
ISRaft Consensus Algorithm for Autonomous Units
Linir Zamir, Aman Shaan and Mehrdad Nojoumian

Department of Electrical Engineering and Computer Science
Florida Atlantic University

Boca Raton, FL
{lzamir2016, ashaan2019, mnojoumian}@fau.edu

Abstract—Consensus protocols are a key feature in decentral-
ized systems where multiple unreliable nodes operate, e.g., in
Blockchain technologies with many worldwide applications such
as supply chain management, cryptocurrencies and information
sharing. ISRaft is a consensus protocol built upon Raft, a
previously developed protocol that is used for replicated state
machines when a group of nodes is required to achieve a
consensus related to the state of the machine. This paper therefore
proposes an alternative version of the ISRaft consensus protocol
to allow communication among nodes in a secured fashion while
maintaining the security features of the original ISRaft algorithm
even in the presence of adversarial nodes. The proposed model
utilizes a trust parameter to enforce cooperation, i.e., a trust value
is assigned to each node to prevent malicious activities over time.
This is a practical solution for autonomous units with resource-
constrained devices where a regular encrypted communication
method can negatively affect the system performance.

Index Terms—Consensus Algorithm, Autonomous System,
Blockchain Technology, Trust Model, Raft

I. INTRODUCTION

Autonomous units can operate under many different oper-
ations and models. Much like a human, each unit is required
to make decisions and be able to communicate and act upon
it. Comprising many small individual nodes, autonomous units
in decentralized fashion have no centralized authority to guide
them. Instead, they rely on individual communications in order
to complete tasks, achieve consensus and share information
[1]. These groups are robust, flexible and scalable, which
allows them to complete many different tasks in different
fields. Decentralized autonomous units contain many individ-
ual nodes with several advantages. The loss of a few nodes will
not affect the system, contributing to its robustness. Flexibility
is possible because of simple communications that take place
between nodes, and scalability works since this method of op-
eration can work together with different numbers. Autonomous
units can be applied in fields that deal with data collection and
management. Some examples are exploration, surveillance,
and data classification. The methodologies of such systems
are efficient by themselves, but when implemented with other
blockchain technologies, many new opportunities arise.

The Blockchain infrastructure was introduced in 2009
through the creation of Bitcoin. Bitcoin required the nodes
of a system to come to a consensus in order to append blocks
to the blockchain. In most blockchain systems, the Proof-

of-Work (PoW) consensus protocol is used. However, this
protocol is known to be slow and energy consuming, which
makes it impractical for many applications. Blockchains are
being established in many fields of technology in order to
improve security and provide features such as decentraliza-
tion. One of these applications is in autonomous driving [2],
where security is extremely important in order to establish
autonomous vehicles that are reliable and safe. Blockchain
technology has also extended to Robot Swarms. The presence
of a blockchain in robot swarms allows for these nodes to
have easier and more efficient communication. Blockchains
allow robot swarms to have access to shared knowledge while
still retaining the individual communications that take place
in swarms. Furthermore, the immutable characteristics of the
blockchain also enable robot swarms to be more secure and
reliable in terms of data storing and sharing.

This paper therefore proposes an alternative version of
the Information Sharing Raft (ISRaft) consensus protocol [3]
to allow communication among nodes in a secured fashion
while maintaining the security features of the original ISRaft
algorithm even in the presence of adversarial nodes. ISRaft
builds upon the Raft consensus protocol that achieves con-
sensus through the process of leader elections, voting, block
generating and validating. ISRaft differs from the original Raft
by adding Byzantine Fault Tolerance, allowing all nodes in a
network to request data changes, validation of any data types,
and adding reputation value to each node. In ISRaft, individual
nodes in the system are able to communicate with each other
through Remote Procedure Calls (RPC).

