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Abstract. In the last decade, with the advent of Internet of Things
(IoT) and Big Data phenomenons, data security and privacy have be-
come very crucial issues. A significant portion of the problem is due
to not utilizing appropriate security and privacy measures in data and
computational infrastructures. Secure multiparty computation (secure
MPC) is a cryptographic tool that can be used to deal with the men-
tioned problems. This computational approach has attracted increasing
attention, and there has been significant amount of advancement in this
domain. In this paper, we review the important theoretical bases and
practical advancements of secure multiparty computation. In particular,
we briefly review three common cryptographic primitives used in secure
MPC and highlight the main arithmetic operations that are performed
at the core of secure MPC protocols. We also highlight the strengths
and weaknesses of different secure MPC approaches as well as the fun-
damental challenges in this domain. Moreover, we review and compare
the state-of-the-art secure MPC tools that can be used for addressing
security and privacy challenges in the IoT and big data analytics. Using
secure MPC in the IoT and big data domains is a challenging task and
requires significant expert knowledge. This technical review aims at in-
stilling in the reader an enhanced understanding of different approaches
in applying secure MPC techniques to the IoT and big data analytics.

Keywords: Secure Multiparty Computation; Secure MPC; Internet of
Things (IoT); Big Data Analytics; Yao’s Garbled Circuits; Yao’s Million-
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1 Introduction

In recent years, data privacy has been a critical issue, e.g., the representatives of
companies such as Google and Facebook have recently been questioned on data
privacy concerns. A similar data privacy concern appeared recently in the news
about Sidewalk Labs, which is a smart-city company owned by Google. With
the unprecedented growth of the Internet in all aspects of life, the advent of
phenomenons such as the Internet of Things (IoT) and big data, it is anticipated
that more data privacy challenges will be raised in coming years.

To address the data privacy concerns, the root causes of the problem should
first be understood. In the case of digital data in the information age, the problem



starts when appropriate data privacy measures are not utilized in the data and
computational infrastructures. In particular, the data owners store their data on
the data centers or on the cloud owned by third parties. This data will then be
used by the owners of the data centers for different purposes, e.g. advertisement,
commercial and data analytics goals. It can be said that this is one of the primary
sources of the problem.

Addressing data securiy and privacy concerns has been the focus of attention
by many researchers from decades ago [30, 37, 38]. In [30], the pioneers of cryp-
tography discussed how privacy-preserving computation using homomorphisms
can be achieved. In [37] and [38], on the other hand, the idea of secure two-party
computation was initiated. In particular, in [37], the Yao’s Millionaires problem
was introduced and in [38] the Yao’s garbled circuit technique was developed to
solve the Yao’s Millionaires problem. The above seminal ideas led to the general
idea of secure multiparty computation (secure MPC). Secure MPC is a crypto-
graphic technique which enables a group of parties to evaluate a function based
on the private data that each party provides, for instance in [26]. This technique
can help us address data security and privacy issues to a good extent.

1.1 Our Contribution

There has been significant amount of theoretical and practical advancements in
secure multiparty computation. Nowadays, there are various implementations
and libraries of secure MPC frameworks for real-world applications. Each li-
brary is based on different theoretical approaches and works in certain settings.
This is mainly because of the strengths and shortcomings of different MPC ap-
proaches. In spite of the amount of conducted research, the existing literature
rarely pointed out the capabilities and incapabilities of different MPC solutions.
For instance, in [23] the authors claimed that many existing MPC frameworks
fail to work properly in practice, because of crashing or generating incorrect cir-
cuits [23]. A technical review comparing different approaches and highlighting
both strengths and weaknesses of the MPC solutions is missing in the literature.

In this paper, we provide a technical review of secure MPC tools that can be
used in the IoT and big data analytics. The contribution of this comparative and
technical review is multi-fold. On the theoretical side, this paper highlights the
strengths and weaknesses of different cryptographic techniques that are com-
monly used in MPC tools. It also delves into the main arithmetic operations
that are carried out at the core of MPC protocols. On the practical side, this
paper reviews the state-of-the-art MPC tools. We provide tables for summariz-
ing and comparing the existing MPC tools, their security adversarial models,
and the application domains in which each tool can be utilized. The paper also
highlights potential approaches for the future secure MPC frameworks.

