof and
secured in the presence of adversaries. Raft consensus algorithm, designed by
Ongaro and Ousterhout [14], seems to be one of the initial promising solutions
to this problem. The original Raft implementation is an improved Paxos style
protocol that is much easier to understand. It offers the same security features as
Paxos. The algorithm was designed in the context of replicated state machines in
which the algorithm keeps the logs consistent and identical even when a subset
of servers are down. This algorithm performs well considering its main objective,
i.e., handling servers communications with a client and synchronizing their data.
However, to be used for information sharing, it needs to be improved.
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The concept of achieving consensus among parties has been studied for many
years. It became well-known when Satoshi Nakamoto published the famous Bit-
coin paper in 2009 [11] and introduced Blockchain as an infrastructure for the
Bitcoin technology; see [13] for details of Bitcoin mining in Blockchain. Achiev-
ing consensus among peers on the network was necessary for implementation
of Bitcoin. This platform was the first state-of-the art that utilized a consensus
algorithm to achieve trust among parties in a decentralized network. Satoshi’s
idea was based on the one-cpu-one-vote rule, i.e., proof-of-work (PoW) consensus
algorithm that has been and still is the most commonly used consensus algo-
rithm for cryptocurrency. Other consensus algorithms were developed ever since,
such as proof-of-stake (PoS) [7] and proof-of-authority (PoA) [3], to name a few.
Paxos is an example of a fault-tolerant distributed system that is complex to be
implemented. However, Raft was introduced as a modern consensus algorithm
that is based on the same principles of Paxos but with less complexity.

For this paper, a single server will be called a ‘server’ and a group of servers
will be named a ‘cluster.’ The paper is organized as follows. The rest of this sec-
tion briefly reviews information sharing in the original Raft consensus algorithm.
Section 2 proposes our newly designed algorithm. Section 3 presents our imple-
mentation and illustrates how it operates. Section 4 provides technical analysis,
and finally, Section 5 concludes with remarks and future works.

1.1 Our Motivation and Contribution

Secured information sharing among a set of parties has always been a security
concern in the research community [8]. With the increasing amount of informa-
tion that is being shared worldwide as well as the technological capabilities of
adversaries, secure information sharing is essential nowadays. Current central-
ized solutions may provide security for shared data as long as the centralized
authority is trusted. This, however, proved to be risky where centralized author-
ities acted maliciously. The better-known examples are the Facebook scientific
experiment [5] and the government surveillance [6]. As such, decentralized solu-
tions and implementations are becoming more common in many domains such
as machine learning, supply chain, and information sharing [4, 16, 9, 10].

We therefore propose an improved version of the Raft consensus algorithm
that allows secure information sharing among a set of parties in the presence of
adversaries. As a proof of concept, we provide an implementation of our algo-
rithm, and then analyze its security and effectiveness.

Drawbacks of Information Sharing Using the Original Raft. We define
information sharing as the possibility of servers to send secure messages to a
central log via a secured and tamper-proof channel in the presence of adversaries.
The original Raft algorithm is the first building block to be used for this purpose.
However, it has many disadvantages. The first and most important is that Raft
can not operate properly when an adversarial node is presented in the cluster.
Here, we illustrate a couple of issues when the original Raft is used.
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Leader Election: The first stage of the system is to elect a cluster leader.
In a malicious environment, a server can self-elect by updating to a new term
and sending heartbeat messages to the other servers in the cluster. A malicious
leader can also stall the system by initiating election repeatedly, thus preventing
the system’s availability, i.e., causing a stall election. The servers can also start a
new election even if it still receives heartbeat messages from the current leader.

Log Replication: This happens when a new state is presented to the system
and the servers eventually are required to arrive at the same state. Replicating
the log needs to be secured and immutable as possible, especially when an ad-
versarial server is present. In the Raft algorithm, the leader server can change
or drop requests that are sent to him, i.e., violating the integrity of the system.

