
Secure Error Correction Using Multiparty
Computation

Mohammad G. Raeini and Mehrdad Nojoumian
Department of Computer & Electrical Engineering and Computer Science

Florida Atlantic University, Boca Raton, FL, USA
{mghasemineja2017, mnojoumian}@fau.edu

Abstract—In the last couple of decades, error correction tech-
niques play a prominent role in various scientific and engineering
fields such as information theory, communication, networking,
to name a few. These techniques are mainly utilized to locate
and fix corrupted data over noisy channels. The data might be
corrupted due to various reasons, for instance, communication
failures, noise, or adversarial activities. On the other hand, data-
privacy has been in the center of attention by many researchers
in recent years. As such, it’s important to be able to use error
correction techniques over private data. This paper therefore
proposes a secure error correction method by using secure
multiparty computation (MPC). To the best of our knowledge,
our proposed approach is the first solution in the literature. In
secure MPC protocols, parties first share their private inputs by
cryptographic primitives in order to jointly compute a function
without revealing those private inputs. At the end of the protocol,
only the function value will be revealed to all parties. Our secure
MPC protocol efficiently implements the error-locator function
of Berlekamp-Welch algorithm. After locating errors, we utilize
another cryptographic technique, named enrollment protocol, to
fix the errors.

keywords: multiparty computation; error correcting codes;
Reed-Solomon codes; Berlekamp-Welch algorithm.

I. INTRODUCTION

The secure multiparty computation is a distributed compu-
tation tool that allows a set of parties to compute a function
over their private inputs without revealing any information
about those inputs. Secure MPC was first introduced by Yao
in his Millionaire’s problem [1]. The problem states that two
millionaires intend to know who is richer but they do not
want to reveal the value of their assets. After Yao’s paper,
many researchers have conducted research on secure MPC
and extended the original idea to a general purpose secure
multiparty computation protocol.

Specifically, researchers focused on how they can evaluate a
function over n pieces of private inputs, holding by n parties,
without revealing those pieces. It has been shown that any
function can be computed using secure multiparty compu-
tation. Two general approaches have been proposed in the
literature to implement secure MPC, i.e., using boolean circuits
or arithmetic circuits. In the former case, n parties share their
data among themselves, for instance by Shamir’s secret sharing
[2], and then the parties compute the targeted function through
boolean circuits. In this approach, the parties perform bit-wise
calculations. As communication complexity is an important

factor in secure multiparty computation, this approach is not
efficient from that perspective. In the latter case, the parties
use, for instance secret sharing, to share their data as finite
field elements, and then perform function evaluation over their
inputs. As this idea is based on polynomials and finite field
calculations, it is more efficient in terms of communication
and computational complexities.

In both scenarios, all parties need to communicate and share
their data. On the other hand, adversaries may interrupt data
communication or create noise while players are performing
calculations. As such, if they can use an error detection and
correction technique, they can increase the reliability of their
protocols. In this paper, we propose a secure error correction
technique that can be added to a secure multiparty computation
for detecting errors that are caused by adversaries or com-
munication channels. The idea is based on Berlekamp-Welch
algorithm and we assume parties have created their shares
based on Reed-Solomon codes. The reason that we use these
two specific techniques is that, they are based on polynomials
over finite fields that are efficient for implementation.

The rest of the paper is organized as follows. We first
present the preliminaries materials on secure multiparty com-
putation, Reed-Solomon codes, and their decoding using
Berlekamp-Welch algorithm. Then the previous works are
briefly reviewed. After that, the main part of this paper will
be presented. Finally, technical discussions and concluding
remarks are illustrated.

II. RELATED WORKS

The secure multiparty computation was first introduced by
Yao [1] as the millionaires problem, in which two millionaires
intend to determine who is richer without revealing anything
about their assets. In other words, they want to determine
whether x > y or x < y without revealing x and y, where
x and y are their assets. Later the idea was extended to a
more general case in which a group of players (or parties)
can evaluate a function based on their private inputs without
revealing those private values [3], [4], [5]. Many researchers
have conducted research on secure multiparty computation and
its applications [6], [7]. In this section we briefly review some
of the related works in this domain.