We would like to emphasize that in this paper we provide a very technical
review of the secure MPC tools and libraries with an emphasis on the crypto-
graphic primitives and mathematical/arithmetic operations that are performed
at the core of secure MPC protocols. There are other comprehensive studies,
including the recent ones [2] and [33], that have studied secure MPC tools from



different perspectives. In [33], the authors studied the applications of privacy-
preserving computation in fog computing. While in [2], a thorough analysis of
secure MPC solutions and its relevance to other privacy-preserving computation
areas, e.g. differential privacy, has been provided. In this technical review, our
goal is to instill in the reader an enhanced understanding of different approaches
in applying secure MPC solutions to the IoT and big data analytics.

2 Different approaches for Secure Computation

There are different approaches to implement a secure multiparty computation
scheme. These techniques are based on three cryptographic primitives, i.e., secret
sharing [32], homomorphic encryption [25,30] and Yao’s garbled circuits [38].

2.1 Secure Computation based on Secret Sharing

Secret sharing is one of the dominant approaches used in secure multiparty
computation. In this approach, the participating parties use a secret sharing
scheme, e.g., Shamir’s scheme [32], to share their secrets (private data). In order
to emulate a secure MPC protocol, the parties then perform computations on
the shares of their data, rather than directly on their data. Since the shares of
the private data are random values, no information about that data is revealed.

An advantage of secure computation protocols based on secret sharing is that
such protocols can provide information-theoretical security given that the un-
derlying scheme is information-theoretically secure. Another advantage of MPC
based on secret sharing is that there is no need for any encryption/decryption
key. However, secret-sharing-based MPC protocols require significant amount of
communication among the participating parties. In fact, privacy is achieved by
distributing the computations among the parties.

2.2 Secure Computation based on Homomorphic Encryption

Another commonly-used approach in secure multiparty computation protocols
is homomorphic encryption. In this case, the parties utilize a homomorphic en-
cryption scheme, e.g., the Paillier scheme [25], to encrypt their data. The parties
then perform computations on the encrypted form of data. Homomorphic en-
cryption has attracted significant attention in the last decade. In particular,
by the appearance of fully homomorphic encryption (FHE) schemes [15], this
research area has shown to be more promising.

Most of the cryptographic schemes are based on the difficulty of some com-
putational problems, e.g., integer factorization or discrete logarithm. This can
be considered as one of the drawbacks of homomorphic-encryption-based MPC
protocols. This is due to the fact that if the underlying difficult problem is solved
(e.g., by utilizing quantum computers), the encryption scheme would not be se-
cure anymore. In addition, homomorphic-encryption-based MPC protocols are
computationally intensive and supporting multi-key encryption is a challenging
task in such schemes [1].



2.3 Secure Computation based on Yao’s Garbled Circuits

Yao’s garbled circuits [38] is another dominant approach for secure two-party
computation. A garbled circuit is an encrypted form of a function, which is
supposed to be evaluated securely between two parties. More precisely, in this
approach, one party encrypts the bits of their input and the intermediate state
of the computation. This party then converts the computation into a circuit of
binary gates, each represented as a garbled truth table. The other party, a.k.a.,
the evaluator, receives the circuit and the encrypted input bits. The evaluator
then produces the encrypted output by evaluating each gate at the encrypted
bits of the input and combining the results.

Yao’s garbled circuit approach is the most efficient method for securely eval-
uating boolean circuits [20]. This approach does not require any communication
between the parties during the evaluation. However, the intermediate state in the
garbled circuits is far larger than the input data. This makes garbled circuits
impractical for processing large data. Moreover, the garbled circuit approach
provides computational security.

3 Building Blocks for Secure Computation

At the core of the three common approaches in secure computation, the main
arithmetic operations, i.e., addition, multiplication, subtraction, division and
comparison, are performed. These arithmetic operations, in fact, form the build-
ing blocks of secure computation.

3.1 Secure Comparison

Secure comparison is an important building block in secure computation [31].
The problem of secure comparison was initially introduced in [37], as the Yao’s
Millionaires problem. This problem is a well-studied, but challenging problem.
Thus far, different solutions have been proposed to this problem. The proposed
solutions are mostly based on homomorphic encryption techniques, secret shar-
ing schemes and Yao’s garbled circuits.