Another drawback is that the Raft algorithm is a client-server communication
with a single client and a cluster of servers, whereas we need the servers to send
requests to the cluster without relying on a single authority. This leads to a
multi-client-server communication where each node is both a client and a server.

Improved Raft for Information Sharing. We present an alternative method
of information sharing in a closed and isolated network with N servers. The
communication model is similar to that of the original Raft under the assumption
that it is reliable in the presence of an adversary that can cause network lagging
and information loss. Therefore, we incorporate the following improvements into
the Raft information sharing design:

1. Byzantine Fault Tolerance: As stated earlier, it is impractical to use the orig-
inal Raft as the main consensus algorithm without modifications. The first
thing that needs to be taken into account is to allow the system to work un-
der the Byzantine Fault Tolerance (BFT) assumption [15]. This assumption
allows the system to work securely in the presence of Byzantine servers that
can sabotage the Raft algorithm. Copeland and Zhong [2] provide Tangaroa
as a solution to this problem.

2. Client servers: The Raft algorithm is built as a cluster of servers that com-
municate to a single client. Whenever the client wishes to update the log, he
sends a message to the leader server that handles the log replication for all
other servers in the cluster. Non-leader servers cannot send any request to
change the data on the log. In our design, every server is able to request a
data appendance. This is similar to the state-change in the state machines.

3. Log modification: In the original Raft, every server holds a log, where every
server keeps the machine states. In our implementation, the log needs to be
changed into a data buffer that holds data. The simple state log then turns
into an immutable data log. A server can only append information to this
log to be shared with other servers in the cluster. For the sake of simplicity,
data log is used when we refer to the buffer.

4. Validation: Data validation can be subjective to the purpose of the network.
We provide a design in which every server can share data in the cluster
regardless of the meaning of data. The validation process can be added as a
second layer to the infrastructure so that servers can be dropped from the
cluster when they don’t follow the required messages properties.
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2 ISRaft: Our New Information Sharing Paradigm

Our improved version of the Raft consensus algorithm, named ISRaft: Informa-
tion Sharing Raft, uses similar fundamentals as the original Raft algorithm, i.e.,
Leader Election and Data Log Replication. In addition to modifying these fea-
tures, our new design includes message validation and security in the presence
of an adversary. This design of Raft offers the same security properties as the
original Raft consensus algorithm that are as follows:

• Election Safety: Only a single leader is allowed per cluster.
• Leader Append-Only: The elected leader can only append information to the

data log. A server can never delete or overwrite any entry.
• Log Matching: If there are two data logs on two different servers with the

same term and same data, then the entire data logs on the two servers are
identical in all entries up to the last term.

• Leader Completeness: When a leader commits a message to the log, that
message will be present in all future logs of the leader.

There is one more property that the original Raft consensus illustrates, which
is the State-Machine Safety ; however, due to the nature of our design, it is not
essential to maintain this safety property as explained later. Compared to the
original Raft algorithm, the major change for our design is the ability to have the
servers communicate independently and also have them send data to the leader
to request for an update of the data logs. This means the remote procedure call
(RPC) messages that are used in the original Raft as well as the protocol itself
must be modified so that they fit into our design.

First, we explain the RPC requests that are used in the modified algorithm.
We then review every stage of the information-sharing process to make the
whole procedure clear. The Raft algorithm proposed the following two RPCs:
RequestVote and AppendEntries. However, the ISRaft utilizes a modified adap-
tation and a couple of other RPCs as follows:

• RequestVote: This is initiated by candidates in the cluster. This RPC will be
sent anytime a server hasn’t received any heartbeat message from a leader.

• AppendEntries: This is initiated by the leader of the cluster. This RPC is
sent as a request to replicate the log on all servers in the cluster. This message
is also used as a heartbeat when no log entries are attached to the RPC.

• AppendEntries-Response: This is a response that is initiated by any server
receiving AppendEntries RPC. The RPC contains the data to be appended
as well as the signature of the server.

• RequestAppend: This is initiated by any server in the cluster to add infor-
mation to the log.

