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ABSTRACT

Author: Fangming Qu

Title: Study and Analysis of Machine Learning Techniques for Detection
of Distracted Drivers

Institution: Florida Atlantic University

Thesis Advisor: Dr. Mehrdad Nojoumian

Degree: Master of Science

Year: 2024

The rise of Advanced Driver-Assistance Systems (ADAS) and Autonomous

Vehicles (AVs) emphasizes the urgent need to combat distracted driving. This study

introduces a fresh approach for improved detection of distracted drivers, combining a

pre-trained Convolutional Neural Network (CNN) with a Bidirectional Long Short-

Term Memory (BiLSTM) network. Our analysis utilizes both spatial and temporal

features to examine a broad array of driver distractions. We demonstrate the advan-

tage of this CNN-BiLSTM framework over conventional methods, achieving signifi-

cant precision (up to 98.97%) on the combined ’Union Dataset,’ merging the Kaggle

State Farm Dataset and AUC Distracted Driver Dataset (AUC-DDD). This research

enhances safety in autonomous vehicles by providing a solid and flexible solution for

everyday use. Our results mark considerable progress in accurately identifying driver

distractions, pushing the boundaries of safety technology in AVs.
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CHAPTER 1

INTRODUCTION

Distracted driving poses a severe threat to road safety, claiming over 3,000 lives an-

ually in the United States. Recent advances in AVs present new opportunities to

enhance in-vehicle safety. A crucial aspect is understanding driver behavior, as inat-

tention has been identified as a major contributor to accidents [8]. To address this,

the survey paper examines current driver inattention detection methods, emphasiz-

ing the advantages of hybrid approaches that combine multiple indicators as well as

highlighting the limitations of existing detection systems[9]. Building upon these in-

sights, this thesis introduces an innovative CNN+BiLSTM with a time-distributed

layer architecture for improved detection of distracted driving behaviors.

Recently, an increasing focus has been on creating self-driving or autonomous

vehicles - vehicles that can operate without human intervention. This development

has opened up new ways to increase safety in these vehicles. A key aspect is the

capability to understand and keep an eye on what is happening inside the vehicle,

particularly with the driver. A review conducted by researchers from Japan [8] shows

that driver inattention was a leading cause of most tra�c accidents. Researchers

have extensively studied this issue, categorizing driver inattention into two primary

types: distraction and fatigue. Detecting and mitigating driver inattention requires

a multifaceted approach, incorporating subjective reports, driver biological indica-

tors, physical measurements, driving performance assessments, and hybrid measures

that combine multiple indicators. Among these, hybrid measures o↵er more reliable

and accurate solutions compared to relying on a single measure. However, commer-

cial products for driver inattention monitoring exist, and their e↵ectiveness in actual
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driving conditions may be limited. An ideal driver inattention monitoring system for

safety enhancement integrates driver physical variables, driving performance metrics,

and data from the In-Vehicle Information System (IVIS) while considering the driv-

ing environment. To address this challenge, this research aims to develop AI-based

monitoring software for autonomous vehicles, contributing to a safer and more secure

transportation landscape.

In this survey paper, an AI-based driving assistant is proposed that can see and

interpret the inside of the vehicle using a branch of artificial intelligence algorithms,

which allows computers to learn and make decisions from data: an AI-based o✏ine

monitoring system to boost the safety of these autonomous vehicles. This system is

designed to assist the driver and issue warning alerts if the driver seems to be not

paying attention to the road without any data privacy concerns. This thesis pro-

poses a unique AI-based monitoring system designed specifically for the context of

autonomous vehicles. Our evaluation goes beyond the survey’s proposed assistant

by incorporating driving performance data and IVIS integration for enhanced accu-

racy. By combining three distinct classification methods to detect fatigued drivers, a

software system that works on an autonomous vehicle acts as an intelligent driving

assistant. There are various machine learning methods, known as neural networks,

for analyzing these behaviors. These include artificial neural networks (ANN), con-

volutional neural networks (CNN), and recurrent neural networks (RNN).

This paper begins by defining essential computer science concepts relevant to au-

tonomous vehicles: autonomous vehicles, vision systems, machine learning, driver

behavior classification, deep learning, convolutional neural networks, recurrent neu-

ral networks, and artificial neural networks. It then outlines the proposed system’s

framework, detailing the specific algorithms used for each function and their inte-

gration. Section four examines how di↵erent datasets will be employed to train the

algorithm e↵ectively, ensuring robust performance. Finally, the survey demonstrates
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how these elements combine to form a comprehensive AI-based monitoring solution

designed to improve autonomous vehicle safety. This research endeavors to make a

significant contribution to the development of safer and more reliable transportation

systems.

This system leverages artificial intelligence algorithms to interpret the driver’s

state and provide timely alerts. It aims to surpass existing systems by incorporating

visual cues, driving performance data, and potentially information from the In-Vehicle

Information System. Unlike current systems, which often miss the full complexity of

these behaviors, our analysis, trained on a unique ’Union Dataset,’ aim to better

detect distracted driving behaviors more e↵ectively than existing systems. Our goal

is to significantly advance detection precision and adaptability in autonomous vehicle

environments [10].