The proposed model utilizes a new trust parameter to
enforce cooperation [4], i.e., a trust value is assigned to
individual nodes to prevent malicious activities over time. This
is a practical solution for autonomous units with resource-
constrained devices where a regular encrypted communication
method can negatively affect the performance of the entire
system. This modification intends to further improve the
security and capabilities of ISRaft. In the original Raft, any
node is able to become the leader of the particular system,
allowing potential malicious nodes to compromise the system
if elected as a leader. Through the use of ISRaft, the new trust
parameter prevents malicious nodes from becoming leaders
and thereby preventing them from compromising the system.
We also implement ISRaft into a robot swarm system on
ARGoS in order to test its efficiency. Each robot in the swarm
becomes its own node with its own trust value.978-1-6654-4131-5/21/$31.00 ©2021 IEEE

The major goal of this research is to solve the problem of
secured and immutable communication in P2P networks by
using a decentralized consensus protocol solution. Consensus
protocols, such as PoW, use mining procedure as a way to
guarantee the soundness of the block, where miners are also
compensated for their works; see [5] for details of Bitcoin
mining in Blockchain. In ISRaft consensus protocol, the node
who mines the block is the leader of the cluster, who is
elected based on its trust value between himself and other
nodes in the cluster. In this protocol, trust is represented as a
resource with a numeric value. Nodes can use this parameter
to increase their chances of becoming leaders, and to generally
communicate with other nodes in the cluster. Unlike other con-
sensus protocols, ISRaft can operate independently and does
not require solving a complex mathematical puzzle, which
makes it cost-efficient. Furthermore, ISRaft is simple enough
to run on autonomous units with minimum computational
power while maintaining consensus, which makes it ideal for
several applications with resource-constrained devices.

II. RELATED WORKS

In this section, we discuss studies that proposed blockchain-
based mechanisms in different autonomous units and how our
implementation is different from previous works.

Several autonomy-related projects [6]–[8] aim at find-
ing a solution for reliable communication and decision-
making among autonomous units because Byzantine units
can have disastrous effects on any autonomous technology.
A blockchain approach utilizing Proof-of-Work and other
known protocols has been implemented for testing among
autonomous agents. By using blockchain, data can be stored in
a safe way to prevent unintended or malicious data changes by
byzantine units present in the system. Autonomous vehicles,
swarm robotics and smart devices are good examples of
autonomous units that can benefit from the use of blockchain
as a core part of their infrastructures.

Ferrer et al. [9] highlights the importance of swarm robotics
and how the blockchain can be utilized to further improve
robotic technologies. Swarm robotics can be seen as a kind of
autonomous unit where the characteristics of swarms, such as
scalability and resistance to failure, have made swarm robotics
appealing to many researchers. However, swarm robotics have
some drawbacks. Since swarms mainly communicate through
other neighboring robots, there is nothing that allows them
to have shared knowledge with other robots in the system.
This is where the use of a blockchain is beneficial, where
global knowledge can be added to swarm robotics while
maintaining local knowledge. By implementing blockchain
technologies in swarm robotics, the security of these swarms
can also be improved. The blockchain provides reliable and
safe communication among robots along with opportunities to
validate members of a swarm and prevent malicious attacks.
Blockchain also allows for distributed decision-making in
swarms. Processes such as voting and leader elections can
be implemented into swarms through decision-making that is
made possible through the use of a blockchain.

Strobel and Dorigo [10] designs a robotic swarm that defines
which color is more prevalent in an environment of both
black-and-white tiles. The authors’ goal is to determine the
frequency of black tiles using a blockchain approach among
robots, instead of simply finding which color is more prevalent.
Furthermore, a reputation management system is added to
manage the presence of byzantine robots. This utilizes a
smart contract where each robot’s reputation is stored on the
blockchain. The reputation of each robot is changed based on
how they report the color of a certain tile when the report
is compared with other robots’ reports in the swarm. When
an individual robot reports an incorrect color, its reputation is
decreased. When a robot’s reputation value becomes very low,
its votes are ignored. They then run three separate experiments.
The first one is to test if the correct frequency of tiles
could be calculated without using reputation management. The
second experiment is to study the effects of the swarm on the
blockchain and how efficient it will be. The third experiment
is to determine if byzantine robots will have an effect while
using the reputation management in the swarm. Overall, the
results show that having reputation management is effective
in handling byzantine robots at a smaller scale.

