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ABSTRACT
Recent studies indicate that people are negatively predisposed to-
ward utilizing autonomous systems. These findings highlight the
necessity of conducting research to better understand the evolution
of trust between humans and growing autonomous technologies
such as self-driving cars (SDC). This research presents a new ap-
proach for real-time trust measurement between passengers and
SDCs. We utilized a new structured data collection approach along
with a virtual reality SDC simulator to understand how various
autonomous driving scenarios can increase or decrease human trust
and how trust can be re-built in the case of incidental failures. To
verify our methodology, we designed and conducted an empirical
experiment on 50 human subjects. The results of this experiment
indicated that most subjects could rebuild trust during a reasonable
time frame after the system demonstrated faulty behavior. Our
analysis showed that this approach is highly effective for collecting
real-time data from human subjects and lays the foundation for
more-involved future research in the domain of human trust and
autonomous driving.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
Virtual reality.
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1 INTRODUCTION
Recent studies indicate that people have negative attitudes toward
utilizing autonomous platforms [8, 11]. Besides, with the expo-
nential growth and the increase in the complexity of autonomous
systems in the 21st century, managing trust of users in such systems
has become an important concept when designing new autonomous
or artificial intelligence systems. Numerous studies in the domain of
trust and intelligent systems have suggested that management and
constant improvement of this mutual trust between autonomous
systems and their users will be one of the primary challenges the
industry professionals will face when trying to popularize the use
of fully autonomous systems [1, 2, 4, 6, 10]. These discoveries high-
light the necessity and urgency of conducting research to better
understand the evolution of trust between humans and growing
autonomous technologies, and to provide technologies that are
responsive to human trust.

A concrete example of a trust management problem is the sys-
tematic maintenance of trust in self-driving cars. Car manufacturers
and tech giants (for instance, Mercedes Benz, BMW, Tesla, Volvo,
Waymo, etc.) have successfully manufactured semi-autonomous
cars, and have beenworking on level-4 and level-5 fully autonomous
prototypes since the early 2010s. Many of these corporations have
projected the mass production of SDCs in the early 2020’s [7, 16, 17].
Their major challenge in the upcoming years will be to attract the
attention of average consumers in the US and around the world,
who have high expectations, but at the same time, a high level of
distrust in fully automated SDCs [5].

According to a World Economic Forum study, consumers are
very reluctant to consider purchasing or even trying autonomous
vehicles. Safety, control, and faulty behavior of autonomous cars are
some of the many concerns the consumers expressed. With the re-
cent trust damaging incidents, e.g., Tesla1 andUber2 SDCs accidents,
the need for additional research to provide a safer test environment
and to manage human-machine trust becomes more important than
ever. New research objectives and innovative methodologies can po-
tentially provide a robust platform to develop autonomous vehicles
that perform well and are trustworthy.

Generally speaking, the literature of trust is very broad. However,
very little research has been conducted on physiological responses

1https://www.theguardian.com/technology/2018/mar/31/tesla-car-crash-autopilot-
mountain-view
2https://www.nytimes.com/2018/03/23/technology/uber-self-driving-cars-
arizona.html
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and fluctuations in the trust levels of SDCs’ passengers [18]. Fur-
thermore, most research in this area has utilized online surveys and
primitive simulations for their experiments rather than realistic
and immersive simulations. The open questions and the gaps in
the current literature motivated us to initiate a new project by de-
signing an empirical experiment for measuring the trustworthiness
of a simulated SDC. By implementing an immersive VR simulator,
which uses real VR driving videos, and developing an advanced
trust self-reporting tool, we intended to collect accurate data from
test subjects. We asked the participants to sit in our SDC simulator
and use the trust self-reporting tool after they experience different
simulated SDC driving segments. We believe that our investigation
and its outcome will contribute to the general understanding of
factors affecting trust and satisfaction among passengers of SDCs.