Secure multiparty computation has a wide range of applica-
tions in sealed-bid auctions, privacy-preserving data mining,
private information retrieval, machine learning, to name a few



[6], [8]. As the first set of fundamental applications, we can
refer to integer comparison [9]; equality test [20], [19]; and
interval test [19]. Note that these operation can be utilized
to implement a general purpose secure MPC protocol for
evaluating an arbitrary function on a set of private values,
owned by a group of parties.

Other cryptographic applications consist of joint signature
or decryption schemes in which a group of parties can sign
some documents or decrypt a message whenever a specific
number (which is known as threshold) of the parties are
present [7]; shared RSA keys where some parties can collabo-
rate to generate an RSA key that is shared among them [17];
and Joint signature or decryption schemes that can be utilized
in financial cryptography contexts [7].

Finally, we can refer to electronic auctions with private
bids, a.k.a, sealed-bid auctions, [11], [12]; data aggregation
in IoT-enabled smart metering systems [13]; and private set
intersection [14], [15], in which two parties can compute the
intersection of two sets without revealing their set contents.
Note that private set intersection has applications in other
domains such as privacy-preserving data mining.

III. PRELIMINARIES

In this section, we present some preliminary materials.
These include secure multiparty computation (MPC), Reed-
Solomon codes, called RS codes, Berlekamp-Welch decoding
algorithm for RS codes, called BW algorithm.

A. Secure Multiparty Computation

Secure multiparty computation which its first idea was
introduced by Yao [1] is defined as follows. n parties each
have a private value and intend to evaluate a public function
on their private data in such a way that they don’t reveal any
information about their private inputs but they all can get the
output of the public function. One simple example is that
n parties have n integer values and they intend to find the
maximum value without revealing their private inputs.

Many scientists have conducted research in this area [19],
[20], [22], [5], [21]. In secure multiparty computation, two
approaches can be used. One approach performs computation
based on bits of shared values, and the other approach,
conducts computation based on shared values of secrets in a
finite field Zp, for a prime integer p, [19]. In both cases, secret
sharing schemes, such as Shamir secret sharing [2], can be
utilized to share secret values. However, both approaches have
their own pros and cons, for example, conducting addition or
multiplication is efficient in finite field arithmetic, but using
boolean circuits it is not efficient anymore. Unfortunately,
doing some calculations, such as secret comparisons, is not
efficient and trivial in arithmetic circuits, whereas it is trivial
in boolean circuit calculations [19]. However, for large integers
this task is not efficient when we use boolean circuits.

To overcome the inefficiency of these two scenarios and
having an efficient solution, the authors in [20] presented
a protocol, called bit-decomposition, that allows parties to
convert sharing of finite field elements to sharing of bits. In

[19], the authors improved the bit-decomposition protocol by
reducing its communication complexity. Another work in this
area has been presented in [23] that is based on threshold
homomorphic systems.

B. Reed-Solomon Codes

Reed-Solomon codes was introduced in 1960 in [24]. These
error-correcting codes are based on polynomials over finite
fields and have many applications. In the following discus-
sions, we assume all calculations are done in finite field Zp

for a given prime number p. RS codes encode a message of
length k into a codeword of length n, where k ≤ n ≤ p. Math-
ematically, given a message m = [m0,m1,m2, ...,mk−1], the
polynomial P is defined as follows:

P (x) = m0 +m1x+m2x
2 + ...+mk−1x

k−1 (1)

In which the coefficients are in Zp. To encode the message
m, the polynomial will be evaluated on n different points, say
1, 2, ..., n, so the encoded message, denoted by c would be:

c = [c0, c1, c2, ...,cn−1] = [P (1), P (2), P (3), ..., P (n)] (2)

For the Reed-Solomon codes we have the following theorems:

Theorem 1. The weight of Reed-Solomon codes of length n
with a message of length k, RS(n, k), is n− k + 1.