2.1 Architecture of the ISRaft

In our setting, a server in the cluster can be in one of the three states: leader,
follower, or candidate. A leader is the only authority that can append entries
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to the log. The other servers can only request the leader to append messages.
This prevents the overflowing and message duplication problems. Servers on the
cluster have the certified public-key of all other servers. Therefore, when a server
sends any RPC request message, he signs it with his own private-key. Servers
reject any RPC message that does not include a valid signature. Any public key
cryptosystem (PKC), such as RSA, can be used in our model. When a leader
appends a message from the RequestAppend RPC, he adds the public-key of the
requesting server to the data log. This way, every data log entry can be traced
to the server that has initiated the request.

Similar to the original Raft, our ISRaft algorithm uses terms. These terms
are numbered with consecutive integers starting from 1. It is incremented every
time a new term is declared by the leader. Every term begins with an election,
i.e., a process by which the candidate servers send a RequestVote RPC to the
cluster. When a candidate receives the majority of votes in the cluster, e.g.,
n/2 + 1 for a cluster of size n, he declares himself as the new leader and then
he increments the term number. The leader can then append the new message
to the data log and share it with the servers in the cluster. Any new entry in
the data log contains the hash of the previous entry, which can be computed by
all servers. To compute a hash value at index i, the server computes the hash
of the data at index i− 1. When two servers agree on a hash value for index i,
they verify to make sure they have identical log entries up to index i.

Fig. 1. PRCs that are used in this model.

2.2 Leader Election

The first step of the algorithm is to elect a leader server from all servers in
the cluster. All servers start their life as a follower, a state in which the server
awaits a heartbeat message from a leader in the cluster. If no message was sent
after a predefined period of time, called election timeout, the follower changes its
state to a candidate. It then begins the election process. The candidate server
increments the current term and he sends RequestVote RPC concatenate with
its own signature to all servers in the cluster. A follower or a candidate server
that receives the RPC with a valid signature will send a vote if and only if the
following conditions are met:
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1. The server is a follower or a candidate.
2. The server has not received any heartbeat message from the current leader.
3. The new term is, at least, the current server’s term plus 1.
4. The RequestVote is signed with the candidate private-key.

A server that receives the first RequestVote RPC for any term will hold the
first vote until the end of the election timeout. If no other RequestVote RPC
arrives, it will vote for the first candidate. However, if a second RequestVote
RPC arrives during that time from a different server, it will immediately vote
for the second server. This is to prevent a case where a server starves the system
by initiating election constantly.

When a server replies with a vote, it will update its term number and change
its state to a follower. The server will then wait for the first heartbeat message
from the elected leader, and if none arrives at the expected time, it will become
a candidate himself. A candidate wins the election if he received the majority
votes from the cluster. The elected leader then changes its state to a leader and
sends a heartbeat AppendEntries message that includes the signed vote messages
that he received from the servers in the cluster. This will be a proof of election
and also prevents a self-promoted leader.

While waiting for votes, a candidate may receive an AppendEntries RPC
from another server claiming to be the leader. If the term in the RPC is at
least as large as the candidate’s current term and the RPC message contains the
signed votes of the majority servers, the candidate recognizes that server as the
actual leader and returns to the follower state. Otherwise, the candidate rejects
the RPC and continues to remain in the candidate state.

2.3 Log Replication

In our setting, each follower can request an update to the data log from the
leader via the RequestAppend RPC. This RPC contains the signature of the
requesting server and the data itself. The signature guarantees the authenticity
of this request, which prevents the malicious servers from forging other server’s
requests. The server sends the RPC to all other servers in the cluster including
the leader. This is to prevent manipulation of data and also to guarantee the
leader receives the message in the case a new leader has been elected without
the followers’ knowledge. The leader then validates the message’s signature and
begins the data appendance to the data log.