The current solutions to the secure comparison problem are very expensive,
mostly in terms of the communication complexity. An inefficient secure com-
parison protocol can make a secure multiparty computation protocol even more
inefficient. This is due to the fact that secure comparison may be used numerous
times in a MPC protocol. For instance, secure comparison is frequently used
in the secure argmax operation, which is another common operation in many
privacy-preserving data mining algorithms [6]. Thus, efficient and practical solu-
tions to the secure comparison problem result in improving secure computation
protocols. There are different approaches for improving a secure comparison pro-
tocol. For example, reducing the number of interactions among the participating
parties is a potential optimization technique.



3.2 Other Building Blocks for Secure Computation

For performing secure computation, the four main arithmetic operations need
to be implemented in a secure fashion. These operations can be implemented
securely using secret sharing schemes, homomorphic encryption techniques and
Yao’s garbled circuits. For instance, the Paillier homomorphic encryption scheme
[25] allows us to calculate the addition of two encrypted values by multiplying
their corresponding ciphertexts and without decrypting them. In the case of
secret sharing schemes, two or more parties can calculate the addition of their
secret values by adding the shares of the secret values locally and then conducting
a Lagrange interpolation on their updated shares.

Depending on the application domain, the secure implementation of other
operations may also be needed. For instance, in privacy-preserving data mining
and machine learning, the secure version of three operations is needed. These
operations include secure comparison, secure inner product of two vectors, and
secure argmax [6]. In some cases, the secure version of natural logarithm, i.e. the
ln() function, the sign function, the sigmoid function is also required [9].

4 Security & Privacy Challenges in IoT and Big Data

Data security and privacy have been critical challenges both in the Internet
of Things (IoT) and big data domains [4, 34, 40]. It is important to scrutinize
major security and privacy issues in these domains. A good understanding of such
issues helps us provide concrete solutions to the problems. The Cloud Security
Alliance [4] has included secure computations and cryptographic solutions among
the top ten challenges to big data security & privacy. Moreover, data privacy
has been indentified as one of the major security concerns [4].

Addressing data security and privacy issues is a challenging task. Three pri-
mary challenges of using secure multiparty computation frameworks in the big
data domain are as follows [36]:

1. MPC is not integrated well with current data processing and data analytic
workflows

2. Significant expert knowledge is needed for implementing and running data
analytics in the MPC frameworks

3. The MPC frameworks do not scale well for large data sets, because large-data
processing systems do not support efficient parallel processing yet

In addition to the aforementioned challenges, there are still some limitations
with secure multiparty computation schemes that preclude using them in the IoT
and big data domains. First of all, providing a general-purpose efficient MPC
framework for various applications in different domains has shown to be very
difficult. There has been tremendous amount of research on secure computation
for different applications, including privacy-preserving data mining, sealed-bid
auctions, privacy-preserving face recognition, and private information retrieval,
to name a few. Secure multiparty computation protocols have been used in



different application domains with specific settings and assumptions depending
on the suitability and efficiency criteria. Combining these solutions to have an
integrated framework is quite challenging. The challenges that IoT and big data
analytics bring will be added and will make the scenario even more complicated
[19]. Nonetheless, a careful combination of different solutions might be a plausible
approach in the near future.

5 Tools for Privacy-Preserving Big Data Analytics

In this section, we compare the state-of-the-art secure multiparty computation
tools (including libraries, implementations and frameworks). These tools can be
used for secure computation in the IoT and big data domains [2, 33].

Fairplay [22] is a secure function evaluation (SFE) tool that allows two
parties to perform a joint computation without any trusted third party. This tool
is based on Yao’s garbled circuits and provides a high-level function description
language called SFDL. The Fiarplay compiler compiles SFDL programs into a
boolean circuit and evaluates the circuit using its runtime environment.

FairplayMP [3] is an extension of Fairplay [22] for multiple parties. This
tool is based on Yao’s garbled circuits and secret sharing schemes. FairplayMP
uses an emulated trusted third party. The emulated trusted third party receives
the inputs from the parties, does the desired computations and privately informs
the parties of their outputs.