In this paper, we will describe the design, the procedure and
the outcome of the empirical experiment that we have conducted.
Section 2 illustrates our research methodology. In Section 3, the
detailed simulation setup and its technical configurations are de-
scribed. Section 4 covers the experimental design. The results of
our research are presented in Section 5. Finally, in Section 6, we
end the paper with the concluding remarks and the future direction
of our research.

2 RESEARCH METHODOLOGY
2.1 Novelty of Our Approach
The sequential and structured data collection, various trust states,
and a realistic simulation platform are novel aspects of our research.

(1) Our data was collected based on a limited (to avoid allow-
ing our human subjects to provide inaccurate responses)
sequence of trust-building/damaging incidents that affect
each other. This helped us understand how the human mind
goes from one specific trust-state to another one in a se-
quence of events. We utilize specific templates from [13] to
form these incidents.

(2) Although most approaches [3, 9] utilize two forms of re-
sponses from subjects, i.e., distrust and trust, we consider
a fuzzy set of trust states, i.e., distrust, somehow distrust,
neutral, somehow trust, and trust.

(3) In many “trust-in-autonomy" projects, subjects were asked
to respond to questions in a survey or interact with an algo-
rithm to express their inputs [18], while our SDC simulator
is fully immersive.

2.2 Sequential and Structured Data Collection
Using a structured and sequential data collection approach, we in-
tended to understand how humans gain or lose trust in autonomous
vehicles and how trust escalation or reduction can be controlled in
various incidents as well as among different groups of people, i.e.,
young, mid-age and senior. Our collected data can be transformed
into specifications to be used in the controllers of autonomous
vehicles. Note that demographic data and past psychological data
are collected prior to our experiments to characterize our human
subjects based on self-confidence, trusting attitude, risk-acceptance,
past unpleasant experiences, and other traits because these factors

impact the outcome of our research. Segments are categorized into
five distinct groups as follow:

(1) Initial Trust: Segments that aim to capture the initial trust
of passengers in the first few minutes of the first interaction.

(2) Trust Escalation: Segments that illustrate a sequence of
incidents in which human subject’s trust is increased, e.g.,
2 minutes of smooth and predictable driving by the SDC
without any complications or surprises.

(3) Trust Reduction: Segments that illustrate a sequence of
incidents in which the human subject’s trust is decreased,
e.g., when the SDC cuts off another controlled vehicle.

(4) Trust Mutation: A sequence of mild incidents (e.g., a rapid
lane change by the SDC) followed by critical incidents (e.g.,
stop-sign violation or tailgating by the SDC) and vice versa,
can be negative or positive incidents.

(5) Re-Building Trust: Segments that demonstrate how trust
can be rebuilt, e.g., the SDC performs smoothly for a reason-
able period of time after trust-damaging incidents.

3 SIMULATION SETUP
Our simulator, as shown in Figure 1, is a safe platform to expose
human subjects to any trust-damaging incident, including but not
limited to, sharp turns, sudden stops, stop-light violations, speeding,
tailgating, unexpected accident, etc. The SDC virtual reality simu-
lator is based on fusion of an Oculus Rift headset with an Atomic
A3 Full Motion Simulator. Figure 1 shows a human subject in our
self-driving car simulator.

360 degree video of driving situations were recorded using the
GoPro Fusion Camera and edited using the GoPro Fusion Studio. To
capture interesting driving footage and trust damaging scenarios,
the team members recorded 360 degree videos of everyday driving
for a couple of months. These videos were later analyzed, edited,
and categorized to be used in the SDC simulator. The teammembers
also choreographed and recorded driving segments (for instance,
near collisions between two cars) in safe environments with no
outside traffic.

The Oculus Rift head set outputs 1080x1200 resolution per eye, at
a 90 Hz refresh rate, a 110 degree field of view, and has headphones
which output a 3D audio effect3. The participant also wears noise
canceling ear muffs over the headphones to eliminate outside noise.
While wearing the Oculus Rift VR headset, the participant can freely
move their head 360 degrees to see the complete scene. Figure 2
demonstrates the view of a scene in the SDC simulator.