Traditional detection systems frequently fail to address the nuance of driver behav-

iors, leading to sub-optimal performance. Our analysis, validated by the University of

Nottingham, surpasses current models, with the CNN+BiLSTM framework achieving

an average classification accuracy of 92.7 percent [11]. Moreover, this combination

has proven superior in identifying temporal sequences and patterns in driver behavior,

essential for understanding distractions over time [12, 13].

The Union Dataset o↵ers significant value for evaluating distraction detection

models. Our analysis demonstrates that incorporating diverse distraction scenarios

enhances the understanding of model performance in real-world applications. The

increasing prevalence of distracted driving, especially among young people, highlights

the critical need for data-driven analysis to inform the development of improved

countermeasures [14, 15].

This study investigates whether a CNN+BiLSTM with time-distributed layer

model can markedly improve the accuracy of distracted driving detection in AV sys-

tems beyond traditional methods. It outlines the key benefits of the architecture
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– extracting spatial features (CNN’s strength) and analyzing time-based patterns

(BiLSTM’s strength). Building on insights from successful complex driver posture

identification, this research explores a unique approach with the potential to signifi-

cantly improve distraction detection rates compared to current standards [16, 12, 17].

Our analysis aims to provide a more detailed understanding of temporal patterns

in driver behavior and their impact on distraction detection e↵ectiveness. We em-

ploy a CNN-BiLSTM architecture with a time-distributed layer, trained on the Union

Dataset, to investigate these relationships beyond the capabilities of existing meth-

ods. This thesis demonstrates that our proposed approach substantially surpasses

the capabilities of traditional detection methods. In summary, this research aims to

significantly advance AV safety and establish a new benchmark for the automotive

industry’s safety solutions.
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CHAPTER 2

LITERATURE REVIEW OF SELF-DRIVING CAR TECHNOLOGY

2.0.1 Autonomous Vehicle

We should first emphasize that driver behavior monitoring systems have been used in

human-driven vehicles for a long time, for instance, by insurance companies through

mobile apps or small hardware equipment. However, these systems are more critical

for autonomous vehicles as well as vehicles that utilize advanced driver-assistance sys-

tems, i.e., using a level of autonomy, because they may face unpredictable situations

requiring the driver’s intervention.

An autonomous vehicle with levels of autonomy revolves around a vehicle that can

operate without (or with minimum) human intervention. These vehicles are designed

to navigate and drive themselves, relying on advanced technologies and systems rather

than requiring a human driver. These vehicles contain complex computer systems

that often utilize artificial intelligence. AI acts similarly to the brain, processing

information and making decisions. It gathers data from its surroundings via sensors,

which function as the vehicle’s eyes, then uses it to navigate safely, just as a human

driver would. Vehicles that drive themselves have the potential to change our world.

AI technologies could transform how people and goods travel, advance military and

security operations, and provide a new level of freedom to those unable to drive.

Furthermore, ADAS and AVs are potentially expected to make roads safer and save

fuel, providing better transportation options, especially for those who have di�culties

in driving, and reshaping society’s transportation approach entirely.

Autonomous vehicles o↵er potential benefits compared to human drivers, as re-
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ported in [18]. Firstly, while AVs can reduce accidents, it’s essential to recognize

that both AVs and human drivers share equal responsibility for preventing accidents.

The report notes that many tra�c accidents result from unsafe driving behaviors or

drowsy driving. Secondly, they reduce tra�c congestion by optimizing tra�c flow and

improving communication among road vehicles through in-between vehicles telecom-

munication, addressing the issue of ine�cient tra�c management. Additionally, us-

ing AI technologies, AVs provides accessibility and mobility for individuals unable to

drive, thus promoting privacy and providing cost savings for those who opt for AV

transportation instead of owning a vehicle, addressing economic considerations.

There are also disadvantages to autonomous vehicles. For example, addressing

the technological challenges of software and hardware systems is essential. This in-

cludes developing robust algorithms, ensuring e↵ective communication between com-

ponents, and enhancing overall system reliability and safety. Then, adopting AVs

raises concerns about job displacement in the driving and transportation sectors,

potentially resulting in unemployment and necessitating retraining or job transition

programs. Also, ethical and legal considerations arise when adapting laws to accom-

modate autonomous technologies. Addressing liability in accidents, decision-making

processes in critical situations, and establishing an ethical framework for AV behav-

ior are crucial for public trust and safety. Additionally, cybersecurity threats must

be considered, as hackers targeting AVs could gain control over operations and en-

danger passengers and other road users. Robust cybersecurity measures should be

implemented to prevent such risks. Furthermore, privacy concerns of AV drivers re-

quire attention, with clear guidelines and safeguards to protect personal information

collected by autonomous vehicles. Moreover, the reliance on infrastructure and con-

nectivity challenges widespread adoption and e↵ectiveness. Consistent and reliable

support, including road markings, tra�c signals, and communication networks, is

vital for successfully integrating autonomous technologies on a large scale. Despite
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these challenges, the overall advantages of AVs outweigh the disadvantages. These

are in addition to other human-machine interaction (HMI) challenges such as cross-

cultural expectations from self-driving cars [19, 20], passengers’ trust [21, 22], social

acceptability [23, 24], and customized autonomous driving technologies [25, 26].