To start, the leader updates its own data log with the new data and in-
crements the term. It will then send AppendEntries RPC to all servers in the
cluster. This message contains the new data log entry to be appended and all
signed votes from the majority of the servers in the cluster. When a server re-
ceives the AppendEntries RPC, he performs the following tasks:

1. Compares the log entries received from the leader and the requesting server.
If the leader itself has requested the update, he skips this procedure.

2. Verifies if the leader’s term is at least equal to the requesting server’s term.
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3. Validates if the leader’s votes are legitimate.
4. Verifies if the hash of the RPC message is the expected hash value.

If all these conditions are satisfied, the server appends the message to the
log. Otherwise, the server will reject this message, and if no other AppendEntries
message arrives in the chosen period, the server becomes a candidate. When a
server first receives the message from the leader, he will respond with the Appen-
dEntries response to all servers in the cluster. A server commits the appended
data log only when he receives a similar AppendEntries response from the ma-
jority of the servers for the same term and data. There might be a case where
a server sends the RequestAppend RPC to the cluster, including the leader with
the data to be appended, but the leader sends the AppendEntries RPC without
the appended data. This can happen if the leader never receives the RPC from
the server, or if the leader is malicious. In both cases, the servers in the cluster
will not be able to commit the data log, and as a result, the requesting server
will keep sending the RequestAppend.

Fig. 2. Data log example.

2.4 Validation

Servers constantly validate their data log with every heartbeat message from
the leader. The hash value of the latest data log needs to be in correlation with
the server’s last data entry. It’s also necessary to validate the integrity of the
message. This can be done by analyzing the data log itself. Our model doesn’t re-
strict any type of data to be appended to the log, therefore, servers can send any
unrestricted data, i.e., our setting doesn’t address this type of validation. How-
ever, future implementations can have special validation mechanisms to define
specific restrictions on the data to be appended.

As an example of validation, we can refer to a cluster that manages relatively
complex equations that can be verified by servers. A server can send an equation
along with its solution to a cluster. Subsequently, if the majority of parties verify
this solution as a correct one, the server then commits it to the data log.



8 L. Zamir and M. Nojoumian

3 Implementation

We implemented the proposed model with C, as a low-level programming lan-
guage, so that it can be executed on resource-constrained devices that have
limited memory and computational power. This implementation also prevents
overheads that might be imposed by higher-level programming languages.

The initial program was executed on a Linux environment and then ran on
10 Raspberry Pi’s Model 3, all with similar properties, i.e., same clock speed
and memory usage. Note that we had to use a programming language that
supports the unusual communication properties of RPC when compared with
TCP/IP or other protocols. The later model was then implemented on AWS
servers, where we had the capability to turn on and off any number of small
servers as needed. Some servers in the system were then given the ‘malicious’
flag, which causes it to act in a non-deterministic way, e.g., spreading false mes-
sages, not replying to votes, and clogging the network. In an alternative im-
plementation, we incorporated partitions into the cluster in order to measure
and analyze the time it takes for a cluster to elect a new leader and operate
when a partition is placed and/or removed. Our implementation is available at:
www.github.com/Morters/Raft C.

3.1 Implementation Architecture

As stated earlier, our ISRaft design was developed by C with IPC and RPC li-
braries. After establishing the commands, it was tested with CuTest on a Linux
environment to evaluate its operation. The code is then compiled and ran on a
few Raspberry Pi 3-s, and later on multiple Amazon AWS EC2 servers, each op-
erating as a node and communicating with other EC2 servers on a RPC protocol
over socket communication. The EC2 servers that we used are t2.nano with 512
MiB of memory and 1 vCPU running at 3.3 GHz. We implemented the RPCs
as functions where each RPC can be called by every node on the system. The
functions and protocols are organized in the header file CRaft.h.Our major goal
was to make the minimal changes needed to achieve the same security level as
the original Raft. We also intended to make our implementation modular enough
so that it can be executed on the majority of devices. Every server was built as
a separated AWS EC2 Apache that is identified by a unique IP address and ID.