The Atomic A3 Full Motion Simulator can move up to 71 degrees
per second across a full 27 degree dual-axis movement range4. The
combination of complete visual, audio, and movement immersion
provides a convincingly realistic simulation. The Atomic A3 Sim-
ulator receives telemetry data that has pitch values for front and
back movements and roll values for left and right movements.

SimTools motion simulator software was used to send the teleme-
try data for each video to the Atomic A3 motion simulator via UDP
packets. The “Video Ride Creator" plug-in was used to generate
telemetry points for every frame in the simulation videos.

3https://gopro.com/fusion
4http://www.atomicmotionsystems.com/



Figure 1: Participant using the SDC simulator.

Figure 2: View from inside the self-driving car simulator: each frame represents the participant’s view as they turn their head
to look around, illustrating the 360-degree view inside the SDC simulator.

The simulator plays the audio, video, and telemetry files syn-
chronously. After each segment, the participant is presented with
a Likert Scale that appears inside the Oculus Rift. The participant
selects their response by focusing their gaze on the desired answer
for five seconds while wearing the Oculus Rift. Figure 3 shows a
sample question in the virtual reality space.

VR sickness is a known phenomenon in which people experience
symptoms that are very similar to motion sickness. Symptoms
include headache, general discomfort, nausea, vomiting and vertigo
[12]. To mitigate these effects the motion output of the simulator
was closely monitored, and subjects were not kept in the simulation
for longer then 15 minutes.

To play 360 degree 4K resolution videos in each lens of the Oculus
Rift, it requires a machine with powerful processing. To meet these
demands, the application is executed on an AlienWare Area-51
equipped with an Intel Core i7-5960X processor along with dual

Figure 3: Stare-and-Select tool interface.



NVIDIA GeForce GTX Titan Z graphics cards that achieves clock
speeds greater than 4 Ghz. This high performance machine allows
for the dual 360 degree 4k videos to be played seamlessly.

4 EXPERIMENTAL DESIGN
Prior to the simulation, participants were asked to answer 17 demo-
graphic and psychological questions by filling out an anonymous
survey. Participants were randomly placed in one of two possible
SDC simulation scenarios. Each scenario is made up of 5 segments.
Tables 1 and 2 define the scenario and segment pairings. Specific
scenario-segment pairs are denoted with a two letter abbreviation
followed by the scenario and segment numbers, for example, TRI−II
denotes trust reduction segment 2 of scenario 1.

Each segment starts with an exposure to an approximately 2-
minute SDC driving simulation followed by a response interval to
the question “On a scale of 1-5 with 1 being the lowest and 5 being
the highest, after this simulation, what is your level of trust in the
self-driving car?" After the participant responds, the application
moves on to the next segment until the simulation scenario is
complete. Different videos are used across driving scenarios.

Table 1: Simulation Scenario-1

ITI−I Initial Trust
TRI−II Trust Reduction
TRI−III Further Trust Reduction
NMI−IV Negative Trust Mutation
RTI−V Rebuild Trust

Table 2: Simulation Scenario-2

ITII−I Initial Trust
TEII−II Trust Escalation
TRII−III Trust Reduction
NMII−IV Negative Trust Mutation
RTII−V Rebuild Trust

An initial trust/trust escalation segment involved the SDC mov-
ing slowly and predictably while adhering to the rules of the road.
A trust reduction segment involved the SDC along with Human-
Driving Cars (HDC) moving erratically and unpredictably, breaking
rules of the road including speeding, tailgating, and sudden lane
changes. In the NMI−IV segment, the SDC ran through a non-visible
stop sign and nearly collided with another car and then proceeded
to drive through a residential neighborhood. In the NMII−IV seg-
ment, the SDC ran through a stop sign unexpectedly and detected
a pedestrian and a bicyclist crossing a crosswalk and abruptly came
to a stop. A rebuild trust segment involved the SDC driving de-
fensively and adhering to rules of the road. Note that HDCs were
involved in all scenarios.