While complete vehicle automation is yet to be commonplace soon, the interpre-

tation of driver behavior is crucial for partially and conditionally automated vehicles.

These vehicles, which require either the driver’s readiness to regain control at any

moment or their intervention when the vehicle cannot perform certain critical oper-

ations, are predicted to be the dominant form in the market until 2030. Since these

systems are automated, they still heavily rely on human supervision and intervention

[27, 28, 29].

2.0.2 Vision Systems and Machine Learning in AVs

In the vision system, cameras and sensors function as the eyes of the computer, with

sophisticated software algorithms acting like a human brain to interpret the data

they capture. These systems analyze images, breaking them down to understand

each element, enabling the recognition of faces, objects, and navigation paths. Such

vision systems empower machines to “envision” and “understand” their surround-

ings, playing a pivotal role in diverse applications such as robotics, security systems,

autonomous vehicles, and mobile phones.

Driver distraction, a major contributor to vehicular accidents, is well-documented

and can be e↵ectively monitored by these vision systems. However, it’s important

to note that while these systems achieve impressive performance levels, there are

ongoing concerns about their evaluation methodologies. Often, AI-based models in

vision systems are assessed using datasets involving drivers who were part of the

training set. This practice can lead to a potential ’memory’ e↵ect, where the models

are fine-tuned to the characteristics of these specific drivers, raising questions about
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their ability to generalize to new, unseen drivers [30, 31, 32, 33, 34].

To counter this, it is crucial to incorporate evaluation strategies that ensure these

models can e↵ectively adapt to diverse driving behaviors not represented in the train-

ing data. This involves using more heterogeneous datasets and applying rigorous

cross-validation techniques. Such approaches are essential to evaluate the real-world

applicability and robustness of these vision systems, ensuring they remain e↵ective

across a broader range of scenarios and driver behaviors. Recent reviews, like Ji’s

panoramic study, highlight various non-invasive approaches for detecting signs of fa-

tigue using vision systems. These methods leverage video analysis of a driver’s visual

characteristics to identify fatigue levels. However, the success of these techniques

hinges on the models’ ability to generalize their learning to a wide array of drivers.

The development of adaptable and broad-based AI models remains a key area of

research in enhancing the e↵ectiveness of vision systems in real-world applications

[35].

Visual perception, fundamental to driving, relies heavily on visual sensors for data

capture. However, this data contains abundant indirect information that machine

vision and image understanding techniques handle. Smart vehicles, from advanced

assistance systems to autonomous vehicles, leverage machine vision to distill and

categorize video data, making it useful for driving. Techniques like convolutional

neural networks play a crucial role in identifying specific objects in tra�c and aiding in

the mapping and positioning of self-driving cars. They also incorporate the discussion

of real-time computing architectures backed by real-world experiments. However, the

field of vision systems is witnessing an inventive shift where, instead of trying to

identify objects universally, the system should adapt its method based on the size

and context of the object under observation. It requires the system to be adaptable

enough to modify its strategy according to the target, using di↵erent techniques for

smaller or less transparent objects than for larger, more detailed ones. More than
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just theoretical, this concept has been tested and has outperformed other methods

on popular benchmarks. The adaptable vision system reinforces that there is always

room for innovation and improvement in performance, especially as vision systems

tackle various real-world situations [36, 37].

2.0.3 Roles of AI and Machine Learning in Autonomous Vehicles

Machine learning is a sub-field of computer science that gives computers the capacity

to learn from data and subsequently make informed decisions or predictions. This

concept embodies the machine equivalent of a human brain, utilizing a variety of

algorithms and statistical models to learn and adapt over time. Three primary types

of learning exist in this context: supervised, unsupervised, and reinforcement learning.

The algorithm assumes a student-like role in supervised learning, with data pre-

sented as question-and-answer pairs serving as the tutor. Through exposure to this

data, the algorithm learns the pattern of problem-solving and, over time, acquires

the ability to solve similar problems independently. Supervised learning is analogous

to a learning paradigm in which a student learns by being presented with a problem

and the corresponding solution.

Unsupervised learning, in contrast, presents the algorithm with a dataset without

the provision of predefined solutions. The focus falls on the algorithm to identify

patterns, correlations, and relationships within the data. This method is similar to

a student given tasks without an explicit solution, necessitating independent pattern

recognition and problem-solving.