Sharemind [5] is a secure multiparty computation framework consisting
of three parties. It is one of the most developed and efficient MPC tools and
supports 32-bit integer arithmetic. However, it uses a non-standard secret sharing
technique and does not extend to more than three parties [41].

VIFF [10] is a compiler for secure multiparty computation based on standard
secret sharing schemes. It uses parallelization and multi-threading to provide
faster computations. This framework supports computations consisting of basic
primitives, e.g. addition and multiplication, on secret-shared values.

SEPIA [8] is a Java library based on linear secret sharing schemes. It sepa-
rates the parties into computational parties and the parties who provide inputs
and obtain outputs. SEPIA is used for secure distributed computation on net-
work data, e.g., for privacy-preserving network intrusion detection.

TASTY [17] is a tool (with a compiler) for two-party secure computation
(2PC) based on Yao’s garbled circuits and homomorphic encryption. This tool
can be used for describing, generating, executing, benchmarking and comparing
secure 2PC protocols. It allows a user to provide a description of the computa-
tions to be performed and transforms the description into a 2PC protocol.

SPDZ [11] is a secure multiparty computation protocol based on secret shar-
ing and homomorphic encryption. SPDZ consists of an offline (preprocessing)
phase and an online phase. In the offline phase, the required shared random
data is generated and in the online phase, the actual secure computation is
carried out.



SCAPI [13] is an open-source library for developing MPC frameworks and
secure computation implementations. It comes with two instantiations of the
Yao’s garbled circuits. One instantiation is secure against active adversaries and
the other is secure against passive adversaries. SCAPI is implemented in Java
and uses the JNI framework for calling native codes, to make the library efficient.

Wysteria [27] is a high-level programming language for writing MPC pro-
grams. It supports mixed-mode programs consisting of private computations
with multiparty computations. Wysteria compiles the MPC programs to cir-
cuits and then executes the circuits by its underlying MPC engine.

Obliv-C [39] is a language for secure computation programming based on the
garbled circuits. It is an extension of the C programming language that provides
data-oblivious programming constructs. The Obliv-C compiler, implemented as
a modified version of CIL, transforms Obliv-C codes to plain C codes.

Enigma [42] is a decentralized computation framework which combines MPC
and Blockchain technology to provide guaranteed privacy. It allows different
parties to jointly store and perform computations on their data without exposing
the privacy of the data. Enigma also removes the need for trusted third parties.

Frigate [23] is a validated compiler and fast circuit interpreter for secure
computation. It introduces a C-style language for secure function evaluation
based on garbled circuits. Frigate has been developed with an emphasis on the
principles of compiler design. It addresses the limitations of many previous MPC
frameworks and produces correct and functioning circuits [23].

Chameleon [29] is a hybrid framework for privacy-preserving machine learn-
ing. This framework is based on the ABY framwork [12], which implements
a combination of secret sharing, garbled circuits and the GMW protocol [16].
Chameleon has an offline and an online phase and most of the computation is
performed in the offline phase. It uses a semi-honest third party (STP) in the
offline phase, for generating the required correlated random values.

WYS
? [28] is a domain-specific language (DSL) for writing mixed-mode se-

cure MPC programs. It is based on the the idea of Wysteria [27] and embed-
ded/hosted in F? programming language. For running a MPC program in WYS

?,
the program is first compiled using the F? compiler. Then each party runs the
compiled codes using the WYS

? interpreter. The result, which is a boolean cir-
cuit, is evaluated using the GMW protocol [16] on the parties’ secret shares.

Conclave [35] is a query compiler that makes secure computation on big
data efficient. Conclave generates codes for cleartext processing in Python and
Spark and codes for secure computation using Sharemind [5] and Obliv-C [39].
The idea behind Conclave is to minimize the computations under MPC as much
as possible. Conclave can support only two or three parties and withstands a
passive semi-honest adversary.

We summarized the reviewed secure MPC tools in Table 1. The table illus-
trates the main details and characteristics of the tools. Note that, due to the
space constraints, we used some abbreviations in Table 1. The meaning of the
abbreviations is provided in Table 2.