Singh et al. [11] present an improved way of decision-
making process of swarm robotics by using a blockchain
system. Currently, the ways that robots communicate are too
centralized and are not resource efficient since blockchains
require a large number of resources. In order to improve
this, the authors propose to utilize Proof-of-Authority (PoA)
instead of the more common PoW. In PoA, certain nodes are
given the roles of validator. The validators manage and record
transactions into the blockchain, with the validator leader
gaining the block-publishing priority. This leader is changed
after a set period. To verify this approach, a similar method to
the colored tiles is used. In a simulated environment, there are
grey, white, and black tiles. The robots emit red when on white
tiles, green when on black tiles, and do not respond to grey
tiles. The objective is to have the robots decide which color
tiles emit each color of light. While this test does not consider
the byzantine robots, the authors show that it is effective and
less resource-intensive compared to the normal blockchain.

Queralta et al. [12] improve data sharing, resource uti-
lization and communication in swarm robotics by using
blockchain technologies. They use the PoW consensus pro-
tocol to measure the resources the system still has in order
to provide proper resource utilization. Moreover, the Proof-
of-Stake (PoS) is used to validate transactions due to the
scalability issues when using PoW. They also use a Single
Longevous Blockchain that utilizes ad hoc collaboration in
order to allow new nodes to enter the system. This blockchain
will also work in situations using permissioned or permis-
sionless blockchains. In addition, a method of ranking is
implemented by using smart contracts, which has resulted in
certain robots having higher ranks than others. These rankings
are changed based on the needs of the system and will not be
recorded in the blockchain itself. Only the data that is validated
is stored in the blockchain. Despite the presence of the ranking

system, the nodes are not chosen based on their rankings or
levels of trust, which provides protection for malicious nodes.

The implementation of blockchain among autonomous units
provides many benefits as shown in the aforementioned papers.
However, in most cases, malicious nodes are not considered.
Furthermore, in the majority of these papers, proof-of-work is
utilized that is not efficient enough. For instance, Strobel et
al. [13] propose a method of managing these byzantine nodes
through a reputation value and utilization of proof-of-work.
However, if a malicious node has a high hash-rate, he can still
compromise the system.

We intend to address these issues by utilizing the Raft
consensus protocol. Due to the nature of this protocol and its
periodical leader elections, malicious nodes will not be able
to compromise the system regardless of their computational
powers unless they become a leader. To further prevent a
malicious node from becoming a leader, we utilize a trust pa-
rameter that allows the reputable nodes to become leaders. Our
framework works in both permissioned and non-permissioned
blockchains. Finally, we utilize the idea of RPC in the leader
election process that is similar to smart contracts.

III. ISRAFT CONSENSUS PROTOCOL

In this section, we present the ISRaft consensus protocol
in a closed and isolated network. ISRaft protocol uses sim-
ilar fundamentals as the original Raft algorithm, i.e, Leader
Election and Server Communication. In addition to modifying
these features, this new design includes a trust value, message
validation and security features in the presence of an adversary.

A. Design Overview

The main idea of ISRaft protocol is to have all nodes in the
cluster to hold an agreed upon ledger, containing messages
of communication among different nodes. A node in the
cluster can be in one of the three states: follower, candidate
or leader. A leader is the only authority in the cluster that
can append blocks to the chain, making it the miner of the
current block. The other nodes can send messages to each
other and the leader, and the leader then has the responsibility
to distribute the message among all other nodes. For simplicity,
communication among nodes in the network is done via RPC
messages for minimum coding and faster initialization.