Theorem 2. An RS(n, k) with n = k + 2e can correct e
errors.

A decoding algorithm was developed by Berlekamp and
Welch in [25], which we will discuss it in the next section.

C. Berlekamp-Welch Decoding Algorithm

Berlekamp-Welch algorithm is a decoding algorithm for
RS codes [25]. As we discussed in the previous section,
an RS(n, k) code encodes a message with length k to
a codeword of length n. Now, assume that e errors has
happened in the codeword c = [c0, c1, c2, ...,cn−1] =
[P (1), P (2), P (3), ..., P (n)] and the codeword with errors is
as follows: r = [r0, r1, r2, ...,rn−1]. That is, ri 6= P (i) for at
most e cases.

Theorem 3. Given a received codeword, generated by RS(n,
k) codes, with e errors, then there exists non-zero polynomials
E(x) and Q(x) for which we have [26]:

degree(E(x)) ≤ e (3)

degree(Q(x)) ≤ k + e− 1 (4)

Q(i) = riE(i) ∀i = 1, 2, ..., n. (5)

Moreover, Q(x)
E(x) will give the polynomial that has generated

the codeword, P (x).

Equation 5 is called key equation and solving it gives us
the location of the errors in the received codeword, which is
guaranteed by theorem 3.



For i = 1, 2, ..., n, key equation, equation 5, will produce
a system of equations, which we can solve it by different
methods in linear algebra, such as Gaussian elimination or
Cramer’s rule. By finding the solution of the key equation,
we can find the locations of the errors, and accordingly, the
polynomial P (x) that gives the corrected message.

IV. SECURE ERROR DETECTION AND CORRECTION USING
MULTIPARTY COMPUTATION

We assume that n parties have n shares and they want to be
able to check if any errors has occurred in their data, because
in secure multiparty computations, parties constantly exchange
shares of their private inputs. We also assume that all the
following calculations are done in finite field Zp where p is a
prime number.

In order to be able to detect and correct e errors, we need to
have at least 3e+1 shares. In other words, 3e+1 parties need
to participate. This is due to theorem 2: n ≥ k + 2e where
k is the message length. Also, we assume that, the number
of errors is less than the message length. That is, the entire
message has not been altered. In the following section, we
will address the problem of error detection, and subsequently,
we provide a technique that allows the parties to recover the
incorrect shares.

A. Locating One Error at a Time

Each player creates an equation using his secret value
(which is denoted by αi for player i).

n−2∑
i=0

aix
i = αi(x+ b0) (6)

Therefore, we have n equations, each in the hand of one
party, by which we can define the following system of equa-
tions (consisting of n equations and n unknowns including
a0, a1, a2, ..., an−2, b0).

∑n−2
i=0 aix

i = α1(x+ b0)∑n−2
i=0 aix

i = α2(x+ b0)
...∑n−2

i=0 aix
i = αn(x+ b0)

(7)

a0, a1, a2, ..., an−2 will be used for the error correction poly-
nomial Q(x) in the BW algorithm and b0 is error locator as the
E(x) polynomial in the BW algorithm. Also, we assume that
all calculations are done in Zp for a public and predefined
prime number p. Now, the players evaluate equations with
x = 1, 2, 3, ..., n, similar to the BW algorithm. As a result,
they have: 

∑n−2
i=0 1iai = α1(1 + b0)∑n−2
i=0 2iai = α2(2 + b0)

...∑n−2
i=0 n

iai = αn(n+ b0)

(8)

For the sake of simplicity, we use matrix notation to demon-
strate this system of equations:

Ax = b (9)

Where

A =



1 1 . . . 1n−2 −α1

1 2 . . . 2n−2 −α2

1 3 . . . 3n−2 −α3

...
...