Reinforcement learning takes a di↵erent approach, embodying a process of repeti-

tive learning through trials and errors, reminiscent of learning to ride a bicycle. Each

attempt and subsequent failure o↵ers the algorithm new insights, adjusting its future

decisions based on gathered experiences.

The utility of machine learning pervades a multitude of sectors in contemporary
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times. From facial recognition capabilities on smartphones to stock market trend

predictions, its applications span sectors including healthcare, finance, retail, and

transportation. Machine learning equips us with the tools to identify patterns within

extensive data sets and informs data-driven decision-making processes.

In the following sections, this paper will comprehensively explore di↵erent learning

types, their associated algorithms, and the vast array of applications where machine

learning is harnessed. This survey aims to present an inclusive examination covering

the extensive spectrum of machine learning. By examining the diverse algorithms,

learning models, and machine learning applications, this paper aims to provide a

holistic view of this rapidly evolving field.

2.0.4 Driver Behavior Classification

Recognizing and understanding the unique driving behaviors of individuals is crucial

for enhancing drivhand movements, facial expressions, and body postureer awareness.

This is where driver behavior classification draws its significance, acting as a sophis-

ticated observer that continually monitors and analyzes the driver’s actions, hand

movements, facial expressions, and body posture. By leveraging advanced technolo-

gies including vision systems, machine learning algorithms, and sensor data, driver

behavior classification aims to provide real-time feedback and promote safer driving

practices.

Driver behavior classification encompasses multiple aspects. Firstly, hand classi-

fication monitors the driver’s hand movements. For instance, if the system detects

the driver’s hand o↵ the wheel, including reaching for a co↵ee cup, it gently reminds

them to keep their hands on the wheel. Secondly, facial classification focuses on ana-

lyzing facial expressions that could indicate fatigue or distraction. If the driver’s eyes

frequently close, indicating drowsiness, the system can trigger an alert or activate

the autonomous system if necessary. Lastly, body posture classification examines the
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driver’s posture and movements. If the driver starts slouching after extended periods

of driving, it suggests the need for a break or seat adjustments to promote comfort.

These driver behavior classifications serve as indicators of potential safety concerns.

Considering the importance of transportation safety and the seamless integration of

autonomous vehicles, it is essential to also address the legal perspectives and regu-

latory challenges associated with these advanced systems. As autonomous vehicles

become more prevalent, their successful integration relies on the ability to identify

and adapt to human driving behaviors. This adaptability ensures that autonomous

vehicles can assimilate naturally into existing tra�c flows, promoting safer and more

e�cient travel.

2.0.5 Deep Learning in Autonomous Vehicles

With the surge in computational capabilities and the breakthroughs in machine learn-

ing that began in the early 2010s, it became possible to develop more advanced vi-

sual algorithms, particularly those reliant on extensive convolutional neural networks.

This era marked significant progress in deep learning, which substantially strength-

ened the development and reliability of autonomous vehicle technologies. A notable

contribution to this field is the ”You Only Look Once” (YOLO) framework by Joseph

Redmon, which revolutionized visual machine learning approaches [38].

Before the advent of YOLO, the visual systems in autonomous vehicles primarily

depended on edge detection and classic image processing methods, such as filtering,

to identify objects in each frame. However, the introduction of computer vision

breakthroughs like YOLO has empowered companies, notably Tesla, to fully embrace

visual-based autonomous driving through their exclusive technology, Tesla Vision [39].

Despite this, other leading companies remain cautious, opting for a hybrid approach

that combines cameras with LiDAR systems, rather than relying solely on visual

systems.
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2.0.6 Artificial Neural Network (ANN)

Artificial neural networks (ANNs) are computational models directly inspired by the

structural and functional characteristics of the human brain. They embody a net-

work of interlinked artificial neurons that synergistically function to learn from data

and generate predictions. Similar to the data processing mechanism of the human

brain, an ANN accepts inputs, performs calculations, and yields outputs. ANNs can

be compared to a well-coordinated team of professionals, each having a defined role,

passing information in a relay. Each member takes input, performs a specific calcula-

tion, and forwards the resulting data to the next member. This process iterates until

the final member delivers the output. During its training phase, an ANN adjusts its

calculations based on provided examples, essentially learning through fine-tuning. It

aims to find the most e↵ective methodology to make accurate predictions or decisions.

A noteworthy aspect of ANNs is their ability to comprehend complex patterns

and relationships in data, even revealing associations that may not be immediately

apparent. As a result, ANNs are invaluable in diverse applications including image

recognition, natural language understanding, and even autonomous driving. Inte-

grating di↵erent types of ANNs, including recurrent neural networks (RNNs) for

sequential data processing and convolutional neural networks (CNNs) for image anal-

ysis, has made significant advancements in domains like natural language processing,

image recognition, and autonomous vehicles.

In conclusion, ANNs are potent tools for learning from data and making pre-

dictions or decisions. They are universally employed across many fields to unravel

complex problems and augment our understanding of and interaction with the world.