1) Asymmetric Encryption: Each node is initialized with
a pair of cryptographic keys used for authentication and
signature. The public-key is submitted and logged into
a registry that holds all identities in the network. Other
nodes will receive an update whenever a new node
joins the network. Whenever a node sends any RPC
message, he signs it with his own private-key. Nodes
reject any RPC message that does not include a valid
signature. Any key pair, such as RSA, can be used for
the purpose of this model. This also helps with tracing
back messages when a trust is broken between nodes.

2) Permissioned Blockchain: New nodes need to go
through an enrollment process where a key pair is

initiated and stored on the registry along with its address,
trust value, and other required parameters.

3) Secured Channel: For simplicity, we assume that the
communication of the nodes is done on a secured
channel, without the possibility of having a man-in-the-
middle attack. This, however, can be easily addressed in
future works. Furthermore, communication is done via
RPC messages, signed by each node.

As mentioned, a node in the system can be in either one of
the following identities: follower, candidate or leader.

• Follower: This state is the initial state of a node upon
joining the network. While in this state, the follower
operates under the current leader of the cluster. If a
follower node wishes to add anything to the chain, the
leader needs to first validate the message, and only then
it can be committed. A follower receives a stream of
heartbeat messages from the leader to make sure it is
updated to the last block. A heartbeat message is sent
every short period of time, called election timeout, and it
can include new transactions, data and/or leader change.

• Candidate: When a follower does not receive heartbeat
messages within some predetermined period of time, it
automatically changes its state to a candidate. While in
this state, the node sends a request-vote message to all
other nodes in the cluster, asking for their vote so that
he can become the leader, and so the miner of the next
block. A candidate can not vote for himself.

• Leader: A candidate can become a leader when he
receives at least n/2+1 votes in a cluster of n nodes. A
leader has the responsibility to mine the next block, and
to send heartbeat messages to all nodes in the network.

Trust between two nodes plays an important factor in this
ISRaft protocol. Trust represents the confidence in which
nodes rely on each other. Let Pi be a node with a public-key
identifier i. Pi then holds a trust value associated with each
node in the network. The trust value assigned by Pj to Pi is
then T j

i . This value is in the interval [0, 1]. These values are
unique and do not have to be symmetric, i.e., T j

i 6= T i
j [14].

When a node sends an RPC message of any kind (excluding
heartbeat message and responds) to the other nodes in the
network, the recipients immediately decrease the trust value
of the sender by a fixed small amount. This is done as a way
to reduce the total number of messages that can be sent every
single second, decreasing the possibility of overflowing and
DDoS attacks on the network by any node in the system.
ISRaft uses the following RPCs for its operation:

• RequestVote - This RPC is sent whenever a candidate is
calling for votes.

• RequestAdd - Every node in the cluster can send this
message to the leader, asking for some data to be added
to the next generated block.

• AppendBlock - The leader can send this message when-
ever a new block is mined. This can happen every fixed
time, or by the decision of the leader.

• ApproveCommit - After a new block has been added to
the node, he sends this RPC back to the leader.

These simple RPCs are what makes this consensus protocol
easy to implement and operate in resource-constrained devices.

B. Leader Election

For this protocol to work, a leader must be elected. This
process is done automatically when no heartbeat message is
being sent over election timeout. After that period of time,
the follower node changes its state to a candidate and he
begins the election process. During this time, the node sends
RequestVote RPC concatenate with the latest block number
signed with his private-key signature to all nodes in the cluster.
A follower or a candidate node that receives the RPC will then
send a vote if and only if the following conditions are met:

• The node has not received any heartbeat messages from
the current leader.

• The latest block number is at least equal to the current
node’s term plus 1.

• The RequestVote RPC is signed with a valid candidate’s
private-key.

• The trust value T of the sender is at least 0.5.