In our implementation, the servers can send data over socket communication,
however, any communication protocol can work. Every server then generates an
RSA private-key and public-key pair that is shared with the cluster. Every time
a new node enters the cluster, it is required to send its credentials to all servers in
the cluster. Accordingly, all servers are required to update their server database.
Our implementation does not address a case where there is an error with the
credentials or when a server is disconnected from the network since these are out
of the scope of our work - although they can be addressed by other mechanisms.

Every server has a raft data structure that contains necessary information
regarding that specific server. The state includes: current state - current state
of the server; current term - integer term number; voted - a flag that states
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whether the server voted for the current term or not; and datalog - chain of
datalog entries. The datalog size is limited to the storage capability of the server.
The log can be stored and accessed on a cloud secured server, however, our design
uses an offline information sharing model in a closed environment.

The next phase is to test how our ISRaft addresses malicious behaviors. To
validate this, we created specific nodes, called ‘malicious, ’which act in a non-
deterministic way as explained earlier. For an easier implementation, we used
Python to inject these malicious nodes into the cluster randomly. The malicious
nodes could have message droppings, datalog mismatching, message duplication,
to name a few. For the partitioning, we simply restricted the communication
among different servers to simulate a network crash. When needed, the partition
could be lifted by reconnecting the servers. Below are our RPC pseudocodes:

Algorithm 1 RequestVote RPC

Request
hashed req vote /* Vote for the server initiating the RPC */

Response
user term ← current term number
voted ← 0 /* Flag of the server vote */

if candidate term < user term then
return ERROR

else if voted ! = 0 and candidate ID ! = NULL then
vote ← Encrypted(candidate votes)

end if
return SUCCESS

Algorithm 2 AppendEntries RPC - Request

log entry /* Log data to be added */

leader term /* New log term */

signed votes /* Cluster votes of the leader. Data is encrypted with the

private-key of the servers and will be decrypted with the public-key */

4 Analysis of Our ISRaft

The analysis of our model contains two parts. We initially compare the ISRaft
with similar consensus algorithms. Subsequently, we analyze the correctness and
efficiency of our model, especially when it’s compared with the original Raft
algorithm and the similar Tangaroa Raft implementation.
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Algorithm 3 AppendEntries RPC - Response

n /* The number of servers in the cluster */

user term /* The latest term of the current server */

prev log entry /* The previous log entry */

if leader term < user term then
return FALSE

else if sec check ! = TRUE then
/* Check if the signed votes are valid for at least 1/2n+1 for n

servers in the cluster */

return FALSE
else if leader.prev log entry ! = user.prev log entry then

return FALSE
end if
log.append(log entry)
if leader term > current term then

current term ← leader term
end if
return SUCCESS

Algorithm 4 RequestAppend RPC

log entry /* The entry to be appended */

send encrypt(log entry) /* Encrypt with private key */

4.1 Comparison

The comparison, shown in Table 3, is partially based on Bamakan et. al. [1]
where several consensus algorithms were evaluated with the same criteria. The
first comparison aspect is the type of chain that the model will most likely be
implemented with, e.g., whether the model is using blocks or log. This can be
determined by a number of factors, however, for this comparison we simply take
the most commonly used chain method for each of the models. Our ISRaft as
well as Tangaroa are based on the original Raft algorithm, therefore, they use a
similar log-based chain method. Paxos and BFT are based on achieving consensus
among parties without having any logging method such as block/log.

The second criteria is the type of Blockchain. Generally, the permission-less
and the permissioned are the two main ways for using Blockchain. Permission-
less is also known as public, whereas the other is private. PoW is a permission-less
Blockchain where the consensus can operate on an open environment and it is
proof-based. The Raft, Paxos, Tangaroa, and BFT are permissioned Blockchain
meaning that they operate on a closed environment with some sort of centraliza-
tion with servers-client communications. Our ISRaft is somewhere in the middle.
It was designed to run on an open environment where all nodes operate with
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the same consensus algorithm and new nodes can join the clusters. The election,
however, is voting-based that is similar to most permissioned Blockchains.