. . .
...

...
1 n− 1 . . . (n− 1)n−2 −αn−1
1 n . . . nn−2 −αn


(10)

x =



a0
a1
a2
...

an−2
b0


and b =



α1

2α2

3α3

...
(n− 1)αn−1

nαn


(11)

The first n− 2 columns of the first matrix are public values,
which are the same as the columns of the Vandermone matrix.
If we use Cramer’s rule for solving this system of equations
(just for b0, which determines the location of the error), we
will have:

b0 =
det(A1)

det(A2)
(12)

where

A1 =



1 1 . . . 1n−2 α1

1 2 . . . 2n−2 2α2

1 3 . . . 3n−2 3α3

...
...

. . .
...

...
1 n− 1 . . . (n− 1)n−2 (n− 1)αn−1
1 n . . . nn−2 nαn


(13)

and

A2 =



1 1 . . . 1n−2 −α1

1 2 . . . 2n−2 −α2

1 3 . . . 3n−2 −α3

...
...

. . .
...

...
1 n− 1 . . . (n− 1)n−2 −αn−1
1 n . . . nn−2 −αn


(14)

If we expand the determinant based on the last column, we
will have:

d1 = det(A1) =

n∑
i=1

(−1)i+n(−αi)det(A
i,n
1 ) (15)

and

d2 = det(A2) =

n∑
i=1

(−1)i+n(αi)det(A
i,n
2 ) (16)

where Ai,n is the (n − 1) × (n − 1) matrix that is created
by eliminating the i-th row and n-th column of A. As shown
in the above equation, just αi’s are secret values and the
second term in the summation is a public value. Therefore, to
calculate d1 and d2, the players just need to locally multiply
their secret values by a public term and send shares of the
result to other players, and finally, they perform Lagrange
interpolation to find the location of the error. The error



detection algorithm is as following, see algorithm 1.

Algorithm 1 Error Detection Protocol
1: Each player defines his own equation (with his public ID
i and his secret value αi), as follows:

Q(i) = αiE(i) (17)

2: All the players put their public part of their equations in
a matrix. They also put ∗ in the last column that is the
private value of each player. Note that, in the next step
during the Gaussian expansion, this will be eliminated:

A =



1 1 . . . 1n−2 ∗
1 2 . . . 2n−2 ∗
1 3 . . . 3n−2 ∗
...

...
. . .

...
...

1 n− 1 . . . (n− 1)n−2 ∗
1 n . . . nn−2 ∗


(18)

3: One of the players accepts to calculate det(Ai,n
1 ) and

det(Ai,n
2 ), from A matrix. Ai,n means the (n − 1) by

(b−1) matrix that has been created from A by eliminating
its i-th row and n-th column. After calculation, this player
hands out det(Ai,n

1 ) and det(Ai,n
2 ) to player i.

4: Subsequently, each player, who just received his related
terms in equations 15 and 16, calculates the multiplication
of his private value by the received term locally, we call
the result value deti for player i.

5: Each player, shares his deti between all other players.
6: Each player adds up his received shares, denoted by si,

i.e., si =
∑n

j=1 detj .
7: Finally, players perform Lagrange interpolation on their
si and get the d1 and d2, as in equation 12. Note that,
for d1 and d2, the players need to multiply their private
values by the corresponding terms, as defined in equations
15 and 16.