A node that receives the first RequestVote RPC will hold the
first vote until the end of the election timeout regardless of
the candidate’s trust value, as long as the candidate fulfills
the conditions. However, in the case where more than one
RequestVote arrives, the node will choose who to vote for
based on the trust value. A candidate with a higher trust value
T will have a higher chance of getting the vote. A leader
is elected when he receives the votes of the majority of the
cluster. At that point, the elected leader sends out an RPC that
includes the signed vote messages that he received from the
nodes in the cluster. This acts as a proof of election and also
prevents a self-promoted leader. All other nodes in the cluster
then increase the trust value of the appointed leader by some
fixed amount. This can be seen as a reward given to the elected
leader who will then mine the next block.

After the new leader has been elected, he starts sending
heartbeat messages containing the signatures of all other nodes
who voted for him as a continuous proof of his leadership. If
a new node was not aware that a new leader had been elected,
the heartbeat message serves as an update for the node to
follow. A leader is elected for a limited amount of time, called
leadership term. At the end of this term, the leader gets to mine
a new single block added to the chain and then a new election
process begins.

During the election process, a node can receive a heartbeat
RPC from a different node claiming to be the new leader. If
the block number of the new heartbeat is at least higher than
the block number of the previous heartbeat message, the node
will recognize that new node as the leader and will follow the
new leader. Otherwise, it will reject the heartbeat RPC and
will continue with the election process.

Fig. 1. Example of ISRaft blocks.

C. Block Generation

Every leadership term ends with a block being appended to
the chain. A newly created block has the following data, as
shown in Figure 1: block number, block hash, previous hash,
block leader, timestamp, and data array.

When a follower node intends to add data to the block,
he sends a request via the RequestAdd RPC. This RPC is
signed by the requesting node. The signature guarantees the
authenticity of the request, which prevents a malicious node
from forging another node’s request. This RPC is sent to all
nodes in the cluster including the leader. This is performed
for two purposes: To prevent manipulation of data, and to
guarantee that a leader will receive the data in the case if a
new leader has been elected without the node’s knowledge.
When the leadership term is coming to end, the leader begins
the new block generation process by hashing the value of the
new block and sending the AppendBlock RPC to all nodes in
the cluster. This message contains the hash value of the block
to be appended and all signed votes from the majority of the
nodes in the cluster. When a node receives the AppendBlock
RPC, he performs the following:

1) Compares the hash in the RPC message to make sure it
is the expected hash value,

2) Verifies if the block number is larger than the last
committed block, and

3) Validates if the leader’s votes are legitimate.
If all conditions are satisfied, the node increases the trust
value of the leader and sends a signed ApproveCommit RPC
to the leader. If the majority of nodes in the network send
this approval message, the leader can then send a second RPC
that includes the signed approvals of all nodes in the network.
When a node receives the second RPC, it commits the new
block to the chain.

D. Data Update and Validation

Nodes are able to add data to the block through a request
made to the leader of the current term. The leader then decides
to store the information received from the nodes into the
next block. The data is locally stored in a 2D array on each
node, where the first dimension is the number of nodes in the
network and the second dimension is the decision made by
each one. The decision of each node will be visible to others
and will be used to modify the trust values of other nodes.

Every task is bound in time, and during that time, it is
expected that the system will achieve a consensus. Examples
for such tasks can be learning the color of the surface, reading
texts, or identifying threats. When a node makes a decision
and commits it to the blockchain, other nodes can read that
decision and change the trust value of that node accordingly.
For example, if the system needs to identify the color of the
surface, each one of the nodes will read the color and submit
its decision to the current leader, who will in turn commit
these decisions into the next block. At the end of the task, the
last block can be read to make a final decision and validate
it. The validation process heavily relies on the trust values
of nodes in the network. When a consensus is required, the
reputation value of each node is calculated based on individual
trust values, which is defined as follows [15]:

Definition 1: Let T j
i be the trust value assigned by Pj

to Pi. Let Ti be the reputation function that illustrates how
trustworthy Pi is:

Ti =
1

n− 1

n∑
j 6=i

T j
i

At the end of a task, all reputation values are calculated and
are used as the weighted value for each node’s decision. This
can be written as D =

∑n
i=1 Ti ·P d

i , for decision D, n number
of nodes, and P d

i as the decision of single node i.