The first column of Table 1 shows the name of the MPC tools, the year
in which each tool was developed, and the reference related to each tool. The
second column determines the number of parties that each tool supports. The
third column specifies the cryptographic primitives that have been used in the
development of each tool. The fourth column defines the type of security, i.e.
computational or information-theoretical, that each tool provides. The fifth col-
umn shows whether each tool uses some trusted third party (TTP) or such a
party is simulated in the tool. The idea of doing secure multiparty computation
without relying on any trusted third party is an interesting one. However, re-
alizing such a computational model seems to be a challenging task; as the fifth
column of Table 1 shows, the majority of the listed tools either need trusted third
parties or simulate them. The last column of the table shows the programming
languages that were used for the development of each tool.

We also provided a table that illustrates the adversarial model for each MPC
tool; see Table 3. The table specifies the number of corrupted parties that each
tool can tolerate. Note that in secure multiparty computation, the participating
parties might be corrupted by some adversaries. The parties may also collude
with each other. Therefore, it is important to consider such scenarios in the
implementation. Finally, Table 4 shows some applications for each MPC tool.

Tool/Library Parties Based on Security TTP Prog. Lang.

Fairplay 2004 [22] 2 GC Computational Yes SFDL (Java)
FairplayMP 2008 [3] ≥ 3 GC and SS Computational Em. TTP SFDL (Java)
Sharemind 2008 [5] 3 Additive SS Info. Theortic Yes SecreC (C++)

VIFF 2009 [10] ≥ 3 SS Info. Theortic No Python
VIFF 2009 [10] 2 Paillier HE scheme Computational No Python
SEPIA 2009 [8] ≥ 3 Shamir’s SS Computational Sim. TTP Java

TASTY 2010 [17] 2 HE and GC Computational No Python
SPDZ 2012 [11] ≥ 2 SS and HE Computational Yes C++/Python
SCAPI 2012 [13] ≥ 2 GC Computational No Java

Wysteria 2014 [27] ≥ 2 GMW protocol Info. Theortic Sim. TTP OCaml
Obliv-C 2015 [39] 2 GC Computational No C
Enigma 2015 [42] ≥ 2 VSS and Blockchain Info. Theortic No WebAssembly
Frigate 2016 [23] 2 GC Computational No C++

Chameleon 2018 [29] 2 SS, GMW, GC Computational STP C++

WYS
? 2019 [28] ≥ 2 [27] Info. Theortic Sim. TTP F?

Conclave 2019 [35] 2 or 3 [5] and [39] Computational Yes Python/Spark

Table 1. Secure MPC Tools for Big Data Computation (based on [33])

Notation Meaning

HE Homomorphic Encryption
GC Yao’s Garbled Circuits

GMW the Goldreich, Micali, and Wigderson (GMW) protocol [16]
SFDL Secure Function Definition Language

SS Secret Sharing
VSS Verifiable Secret Sharing
STP Semi-honest Third Party
TTP Trusted Third Party

Em. TTP Emulated Trusted Third Party
Sim. TTP Simulated Trusted Third Party

Table 2. Abbreviations used in Table 1



Tool/Library Secure against

Fairplay 2004 [22] not mentioned

FairplayMP 2008 [3] a collection of
⌊

n
2

⌋
corrupt computation players,

as long as they operate in a semi-honest way
Sharemind 2008 [5] a passive adversary able to corrupt at most one party

VIFF 2009 [10] not mentioned

SEPIA 2009 [8]
t < m

2 colluding privacy peers. Note that the sys-
tems has n input peers and m privacy peers

TASTY 2010 [17] not mentioned
SPDZ 2012 [11] an active adversary capable of corrupting up to (n − 1) parties
SCAPI 2012 [13] both active and passive adversaries

Wysteria 2014 [27] a semi-honest adversary capable of corrupting up to (n − 1) parties
Obliv-C 2015 [39] semi-honest adversaries
Enigma 2015 [42] not mentioned
Frigate 2016 [23] semi-honest model

Chameleon 2018 [29] semi-honest (honest-but-curious) model
WYS

? 2019 [28] semi-honest (honest-but-curious) model
Conclave 2019 [35] a passive semi-honest adversary