B. Correcting One Error at a Time

For the error correction, we use the proposed approach
of [28], [29], named enrollment protocol. In this paper, the
authors provided a new technique, based on Lagrange interpo-
lation, for recovering incorrect shares. After determining the
exact location of error, the other parties (who have correct
shares) help the player with incorrect share to recover a
correct share. The whole idea is that, each player calculates
his Lagrange interpolation constant and multiplies it by his
share, and then, he sends the shares of the result value to
all players. When all players accomplish this phase, they
will have portions of the corrected share. By these portions,
the player with incorrect share can correct his share. The
error correction protocol, algorithm 2, shows the step-by-step
process as follows:

Algorithm 2 Error Correction/Enrollment Protocol
1: Each party i calculates his Lagrange interpolation constant

as following:

γi =
∏

1≤j≤t,i 6=j

(
k − j
i− j

) (19)

2: Then, each player multiplies his secret value αi by his
Lagrange interpolation constant γi and splits it into t
portions, where t is threshold in secret sharing.

αi × γi = δ1i + δ2i + . . . δti. (20)

Next, he sends each portion to one of t players.
3: Each party j receives t portions in total and adds them up

as follows:

σj =

t∑
i=1

δji. (21)

which δji means the portion that participant i has sent to
participant j.

4: Party j then sends σj to party k, whose share is corrupted
or altered. t players need to send these partial values to
player k so that he can recover his correct share.

5: Party k adds up all the t received partial values. As a
result, his correct share will be recovered:

αcorrected
k =

t∑
j=1

σj . (22)

V. TECHNICAL DISCUSSION

In this section we discuss the security analysis as well
as computational and communication complexity of the error
detection and correction protocols. Note that detection and
recovery techniques can be designed based on verifiable secret
sharing as shown in [27]. However, in those settings, parties’
private inputs are polynomials over finite field rather than
single field elements.

A. Security Analysis of Error Correction Protocol

As stated earlier, secure multiparty computation is a dis-
tributed setting by which a set of parties can evaluate a func-
tion of their secret values without compromising the privacy
of their input data. This can be achieved by secret sharing
schemes such as Shamir’s (t, n)-threshold secret sharing. The
security of this scheme is based on the fact that players’ secret
or private data has been shared among players by adding some
randomness using a polynomial of degree t− 1 with random
coefficient. In fact, each secret value is hidden by putting
the secret value as the constant term of such a polynomial
and defining other coefficients at random. After completing
the secure multiparty computation, at least t players need
to participate in order to get the final result of computation,
which is done using polynomial interpolation. This is similar
to (t, n)-threshold secret sharing, in which a group of t players
need to cooperate to recover the secret value.



In our secure error correction protocol, t players need to
come together to detect and correct an error. To accomplish
this, they first create a system of equations. They will then
represent it in a matrix format, i.e., Ax = b: only one column
of matrix A and also vector b consist of secret values of play-
ers. As they calculate the determinant of the matrix through
Gaussian expansion based on the column containing the secret
values, the new sub-matrices are all containing public values,
which their determinant will be calculated and distributed
among all players by a volunteer player. Subsequently, each
player needs to calculate multiplication of his secret value by
a public value. Although the player can accomplish such a
multiplication by using the multiplication gate of secure MPC,
he can also do it locally by utilizing the addition gate of MPC.
This is because one value is secret and one value is public.
Note that all calculations are done in a finite field such as
Zp for a prime p. After players calculate their corresponding
shares in equations 15 and 16, they can then calculate the
summation by Lagrange interpolation, in which, at least, t
players must participate. This will ensure the security of the
error detection protocol.

B. Computational Complexity Discussion

In the error detection protocol, the players construct a joint
system of equations, which is distributed among players. In
fact, each player has one equation in which his secret value is
used according to equation 6. To find the location of the error,
they need to calculate d1 and d2. They are the determinants
of A1 and A2 matrices (equations 13 and 14), which have
been resulted from the matrix of coefficients. As we know,
the worst-case computational complexity of calculating the
determinant of a n by n matrix is O(n3), where n is the
number of players.

In fact, the players first expand the determinant according
to the equation 15, and then, a volunteer player calculates the
determinant of (n− 1) by (n− 1) matrices, which are public
values. After calculating d1 and d2 determinants, they calculate
the b0 using a division operation in the finite field, which is
basically a multiplication gate.