IV. EXPERIMENT

A. ARGoS Simulator

For the purpose of testing and evaluating ISRaft consensus
protocol, the ARGoS simulator was used [16]. ARGoS is a
swarm robotic simulator that is able to simulate large-scale
swarms for any purpose. In our research, each robot acts as an
independent ISRaft node, operating under the same guidelines
detailed in the previous sections. Each node was given access
to a running ISRaft network and was able to read and receive
commands by having a unique identifier in the network.

A single node was able to execute commands either will-
ingly (such as the heartbeat messages) or through a client
controller running simultaneously. This was used for testing
malicious activities such as message droppings, or messages
that were not part of the original protocol.

The experiment was conducted as a simulated computer
cluster with similar hardware to small mobile phones - a single
core with 1.5GHz and 2 GB of memory. A total of 20 nodes
operate with the ARGoS Simulator where the output data was
carefully monitored by a 3rd party operator.

B. Setup

A total of 20 nodes were used in the experiment similar
to [13]. The goal of this experiment was to help a set of
autonomous units to make decisions about the colors of tiles in
a 20×20 grid of black, white and gray tiles. The colors of these
400 tiles were randomly selected. For simplicity purposes,
the nodes were able to communicate with each other freely,
without distance restriction.

At the beginning of the experiment, each node was set to
hold the data type that is relevant for this specific experiment.
A 2D array was initialized as char arr[20][400] where
the first dimension was the number of nodes in the cluster and
the second dimension was the number of tiles in the system.

The experiment was set as follows: when a node stands
on a colored tile, it reads that color. Upon success, the node
then sends the signed RequestAdd RPC to the cluster including
the tile number (1 to 400) and the color it reads. The leader
receiving the RPC will then change the data of the 2D array
at the location of the requesting node with the tile number
and color reported. After some time, the leader will then send
the AppendBlock RPC to the cluster with the new changes. A
node receiving the RPC will then check to see if it has already
read the color of that same tile. If yes, he will compare the
results. If it is a correct color, the trust value of the reporting
node will be increased, otherwise, it will be decreased. At the
end of the experiment, the reputation value for each node is
calculated and the decision for each tile is made based on the
reputation values and reported colors. If, for example, tile 4
had 2 votes: a node with reputation 0.45 voted “Black” and
a node with reputation 0.8 voted “White,” the final decision
will be “White.”

During the experiment, Byzantine nodes were added to the
cluster to see how the trust values are changed based on false
messages. These Byzantine nodes always report wrong colors.

C. Technical Results

The experiment ran 35 times with different election timeout
values ranging from 1 to 100 millisecond (assigned randomly)
for a total of 5 minutes for each experiment. At the end of
each run, we calculated the percentage of correctly voted tiles,
noted as CV Tn for experiment n.

For each experiment with the same number of byzantine
nodes, we averaged the CV T value to get these results:

0 1 2 3 4 5 6 7
0.5

0.6

0.7

0.8

0.9

1

Number of Byzantine Nodes

C
V
T
n

As shown above, despite the decrease in CV T value when
more byzantine nodes were added to the experiment, the
overall value never went below 90%. This illustrates that the
validation process along with the calculated trust values help
in maintaining correctness of the model.

V. CONCLUSIONS AND FUTURE WORK

ISRaft is a consensus protocol that can be implemented
among autonomous units in a secure data sharing environment.
This protocol makes it possible to achieve consensus in the
presence of adversarial nodes. Moreover, by using trust and
reputation values, it becomes possible to validate the authen-
ticity and correctness of the shared data. This can be easily
implemented on resource-constrained devices and our model
works perfectly in any infrastructure where regular encrypted
communication methods can negatively affect the performance
of the system.