2.0.7 Convolutional Neural Network (CNN)

Figure 2 below provides a visual representation of a CNN sample, as elaborated in

reference [3], o↵ering a graphical insight into the model’s structure and function.
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Figure 2.1: Visualization of CNN Sample based on the reference of [3]

13



Convolutional neural network stands as an essential component in the toolkit of

deep learning techniques, especially in domains necessitating image understanding

and interpretation. For humans, interpreting a picture is an intuitive process; how-

ever, for computers, the task is significantly more complex as it perceives the image

as an array of tiny points or “pixels.” CNNs facilitate computers in comprehending

these pixels and their interrelationships.

CNN’s operation begins with an input layer. The initial step is where the image

data comes into the CNN model. In instances of a color image, the input layer

receives information on the three primary colors: red, green, and blue. Following

the input layer is the convolutional layer. During this phase, the layer traverses the

image in small sections, referred to as filters or kernels, to construct a feature map.

Feature maps enable CNN to recognize fundamental shapes or patterns, including

lines or textures. Subsequently, the activation function, typically the ReLU (Rectified

Linear Unit), is applied. This function augments the CNN’s learning capabilities by

nullifying any negative pixel values, thereby increasing the e↵ectiveness of the CNN in

identifying complex patterns. The subsequent pooling layer condenses the information

derived from the convolutional layer by downsizing the feature map but preserving the

essential features. The pooling process increases the e�ciency of CNNs. Max pooling

is a universally deployed method, which retains only the highest value from each

section of the feature map. After several iterations of these steps, the fully-connected

layer is activated. This layer assimilates the information collected thus far to arrive at

a final decision, categorizing the image appropriately. Finally, the Softmax function

generates a probability distribution for each category, indicating the likelihood of the

image belonging to each class. Essentially, a CNN transforms the raw pixels of an

image into a categorized output, enabling the computer to interpret the image. In

essence, CNNs can identify complex patterns and objects within an image, similar to

human visual interpretations.
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2.0.8 Recurrent Neural Network (RNN)

Recurrent neural networks (RNNs) are powerful tools that allow computers to under-

stand sequences of data, similar to a time radar. Sequences can range from sentences

in text, frames in a video, or a series of numbers. RNNs enable computers to com-

prehend these sequences as a series of data points.

The initial step is the input layer. In the case of a sentence, the input layer receives

vectors, which are representations of the input data. The next step is the recurrent

layer, where RNNs pass information from one point to the next in the sequence. The

sequential information exchange aids in understanding the order with the context of

previous information. Sequentially, RNNs apply a comprehending function, including

“ReLU”, to the output of the previous layer, in order to understand the contextual

meaning of the data by identifying intricate patterns within the sentence. Next, RNNs

progress to the fully-connected layer, consolidating the knowledge into the decision-

making process which involves tasks including prediction and classification. Finally,

RNNs employ the Softmax function, which assigns a probability score to each possible

outcome.

The potential of RNNs extends even further as researchers continually explore

ways to enhance their capabilities. One notable advancement is integrating spa-

tiotemporal graphs into RNNs, enabling the capture of intricate, high-level structures

involving both space and time. The results obtained from this novel technique have

surpassed existing methods, whether in understanding human movements or inter-

preting interactions among objects. This significant progress represents a substantial

leap forward, providing a potent tool to augment machine learning models and laying

the foundation for more precise predictions and analyses in complex scenarios [40].
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2.0.9 Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) units, a form of artificial intelligence, embody a

neural network capable of storing, learning, and recalling patterns over prolonged

periods. LSTMs use their data inputs to predict sequences, a mechanism that could

bring significant advancements in speech recognition, natural language processing,

and time series prediction. A groundbreaking use of LSTMs lies in vehicle safety,

where real-time driver distraction detection becomes possible through analyzing long-

term patterns in driving and head tracking data. With an impressive accuracy rate of

up to 96.6 percent, LSTM-based approaches outdo traditional methods like support

vector machines and show remarkable utility in handling time-series data. This no-

table application can lead to advanced vehicle safety systems development, improving

road safety and further reflecting LSTM units’ potential in enhancing AI applications

[41].

2.0.10 Role of CNN and LSTM in Autonomous Vehicles

These two key components, CNN for feature extraction and LSTM for classification,

operate together to deliver a real-time surveillance solution. The CNN, specifically

MobileNet V2 in this study, is responsible for extracting spatial features from input

images. The partial features are how pixels are arranged and related to each other

in a two-dimensional layout. The extraction process ensures that the essential vi-

sual information is drawn from each video frame. Then, the extracted features are

sequenced and passed to the LSTM network for classification. Equipped with the

ability to manage sequential data and long-term dependencies, the LSTM can pro-

cess image features over time. Using its gates to control how information flows, the

LSTM can learn patterns across the sequence of frames. Thus, combining feature ex-

traction via CNN and sequence pattern learning through LSTM enables the system

to recognize and classify activities e↵ectively in real-time video streams. The CNN-
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LSTM approach has shown promising results in real-world applications, detecting

suspicious activities at 10-13 frames-per-second in real-time under various conditions.