For the error correction protocol, the players calculate the
Lagrange interpolation constant (according to equation 19),
which is of O(t2), where t is the threshold of the Shamir’s
(t, n)-threshold secret sharing. We know that t ≤ n. The
remaining steps in error correction protocol can be done in
O(t), see equations 20, 21, 22.

C. Round Complexity Discussion

Generally speaking, one of the drawbacks of secure MPC is
its communication complexity, which is due to its distributed
nature or multiparty setting. As mentioned earlier, secure MPC
protocols utilize standard operations, i.e., logical AND and
OR gates, or addition and multiplication gates in a finite field.
In the former case, the communication complexity is far more
than the latter case. Comparing two gates of the arithmetic
circuit (addition and multiplication), the multiplication gate
has a larger complexity than the addition gate. Because in

multiplication gate, the parties need to execute a degree
reduction protocol, which requires re-sharing and a lot of
communications. As our proposed protocol is based on the
addition gate, its communication complexity is very efficient.

For error detection, players calculate two determinants (d1
according to equation 15 and d2 according to equation 16) in
which they only do multiplication by some public values. As
mentioned before, multiplication by public values can be easily
done using the addition gate. In other words, the players can
reduce the communication complexity of the error correction
protocol by using the addition gate; unlike multiplication
gate it requires no re-sharing or communications. They then
share their corresponding determinants, algorithm 1. After
that, they do a division in a finite field (which is basically
a multiplication in the finite field). Finally, they get the
error location by doing Lagrange interpolation collaboratively.
Overall, they go through 3 rounds of communication, one for
sharing their corresponding determinants and two rounds for
doing the division.

For error correction, according to the algorithm 2, one round
of communication is needed in step 2 and one round in step
3. That is, two rounds of communication in total.

VI. STEP-BY-STEP EXAMPLE

Assume our selected prime number is p = 7, and the play-
ers’ ID-s are 1, 2, 3, 4. Also, the private values of four parties
are 2, 0, 5, 3, and the third value has changed to 4 because of an
error. As a result, the codeword is [c0, c1, c2, c3] = [2, 0, 5, 3],
and the received vector, as described in BW algorithm, is
[r0, r1, r2, r3] = [α0, α1, α2, α3] = [2, 0, 4, 3]. The key equa-
tion of BW algorithm will be as follows:

a0 + a1x+ a2x
2 = αi(x+ b0) (23)

By evaluating this equation at x = 1, 2, 3, 4 (here each x is
the ID of a player and each equation is at the hand of one
player), we will have:

a0 + a1 + a2 = 2(1 + b0)
a0 + 2a1 + 4a2 = 0(2 + b0)
a0 + 3a1 + 2a2 = 4(3 + b0)
a0 + 4a1 + 2a2 = 3(4 + b0)

(24)

In fact, each player creates his equation by using his ID, which
is a public value. This system of equations can be written as,
after doing all calculation in Z7:

a0 + a1 + a2 + 5b0 = 2
a0 + 2a1 + 4a2 + 0b0 = 0
a0 + 3a1 + 2a2 + 3b0 = 5
a0 + 4a1 + 2a2 + 4b0 = 5

(25)

To find the location of the error, we need to find b0 as follows,
which was explained earlier in section IV:

b0 =
det(A1)

det(A2)
(26)

where



A1 =


1 1 1 2
1 2 4 0
1 3 2 5
1 4 2 5

 and A2 =


1 1 1 5
1 2 4 0
1 3 2 3
1 4 2 4

 (27)