It is predicted that after the initial trust/trust escalation segments,
the participants will respond with high levels of trust in the SDC,

and after trust reduction segments, the participant will respond
with low levels of trust in the SDC. It is also predicted that after
the negative trust mutation segment, the participant will report a
drastic decrease in trust.

5 EXPERIMENTAL RESULTS
Fifty human subjects were recruited to participate in the 10 minute
VR autonomous driving simulation5. 84% of the participants were
male and between the ages of 18-30. Ethnically, the participants
identified as 60% White, 20% Hispanic/Latino, 12% Black/African
American, and 6% as Other. Half of the participants were randomly
selected to be in Scenario-1 and the other half were assigned to
Scenario-2. Full findings detailing how demographic and psycho-
logical data affect trust levels in the SDC simulator are detailed in
the final journal publication [19].

5.1 Scenario-1
Figure 4 shows the mean trust levels participants reported after
each segment in scenario-1. In the initial trust segment (ITI−I), par-
ticipants responded with an average score of 4.52±0.17, followed
by a mean score of 3.60±0.23 in the first trust reduction segment
(TRI−II). After exposure to further trust reduction (TRI−III), the
score increased slightly to 3.84±0.19, followed by a large decline to
2.28 ±0.23 when exposed to negative trust mutation (NMI−IV). Fi-
nally, trust levels increased to 4.08±0.19 in the rebuild trust (RTI−V)
segment. The most obvious change across segments was between
the negative trust mutation (NMI−IV) and the initial trust segment
(ITI−I), consistent with our expectations that erratic driving has the
potential to severely reduce trust.

Figure 4: Mean Trust Levels Across Segments in Scenario-1.

To assess whether the observed scores are statistically different,
the Wilcoxon Rank Sum Test was performed across segments; the
resulting p-values are shown in Figure 5. Here, we see that scored
changes in trust are not distinguishable above the 0.05 p-value
between TRI−II and TRI−III, RTI−V and TRI−II, and RTI−V and TRI−III.
All other comparisons show statistically significant changes in trust.

5IRBNET ID #: 1187756-1



Figure 5: Wilcoxon Rank Sum Test P-Values Across Seg-
ments in Scenario-1.

Scenario-1 performed as expected. Participants scored the initial
trust and rebuild trust segments with high levels of trust, the trust
reduction segments with lower levels of trust, and the negative
trust mutation segment with the lowest level of trust. It is interest-
ing that mean values of trust appear to have slightly increased in
TRI−III, a segment designed to elicit further trust reduction. This
may be due to participants perceiving TRI−II to be more dangerous
in comparison to TRI−III; however, the difference between the two
is within the standard error and statistically insignificant. As ex-
pected, the negative trust mutation had the lowest trust levels and
was significantly lower than all other segments. This indicates the
simulator’s effectiveness in reducing participants’ trust levels.

An interesting result is the difference between the initial trust
segment and the final segment designed to rebuild trust. While
participants scored their level of trust after RTI−V at 4.08±0.19,
a high value, it is significantly lower than the initial trust value
(4.52±0.17), representing a 12.00% decrease. This seems to indicate
that participants trusted the SDC less after being exposed to trust
reducing segments.

5.2 Scenario-2
Figure 6 shows the mean trust levels participants reported after
each segment in Scenario-2. In the initial trust segment (ITII−I), par-
ticipants responded with an average score of 4.24±0.15, followed
by a mean score of 4.52±0.14 in the first trust escalation segment
(TEII−I). After exposure to trust reduction (TRII−III), the score de-
creased to 3.36±0.20, followed by a further decline to 3.12 ±0.26
when exposed to the negative trust mutation (NMII−IV). Finally,
trust levels increased to 3.80±0.23 in the Rebuild Trust segment
(RTII−V).