Third comparison is the trust model. The network can be fully-trusted where
the entire network communication is moderated and all nodes can be trusted;
semi-trusted where part of the network can be moderated and access is granted
only to trusted nodes; and finally, un-trusted where the network is not moder-
ated. Our ISRaft is categorized as semi-trusted, however, it can be easily modified
to be un-trusted if needed. In the un-trusted model, servers can join and leave
clusters without approval as long as they provide the appropriate public-key.

The degree of decentralization shows how the model is decentralized in com-
parison to others. When a models’ node is dependable on other nodes, the degree
of his decentralization is weakened. The original Raft, for example, has low de-
gree of decentralization since different commands can only be initiated by the
client to the servers.Our ISRaft is different from all other permissioned algo-
rithms due to the fact that it has a high decentralization degree as the nodes
can communicate with each other and achieve a consensus without the interven-
tion of a server node. The scalability is how well the model can operate on a
larger scale, requiring more computational power and resources. Our ISRaft is
not different from the original Raft consensus algorithm form this perspective.
The last comparison is the percentage of byzantine nodes the model can tolerate.
Our ISRaft is an upgrade to the original Raft as the algorithm can tolerate up
to 50% of byzantine nodes.

Fig. 3. Comparison of consensus algorithms.

4.2 Efficiency Analysis

Our implementation used EC2 Amazon servers running in a cluster. Each server
is an EC2 instance that uses multi-threading as part of its infrastructure. The
efficiency tested in this section is the average time it took for a cluster to achieve
consensus for the same election timeout value. The comparison of the model is
done only with the original Raft and the similar modification of Raft, named
Tangaroa [2]. Tangaroa was implemented using similar tools as our ISRaft.

The algorithms were then tested on different similar environments: one with
no malicious node active and another with 20% of malicious nodes who can
operate in one of three ways: Holding messages, pretending to be different servers
in the cluster, or sending random messages.Each malicious node was given a
random assignment to either one of these operations.
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Fig. 4. Algorithms latency with different % of malicious servers.

Figure 4 shows the result of our implementation with respect to the network
size (number of nodes) and the total latency of the network for all communica-
tions. The latency was calculated by having each node store the time it initiated
the command and have it reduced from the end time when the command reached
all other nodes. The Raft operates faster than ISRaft and Tangaroa in a network
with no malicious modes. This is due to the fact that the servers had to store
the entire cluster’s keys and many RPCs so that they operate properly, whereas
in other models, the nodes only require to store the log and term.

Malicious nodes have a significant effect on the operation of the classic Raft
algorithm. The results were always inconclusive as the model kept stalling and
messages were not passing through. This is why the original Raft model was not
fully tested in this malicious environment. The ISRaft and Tangaroa were both
capable of handling 20% of malicious nodes and were given similar results as the
one with no malicious nodes.

This analysis illustrates that the original Raft is incapable of handling ma-
licious nodes and it is much faster on a large scale than our ISRaft. However,
in real-world applications where malicious nodes exist, the ISRaft operates as
expected. The main difference between our ISRaft and the Tangaroa is that the
Tangaroa is not as decentralized as our ISRaft and it is required to operate under
server-client communication whereas our ISRaft is fully decentralized.

5 Concluding Remarks and Future Works

This paper presents a different way to utilize the Raft consensus algorithm in a
secure information sharing environment. This model allows the servers to share
information on a shared-log in an adversarial environment.

The servers use public-key signatures with encrypted PRCs while maintaining
operative communication. The proposed model can be implemented to improve
the cooperation among parties, especially, in resource-constrained infrastruc-
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tures where a regular encrypted communication method can heavily affect the
system. The implementation of the ISRaft consensus algorithm is written in C
and tested on multiple servers with a simulator to test the behavior of the cluster
in different scenarios. The analysis shows that the proposed model is practical to
be used in many real-world applications. As our future work, we are interested
in utilizing trust and reputation models [12] to construct a reputation-based
consensus scheme.
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