This study combined CNN and LSTM on a Raspberry Pi, demonstrating the possi-

bility of a self-contained system using these two technologies. The study also includes

a human action recognition (HAR) methodology that combines CNN and LSTM for

optimal speed and precision, demonstrating the significant potential for real-time

applications. The HAR approach achieved remarkable accuracy, reaching up to 98

percent on the Peliculas dataset and 91 percent on complex real-life datasets with

variable backgrounds, thus showcasing improvements over earlier techniques. This

study’s findings are particularly relevant for the research into vision systems within

autonomous vehicle cabins using machine learning, highlighting the practicality and

real-time capability of a combined CNN-LSTM model in recognizing and classifying

driver behaviors [42, 43, 42].

Figure 2.2: Comparative Accuracy of CNN vs. CNN-LSTM Models Over Training

Epochs[4].

Building on CNN-LSTM algorithms in real-time video surveillance, similar strate-
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gies surface in studies analyzing driver behavior in autonomous vehicles. From cap-

turing smooth spatial patterns and fine-grained motion details to addressing scene

and representation bias, these methods continue to enrich autonomous vehicle safety

systems, demonstrating the innovative use of machine learning models in detecting

driver behavior [44].

2.0.11 Bidirectional LSTMs (BiLSTM)

Figure 2.3: The Unrolled Bidirectional LSTM Structure [5].

Bi-LSTM extend the LSTM model by processing sequences in both forward and

backward directions, enabling greater contextual understanding, as illustrated in Fig-

ure 2.3. This dual-path architecture allows BiLSTMs to capture not just the pre-

ceding elements in a sequence (as traditional LSTMs do) but also the succeeding

elements. By doing so, BiLSTMs o↵er a more comprehensive understanding of the

sequence’s context, significantly improving the model’s predictive accuracy for a wide

range of applications, including speech recognition, text generation, and more com-

plex time series analyses. The BiLSTM model has a unique structure. It integrates

two separate LSTMs: one processes the input sequence in its original order, while

the other processes it in reverse. The combined output of both LSTMs is then used

to make predictions, o↵ering a richer, more nuanced interpretation of sequential data

compared to unidirectional LSTMs. This approach not only retains the advantages

18



of traditional LSTMs, such as handling long-term dependencies, but also introduces

an additional layer of context sensitivity, thereby significantly advancing the field of

sequential data analysis [45].

A study [46] conducted by Texa Tech University highlights that BiLSTMs, by

processing data in both directions, significantly outperform unidirectional LSTMs

in time series forecasting, improving accuracy by an average of 37.78%. Despite

slower training and requiring more data batches, BiLSTMs’ ability to capture com-

plex sequential patterns justifies their selection over traditional LSTMs for advanced

predictive modeling.

2.0.12 Time-Distributed Layer

Time-Distributed Layers wrap around existing layers. They apply these layers in-

dependently to each timestep in a sequence, ensuring consistent input-output di-

mensionality. By integrating Time-Distributed Layers, the model can discern subtle

behavioral variations over long periods. This provides a detailed and comprehensive

understanding of the subject [47].

Figure 2.4: Detailed architecture with visualization of time-distributed layer [6].
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2.0.13 Driver Behavior Classification

According to the World Health Organization (WHO) data for 2023, road tra�c in-

juries emerge as a substantial global concern, accounting for approximately 1.3 million

fatalities annually, with an additional 20 to 50 percent of cases resulting in non-fatal

injuries that often lead to disabilities. It is noteworthy that over half of these road

tra�c deaths occur in low-income and middle-income countries, primarily a↵ecting

individuals with lower socioeconomic statuses who are more susceptible to being in-

volved in such accidents[48].

In response to these alarming statistics, the National Highway Tra�c Safety Ad-

ministration (NHTSA) is actively addressing unsafe driving behaviors that are sig-

nificant contributors to road accidents, injuries, and fatalities. These behaviors en-

compass drug-impaired driving, involving both alcohol and drugs; distracted driving,

which includes activities like texting while driving; aggressive driving, characterized

by behaviors such as tailgating and excessive speeding; drowsy driving; and the fail-

ure to use seat belts. These risky driving behaviors not only pose a grave threat to

passenger safety but can also result in severe injuries and tragic fatalities [49].

Driver behavior classification is a pivotal aspect of studying human interaction

with autonomous vehicles; it aims to distinguish the safe and risky driving behaviors.

These behaviors are typically classified into two states in the datasets: safe and unsafe.

“1” represents safe behaviors, and “0” denotes unsafe behaviors. This system utilizes

binary classification. Safe behaviors include maintaining a steady speed, maintaining

an appropriate gap from the vehicle in front, and regularly checking rear-view mirrors.

In contrast, unsafe behaviors can involve texting, talking on the phone, operating the

radio, drinking, reaching in back, doing hair and makeup, and talking to passengers.