Figure 7 shows the results of the Wilcoxon Rank Sum Test across
segments in Scenario-2. Here, we see that scored changes in trust
are not distinguishable above the 0.05 p-value between TEII−II and
ITII−I, RTII−V and ITII−I, NMII−IV and TRII−III, RTII−V and TRII−III,
and RTII−V and NMII−IV. All other inter-comparisons show statisti-
cally significant changes in trust.

In (NMII−IV), the SDC approaches a crosswalk and stops for a
pedestrian to cross the street. This was the only segment that in-
volved the SDC interacting near a pedestrian. Participants reported

Figure 6: Mean Trust Levels Across Segments in Scenario-2.

Figure 7: Wilcoxon Rank Sum Test: P-Values Across Seg-
ments in Scenario-2.

low levels of trust after this segment and commented that they es-
pecially did not trust the SDC near pedestrians. In Scenario-2, while
participants score their level of trust after RTII−V at 3.80 ±0.23, a
high value, it is significantly lower than the initial trust segment
(4.24 ±0.15), representing a 13.50% decrease. This seems to indicate
that participants trusted the SDC less after being exposed to trust
reducing segments.

5.3 Comparison of Scenario-1 and Scenario-2
We performed the Wilcoxon Rank Sum Test p-Value between the
trust segments in Scenario 1 and Scenario 2 to investigate the fluc-
tuations of trust levels in participants in groups 1 and 2. Figure 8
illustrates this comparison.

Our analysis indicated that participants from both groups re-
ported similar expected trust levels after positive and negative trust
segments. The only major significant difference that we observed
was the reported trust levels for Negative Trust Mutation segments,
that is, NMI−IV and NMII−IV. We believe that this is due to the fact
that the Negative Trust Mutation segment in Scenario-2, NMII−IV,
was much milder compared to the one in Scenario-1. It mostly in-
volved the SDC running stop signs in a parking lot and driving near



pedestrians and a bicyclist, as opposed to speeding, almost crashing
into another car, and driving in the middle of the road in NMI−IV.

Another considerably significant trust difference can be seen in
TRI−II and TEII−II. This is expected because TRI−II involves trust
damaging incident such as speeding or tailgating, as opposed to
defensive highway driving in TEII−II.

Figure 8: Wilcoxon Rank Sum Test: P-Values in segments
from Scenario-1 vs Scenario-2.

The results of the experiment were generally consistent with
our expectations. The participants reported higher trust levels after
experiencing initial trust and trust escalation segments and reported
distrust after the trust reduction segments as well as high distrust
after the negative trust mutation segment. Participants did not trust
the SDC around pedestrians. Finally, participants in both groups
were able to relatively rebuild their trust after the trust damaging
Negative Trust Mutation segments.

6 CONCLUSION AND FUTUREWORK
The results of the experiment indicated that the trust levels of
humans change depending on the SDCs driving style and that
the majority of the participants were able to moderately rebuild
their trust in the simulated self-driving car after faulty and erratic
behaviors. The autonomous driving style directly influences the
trust of the passengers in the system. Aggressive driving diminishes
trust, and defensive/predictable driving increases trust.

The results of our experiment matched our initial expectations.
Thus, we can consider this innovative data collection approach an
adequate and a reliable technique to measure passengers’ levels
of trust and psychological responses when exposed to different
driving scenarios. This approach lays the foundation for a wide va-
riety of future research in the context of trust and human-machine
interactions. With the mass production and commercialization of
autonomous vehicles in the upcoming years and the high degree
of skepticism of the average consumers in the industry, we believe
that this type of research and development is more important than
ever before.

In the next iterations of our research, we will improve our SDC
VR simulation scenarios by introducing segments with crucial fail-
ures such as accidents as well as hazardous conditions such as heavy
rain, storms, and snow to see if they would have a direct impact

on the passengers’ trust levels. Furthermore, automatic collection
of the physiological and psychological responses (via EEG sensors,
heartbeat sensors, facial recognition modules, and others) during
the simulated driving scenarios and analyzing them in real-time
are some of our primary ongoing research directions [14, 15].
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