For example, d1 can be expanded as follows:

d1 = 2(−1)1+4

∣∣∣∣∣∣
1 2 4
1 3 2
1 4 2

∣∣∣∣∣∣+ 0(−1)2+4

∣∣∣∣∣∣
1 1 1
1 3 2
1 4 2

∣∣∣∣∣∣
+ 5(−1)3+4

∣∣∣∣∣∣
1 1 1
1 2 4
1 4 2

∣∣∣∣∣∣+ 5(−1)4+4

∣∣∣∣∣∣
1 1 1
1 2 4
1 3 2

∣∣∣∣∣∣
= 2× 5 + 0× 6 + 5× 1 + 5× 2 = 4

(28)

Similarly, we can calculate d2, which is equal to 1. After
conducting the calculation, we will have b0 = 4, which
means the location of the error is 3. Because the error locator
polynomial is x+ b0 = x+4, and its root shows the location
of the error; its root in Z7 is 3. Note that the last columns
of A1 and A2 are consisted of a multiplicative factor, which
is the private values of parties. Therefore, the determinant
calculation should be expanded based on that column, and after
the expansion, the players can use any method to calculate the
determinant of the resulting 3× 3 matrix.

VII. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we introduced the notion of secure error
correction that allows a group of parties to detect and correct
potential errors in a vector representing their private inputs
without revealing any information about those inputs. To the
best of our knowledge, our proposed approach is the first
solution in the literature. Our idea was based on the Reed-
Solomon codes and Berlekamp-Welch decoding algorithm. In
other words, we utilized the Berlekamp-Welch algorithm to
determine the location of the errors in a privacy-preserving
fashion, and then, we used another cryptographic primitive,
named enrollment protocol, to fix the error.

Our secure MPC protocol efficiently implements the error-
locator function of Berlekamp-Welch algorithm by using only
addition gates. Note that detection and recovery techniques
can be designed based on verifiable secret sharing as shown
in [27]. However, in those settings, parties’ private inputs are
polynomials over finite field rather than single field elements.
As our future work, we intend to extend our secure error
correction approach to build self-healing MPC protocols that
are ideal, i.e., the size of shares is equal to the size of secret.

REFERENCES

[1] A. Yao, Protocols for Secure Computation, In Proc. 23rd Annual Symp.
on Foundations of Computer Science (FOCS), pages 160164. IEEE, 1982.

[2] A. Shamir, How to share a secret, Commun. ACM, 22(11):612613, 1979.
[3] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any

mental game or a completeness theorem for protocols with honest
majority, 19th ACM Symp. on Theory of Computing, pp. 218-229, 1987.

[4] David Chaum, Claude Crepeau, and Ivan Damgard. Multiparty uncondi-
tionally secure protocols, In 20th Annual ACM Symposium on Theory
of Computing, STOC88, pages 11-19, 1988.

[5] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation,
20th ACM Symposium on Theory of Computing, pp. 1-10, 1988.

[6] Wenliang Du and Mikhail J. Atallah. Secure multi-party computation
problems and their applications: a review and open problems. In Work-
shop on New Security Paradigms, NSPW01, pages 13-22. ACM, 2001.

[7] Shafi Goldwasser. Multi party computations: past and present. In 16th An-
nual ACM Symposium on Principles of Distributed Computing, PODC97,
pages 1-6, 1997

[8] Y. Lindell and B. Pinkas. Secure multiparty computation for privacy-
preserving data mining. J. of Privacy and Confidentiality, 1(1):5998, 2009.

[9] J. A. Garay, B. Schoenmakers and J. Villegas. Practical and secure solu-
tions for integer comparison, 10th International Conference on Practice
and Theory in Public-Key Cryptography, LNCS 4450, pp. 330-342, 2007.

[10] J. Herranz and G. Saez. Verifiable secret sharing for general access struc-
tures, with application to fully distributed proxy signatures. Proceedings
of Financial Cryptography, LNCS 2742, pp. 286302 (2003).

[11] Michael Harkavy, J. D. Tygar, and Hiroaki Kikuchi. Electronic auctions
with private bids. In 3rd Conference on USENIX Workshop on Electronic
Commerce, WOEC98, pages 61-74. USENIX Association, 1998.