The causes of unsafe driving behavior are multifarious, ranging from driver fatigue

and drowsiness to distraction and impairment due to substance use. Under specific

circumstances, hostile driving or vehicular aggression could also lead to unsafe be-
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haviors. Identifying the causes for unsafe driving is crucial to developing e↵ective

interventions and preventive measures. The classification of driver behaviors has the

potential to indisputably enhance the protection of the driver. The classification can

facilitate real-time monitoring and feedback, alerting drivers to potentially dangerous

behaviors, and prompting corrective action. This classification additionally maintains

the potential for long-term benefits, including providing driver education and train-

ing programs, as well as the ability to contribute to the design and development of

enhanced, intuitive, and safer autonomous vehicle interfaces. Further, this classifica-

tion also has the ability to feed into the development of advanced driver-assistance

systems (ADAS), thereby enabling these systems to better understand and predict

human behavior; this may also serve to prevent accidents.

In this context, the review presented in [33] o↵ers an inclusive framework that

addresses the regulation of autonomous vehicles and associated challenges, both in

the United States and Europe. Regulatory issues, particularly those pertaining to

the legal interpretation of driver behavior, present complex problems. However, the

potential for autonomous vehicles to impressively enhance road safety in developed

countries justifies these e↵orts. In anticipation of this emerging technology, countries

in the European Union are being primed to adjust their legal structures, and they

are collaborating with lawmakers and technical experts to establish unambiguous

guidelines and practical solutions for optimization of the AVs on the road.

Despite the challenges posed by regulatory issues, driver behavior technology is

making significant strides in understanding and improving the interaction between

drivers and autonomous vehicles. Research in driver behavior technology now focuses

on distraction and fatigue issues. Driver state-of-mind analysis involves a blend of self-

reports, biological metrics, driving performance indicators, and hybrid methods. The

latter combines multiple data sources for a clearer picture and shows more accurate

results by cutting down on false alerts and keeping high-performance ratings [50].
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Researchers have developed a new vision system using “vehicle dynamics data”,

which eliminates the need for cumbersome eye-tracking hardware. This approach

with “support vector machines” (a machine learning model) has shown promising high

classification rates, boosting the development of the next generation of autonomous

driving aid systems. On another front, Kinect V2 sensors, commonly used in video

gaming, have created a database of standard upper limb movements in healthy indi-

viduals. Initially proposed for rehabilitation, this method might help understand how

drivers interact with vehicle controls. Understanding driving behavior has evolved

with machine learning and deep learning models that draw on large-scale vehicle

data. Deep learning methods, including neural networks, have shown high accuracy

levels, signaling they may soon dominate driving behavior analysis as the technology

progresses [51, 52, 53].

2.0.14 Hand Classification

In 2018, a recent incident involving a Tesla Model S striking a fire truck in “Autopilot

mode,” which is a system in vehicles that automates certain aspects of control, includ-

ing maintaining speed and staying within lanes, with human supervision, highlights

the danger of keeping hands o↵ the wheel, even in autonomous vehicles. According

to the National Transportation Safety Board (NTSB), the driver had his hands o↵

the wheel for most of the trip, receiving multiple alerts to place his hands back on the

wheel. The vehicle accelerated towards the driver-set cruise control speed and col-

lided with the parked fire truck while the Autopilot system failed to detect the driver’s

hands on the wheel. This incident, along with previous fatal crashes involving Tesla

vehicles, emphasizes the potential importance in hand classification in autonomous

vehicles for drivers’ safety [54, 55].

Hand classification in driver monitoring systems involves monitoring and analyz-

ing a driver’s hand movements while operating a vehicle. It holds a pivotal position
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Ref. Summary Methodology Relevance

[56] Enhances action recognition using

dense trajectories, improving un-

derstanding of physical actions in

videos.

Dense trajectories Enhances action recognition models for accurate action de-

tection, relevant to driver behavior analysis in autonomous

vehicles.

[57] Combines temporal and spatial

convolution in a new CNN model

to learn spatiotemporal features

from videos.

Spatiotemporal

Multiplier Networks

Proposes Spatiotemporal Multiplier Networks (STMNs) for

video data analysis within autonomous vehicle cabins, ex-

tracting important features for in-cabin analysis.

[58] Uses E�cientNet, a highly e�-

cient ConvNet family, to achieve

state-of-the-art accuracy through

systematic model scaling.

E�cientNet E�cientNet’s superior accuracy and e�ciency are relevant for

developing robust vision systems within autonomous vehicle

cabins.

[59] Utilizes MobileNets for e�cient

and lightweight deep neural net-

works design, suited for mo-

bile and embedded vision applica-

tions.

MobileNets MobileNets’ e�cient, lightweight architecture is suitable for

real-time vision systems in autonomous vehicle cabins, mini-

mizing computational resources.

[60] Combines GoogLeNet and LSTM

models to classify self-e�cacy lev-

els through human body ges-

ture and movement recognition,

achieving high accuracy.