Table 3. Table of Adversarial Model

Tool/Library Applications

Fairplay 2004 [22] secure two-party computation
FairplayMP 2008 [3] secure multiparty computation
Sharemind 2008 [5] tax fraud detection system

VIFF 2009 [10]
sugar beet auction, decision tree learning, privacy-
preserving verifiable computation

SEPIA 2009 [8] private information aggregation, network security and monitoring
TASTY 2010 [17] set intersection, face recognition
SPDZ 2012 [11] oblivious RAM schemes and oblivious data structures for MPC

SCAPI 2012 [13]
privacy-preserving impersenation detection systems
and fair exchange protocols

Wysteria 2014 [27]
DStress (a framework for privacy-preserving and
distributed graph analytics)

Obliv-C 2015 [39] secure computation and data-oblivious computation

Enigma 2015 [42]
decentralized computation, IoT, crypto bank,
blind e-voting, n-factor authentication

Chameleon 2018 [29] privacy-preserving machine learning, e.g. SVM and deep learning
WYS

? 2019 [28] joint median, card dealing, private set intersection (PSI)

Conclave 2019 [35] secure MPC on big data, e.g. credit card regulation and mar-
ket concentration
Table 4. Table of Applications

6 Technical Discussion and Future Works

6.1 Technical Discussion

There are three common approaches for implementing secure MPC protocols.
These approaches include: secret sharing schemes, Yao’s garbled circuits, and
homomorphic encryption techniques. The approaches that work based on secret
sharing and homomorphic encryption schemes usually use the so-called arith-
metic gates, i.e. Addition and Multiplication gates. While, the approaches that
work based on Yao’s garbled circuits usually encrypt the inputs and garble the
circuit of the function which is supposed to be securely computed. Although
the three MPC approaches determine the overall schema for secure computa-
tion, sometimes it is preffered to securely implement certain functionalities. For



instance, in the case of privacy-preserving data mining and machine learning,
the three commonly-used operations [6], include secure comparison, secure inner
product of two vectors, and secure argmax. Other common functions that may
need to be implemented securely include the sigmoid function, the sign function
and the floor function [9] and [7].

Secure comparison is an arithmetic operation which commonly appears in
almost any secure computation protocol. Secure comparison is in fact the Yao’s
Millionaires problem [37], which is a well-studied problem. However, most of the
secure comparison solutions are expensive in terms of the communication com-
plexity, i.e., interaction among the parties. According to [31], secure comparison
protocols based on additive homomorphic encryption schemes require significant
amount of interaction among the parties. This is because additive homomorphic
encryption schemes allow linear operations (i.e., addition or multiplication by
a constant) on the encrypted values; whereas comparison is a non-linear arith-
metic operation. The inefficiency of secure comparison protocols makes the secure
argmax operation inefficient as well; and thus, the secure multiparty computa-
tion protocols. Therefore, providing an efficient solution to secure comparison
can bring in a significant improvement for secure MPC protocols.

An advantage of secure MPC tools based on Yao’s garbled circuits is that they
are fast. However, such tools do not provide information-theoretical security and
they are mostly used for secure two-party computations. Whereas, MPC tools
based on secret sharing schemes provide information-theoretical security given
that the underlying scheme is information-theoretically secure. MPC solutions
based on secret sharing schemes do not need any cryptographic key. However,
such tools require significant amounts of interactions among the parties. MPC
tools based on homomorphic encryption techniques provide computational secu-
rity. Early homomorphic encryption schemes, e.g., Paillier homomorphic encryp-
tion scheme [25], cannot support both addition and multiplication operations,
which are required for secure multiparty computation. This reduces their appli-
cability in secure MPC tools. Recent homomorphic encryption techniques, e.g.,
fully homomorphic encryption (FHE) [15], can support a limited number of ad-
dition and multiplication gates. In addition, an overlooked drawback of the FHE
schemes is that they rarely support multi-key encryption [1].