[12] M. Nojoumian and D. R. Stinson, Efficient Sealed-Bid Auction Proto-
cols Using Verifiable Secret Sharing. 10th International Conference on
Information Security Practice and Experience (ISPEC), Springer LNCS
8434, pp. 302-317, Fuzhou, China, 2014.

[13] S. Tonyali, K. Akkaya, N. Saputro, A. S. Uluagac and M. Nojoumian,
Privacy-Preserving Protocols for Secure and Reliable Data Aggregation
in IoT-Enabled Smart Metering Systems. Future Generation Computer
Systems (FGCS), Elsevier, vol. 78, part 2, pp. 547-557, 2018.

[14] E. De Cristofaro and G. Tsudik. Practical private set intersection
protocols with linear complexity. In Financial Cryptography and Data
Security (FC10), volume 6052 of LNCS, pages 143159. Springer, 2010.

[15] Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled
circuits better than custom protocols? In Network and Distributed Security
Symposium (NDSS12). The Internet Society, 2012.

[16] Chor, B., Goldwasser, S., Micali, S., and Awerbuch, B. Verifiable secret
sharing and achieving simultaneity in the presence of faults. In FOCS
(1985), IEEE, pp. 383-395.

[17] Dan Boneh and Matthew Franklin. Efficient generation of shared RSA
keys. Journal of ACM, 48(4):702-722, 2001.

[18] Liu X, Li S, Liu J, Chen X, Xu G. Secure multiparty computation of a
comparison problem, SpringerPlus, 2016, 5(1):1489. doi:10.1186/s40064-
016-3061-0.

[19] T. Nishide and K. Ohta, Multiparty computation for interval, equality,
and comparison without bit-decomposition protocol, in Proc. 2007 PKC,
pp. 343-360.

[20] I. Damgard, M. Fitzi, E. Kiltz, J.B. Nielsen, and T. Toft, Unconditionally
secure constant-rounds multi-party computation for equality, comparison,
bits and exponentiation, Proc. 3rd Theory of Cryptography Conference,
LNCS 3876, pp.285-304, Springer Verlag, 2006.

[21] O. Goldreich, S. Micali, and A. Wigderson, How to play any mental
game or a complete theorem for protocols with honest majority, Proc.
19th STOC, pp.218 229, 1987.

[22] D. Chaum, C. Crepeau, and I. Damgard, Multi-party unconditionally
secure protocols, Proc. ACM STOC88, pp.1119, 1988.

[23] 21. B. Schoenmakers and P. Tuyls, Efficient binary conversion for
Paillier encrypted values, EUROCRYPT06, LNCS 4004, pp.522537,
Springer Verlag, 2006.

[24] I. S. Reed and G. Solomon, Polynomial codes over certain finite fields,
1. SIAM, vol 8, no 2, June 1960, pp 300-304

[25] Lloyd R. Welch and Elwyn R. Berlekamp. Error correction for algebraic
block codes, December 30 1986. US Patent 4,633,470.

[26] https://math.berkeley.edu/ mhaiman/math55/reed-solomon.pdf
[27] M. Nojoumian, Unconditionally Secure Proactive Verifiable Secret Shar-

ing Using New Detection and Recovery Techniques. 14th IEEE Annual
Conference on Privacy, Security and Trust (PST), pp. 269-274, Auckland,
New Zealand, 2016.

[28] M. Nojoumian, D. R. Stinson and M. Grainger, Unconditionally secure
social secret sharing scheme. IET Information Security (IFS), Special
Issue on Multi-Agent and Distributed Information Security, vol. 4, issue
4, pp. 202-211, 2010.

[29] M. Nojoumian and D. R. Stinson, Brief Announcement: Secret Sharing
Based on the Social Behaviors of Players. 29th ACM Symposium
on Principles of Distributed Computing (PODC), pp. 239-240, Zurich,
Switzerland, 2010.