In our future work, we will expand the implementation of
ISRaft to deal with different tasks. We will also implement
the protocol on real autonomous units to see how it operates
in real-life scenarios.

VI. ACKNOWLEDGMENT

Research was sponsored by the Army Research Office
and was accomplished under Grant Number W911NF-18-1-
0483. The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Office or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation herein.

REFERENCES

[1] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm
robotics: a review from the swarm engineering perspective,” Swarm
Intelligence, vol. 7, no. 1, pp. 1–41, 2013.

[2] Y. Yuan and F.-Y. Wang, “Towards blockchain-based intelligent trans-
portation systems,” in IEEE 19th International Conference on Intelligent
Transportation Systems, 2016, pp. 2663–2668.

[3] L. Zamir and M. Nojoumian, “Information sharing in the presence of
adversarial nodes using raft,” in Future Technologies Conference, 2021.

[4] M. Nojoumian, “Rational trust modeling,” in International Conference
on Decision and Game Theory for Security. Springer, 2018, pp. 418–
431.

[5] M. Nojoumian, A. Golchubian, L. Njilla, K. Kwiat, and C. Kamhoua,
“Incentivizing blockchain miners to avoid dishonest mining strategies
by a reputation-based paradigm,” in Computing Conference. Springer,
2018, pp. 1118–1134.

[6] T. Hardjono, A. Lipton, and A. Pentland, “Toward an interoperability
architecture for blockchain autonomous systems,” IEEE Transactions on
Engineering Management, vol. 67, no. 4, pp. 1298–1309, 2019.

[7] M. Baza, M. Nabil, N. Lasla, K. Fidan, M. Mahmoud, and M. Abdallah,
“Blockchain-based firmware update scheme tailored for autonomous ve-
hicles,” in IEEE Wireless Communications and Networking Conference,
2019, pp. 1–7.

[8] Y. Wang, Z. Su, K. Zhang, and A. Benslimane, “Challenges and solutions
in autonomous driving: A blockchain approach,” IEEE Network, vol. 34,
no. 4, pp. 218–226, 2020.

[9] E. C. Ferrer, “The blockchain: a new framework for robotic swarm
systems,” in Future Technologies Conference. Springer, 2018, pp. 1037–
1058.

[10] V. Strobel and M. Dorigo, “Blockchain technology for robot swarms:
A shared knowledge and reputation management system for collective
estimation,” in 11th International Conference on Swarm Intelligence,
vol. 11172. Springer, 2018, pp. 425–426.

[11] P. K. Singh, R. Singh, S. K. Nandi, K. Z. Ghafoor, D. B. Rawat,
and S. Nandi, “An efficient blockchain-based approach for cooperative
decision making in swarm robotics,” Internet Technology Letters, vol. 3,
no. 1, p. e140, 2020.

[12] J. P. Queralta and T. Westerlund, “Blockchain-powered collaboration
in heterogeneous swarms of robots,” arXiv preprint arXiv:1912.01711,
2019.

[13] V. Strobel, E. Castelló Ferrer, and M. Dorigo, “Managing byzantine
robots via blockchain technology in a swarm robotics collective decision
making scenario,” in International Conference on Autonomous Agents
and MultiAgent Systems. ACM, 2018, p. 541–549.

[14] M. Nojoumian and T. C. Lethbridge, “A new approach for the trust
calculation in social networks,” in E-business and Telecommunication
Networks: 3rd International Conference on E-Business, Best Papers,
ser. CCIS, vol. 9. Springer, 2008, pp. 64–77.

[15] M. Nojoumian and D. R. Stinson, “Social secret sharing in coud com-
puting using a new trust function,” in 10th IEEE Annual International
Conference on Privacy, Security and Trust, 2012, pp. 161–167.

[16] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla,
N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle et al., “Argos:
a modular, parallel, multi-engine simulator for multi-robot systems,”
Swarm intelligence, vol. 6, no. 4, pp. 271–295, 2012.