MPC protocols based on secret sharing and those based on homomorphic
encryption schemes work based on arithmetic gates, i.e. Addition and Multipli-
cation gates. The multiplication gate in such protocols has shown to make the
computations inefficient. For instance, for doing a multiplication in a MPC pro-
tocol based on Shamir’s secret sharing, the participating parties must regularly
perform a process called degree reduction. Similarly, in MPC protocols based on
fully homomorphic encryption (FHE) schemes, the parties must regularly carry
out a noise reduction process (i.e. bootstrapping) in order for the FHE schemes
to work properly. In both cases, the degree reduction and the noise reduction
processes deteriorate the performance of MPC protocols drastically.



6.2 Future Works

There are different interesting avenues for further research. One line of research is
to evaluate and test the existing MPC solutions in different application domains,
with the purpose of improving such solutions. For instance, one can perform
experimental research using the recent MPC prototypes, e.g., Enigma [42], which
is decentralized thanks to the Blockchain technology. Another direction is to
focus on the main arithmetic operations which are run at the core of MPC
protocols. For instance, providing efficient solutions for secure comparison can
improve the efficiency of the MPC solutions. Improving the multiplication gate
of MPC solutions based on homomorphic encryption or secret sharing schemes
can also result in more efficient and practical MPC solutions.

Another very interesting line of research is to integrate social mechanisms,
e.g., trust and reputation, in secure MPC protocols. Utilizing social mechanisms
alongside secure MPC protocols can help us achieve more secure and trustworthy
data and computation frameworks [18,43]. This is because trust and reputation
are considered as soft security measures that compliment hard security mea-
sures, e.g. cryptography and secure MPC protocols. In particular, secure MPC
solutions combined with trust and reputation machanisms can be helpful in
trustworthy machine learning. It is worth mentioning that trustworthiness in
data analytics and machine learning techniques is becoming more important as
we rely more on such techniques [21,24]. Integrating secure MPC protocols into
emerging decentralized computation technologies, e.g., the Blockchain technol-
ogy, can also be another potential line of research [42].

One may also do further research on more efficient secure solutions to the
commonly-used operations/functions in data mining and machine learning tech-
niques. However, for achieving such solutions it may be needed to accept a
trade-off between approximation and efficiency. In [9], for instance, the authors
faced some challenges for implementing logistic regression over encrypted data.
According to [9], the homomorphic implementation of the sign function, which
is closely related to the comparison operator, is very difficult. Implementing the
sigmoid function using homomorphic encryption seems also to be very difficult.
Note that the sigmoid function is commonly used in neural networks’ activation
functions and in logistic regression models. Even more challenging seems to be
the floor function [9]. The authors [9] dealt with these challenges using polyno-
mial approximation, e.g., Taylor polynomials and minimax approximation [14].
An interesting line of research is to see how such approximation methods will
perform for the functions that are commonly used in the secure MPC protocols.
For instance, one may further study the approximation solutions for the secure
comparison and secure argmax operations.

7 Conclusion

Data security and privacy have been crucial issues in recent years. It can be
said that these issues will become even more crucial as we are going well into
the Internet of Things (IoT) and big data eras. One of the main causes of data



privacy violation is due to not utilizing appropriate data privacy measures in the
data and computational infrastructures. Secure multiparty computation (secure
MPC) is a powerful cryptographic tool that can help us address data security and
privacy issues. In this paper, we provided a technical review to the cryptographic
techniques commonly used in MPC protocols. We delved into the arithmetic
operations that are run at the core of secure MPC protocols. In addition, we
highlighted the strengths and weaknesses of different approaches used in secure
MPC, and the challenges we face for designing practical MPC solutions. We
also compared the state-of-the-art MPC tools that can be used for addressing
security and privacy issues in the IoT and big data domains.

Considering all aspects and challenges of secure computation, solutions based
on secret sharing schemes integrated into decentralized computation frameworks
seem to be more promising for the future. Such solutions are decentralized,
provide information-theoretical security and do not need any cryptographic key.
Enigma [42] might be considered as a sample proof-of-work and a prototype for
potential practical solutions. In addition, integrating social mechanisms, such
as trust and reputation, into secure multiparty computation protocols provides
more reliable and trustworthy data and computation frameworks. Our technical
review and comparative study of different secure MPC approaches and developed
MPC tools will have significant contributions to applying secure MPC solutions
to the IoT and big data domains.
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