CNN (GoogLeNet)

and LSTM

Provides an e↵ective approach to monitor and analyze driver

behaviors, enhancing safety and e�ciency within autonomous

vehicles.

[61] Uses a pre-trained Keras neural

network to classify hand pres-

ence in a controlled hand-washing

dataset, achieving perfect accu-

racy.

Neural Network us-

ing Keras

Demonstrates an e↵ective approach for hand presence classi-

fication, potentially enhancing safety and e�ciency by mon-

itoring driver actions in autonomous vehicles.

[62] Introduces a novel hard attention

network for Driver Action Recog-

nition (DAR), e↵ectively recog-

nizing driver behaviors in real-

world conditions and reducing

computational complexity.

Bidirectional LSTM

(Bi-LSTM)

Investigates deep learning for driver behavior monitoring and

action recognition, aligning with the goal of in-cabin analysis

in autonomous vehicle cabins.

[63] Uses a multi-camera framework

for hand classification in driver

monitoring systems, potentially

enhancing tra�c safety and re-

ducing distracted driving.

RestNet CNN Discusses a multi-camera framework for hand classification in

driver monitoring systems, aligning with the topic of vision

systems and machine learning analysis in autonomous vehicle

cabins.

[64] TPresents a CNN-based system

for abnormal driving behavior

recognition, emphasizing the im-

portance of monitoring and pre-

venting potential accidents caused

by distractions.

CNN Detects abnormal driving behaviors through physiological

character classification using deep learning, contributing to

understanding of vision systems for driver behavior analysis

in autonomous vehicle cabins.

Table 2.1: Summary of research on Hand classification.
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in evaluating the driver’s behavior and ensuring their safety on the road. The clas-

sification system of hands provides valuable insights into the driver’s actions and

level of engagement by detecting whether the driver is holding the steering wheel

properly, using turn signals appropriately, or reaching for objects within the vehicle.

Deep learning models have emerged as promising approaches for recognizing spe-

cific hand actions and movements. In [65], with remarkable accuracy, a “pre-trained

Keras Neural Network” was employed to classify hand presence: a pre-trained Keras

Neural Network model was an already trained model on a large dataset; Keras, a

Python Programming Language library, allows for the quickly building and testing

these networks; Pre-trained, in this instance, means the model’s initial weights come

from an earlier training run, often from an embracing dataset like ImageNet. These

pre-trained models already recognize common patterns, which can be adapted to

new tasks, reducing training time and computational resources; Keras provides var-

ious pre-trained models, especially beneficial when the dataset is not large enough

to train a whole network from the beginning. This model is able to distinguish be-

tween one hand on the wheel, two hands on the wheel, or no hands on the wheel. By

utilizing this deep learning model and a carefully selected hand-classifying dataset

comprising data from 30 volunteers, the system achieved an impressive 100 percent

accuracy. Although the controlled nature of the dataset contributed to this high ac-

curacy, it highlights the potential of deep learning models in accurately recognizing

and classifying hand presence.

Another exploration area involves using a multi-camera framework for hand clas-

sification in driver monitoring systems. This approach enables more precise and

thorough hand detection and tracking by utilizing multiple cameras mounted at dif-

ferent locations inside the cabinet strategically placed within the vehicle cabin. It

enhances the system’s ability to accurately classify hand movements and gestures,

thereby seriously improving tra�c safety and reducing accidents caused by distracted
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driving. Multi-camera framework aligns with the broader objective of vision systems

and machine learning analysis within autonomous vehicle cabins, ensuring a complete

understanding of the hand classification and facilitating a more accurate hand classi-

fication. In summary, hand classification in driver monitoring systems is critical for

assessing driver behavior and promoting safe driving practices. Deep learning models,

including the pre-trained Keras Neural Network and RestNet CNN, demonstrate the

potential for accurate hand presence classification [63].

A powerful approach to enhance on-wheel hand action recognition and prioritize

driver safety is utilizing feature trajectories, which is the technique to track the path

or progression of specific features or characteristics over time. Wang et al. propose

a method that analyzes video actions using dense trajectories, which is a method in

computer vision and video analysis that densely samples key points in a video se-

quence to capture motion information and track object movements. This approach

e�ciently evaluates hand motions and quick movements in hazardous circumstances,

determining potential risks. Additionally, the implementation of convolutional neu-

ral network (CNN) models, including spatiotemporal multiplier networks (STMNs)

introduced by Zolfaghari et al., emphasizes the importance of hand classification for

driver safety. By combining temporal convolution with spatial convolution, STMNs

o↵er an inclusive approach to analyzing spatiotemporal patterns in driver behavior,

enabling the identification of unsafe driving actions hands-o↵-the-wheel [56, 58].

Moreover, advancements in e�cient CNNs like E�cientNet and lightweight deep

neural networks like MobileNets reinforce the significance of hand classification for

in-cabin analysis and real-time monitoring, enhancing autonomous vehicles’ safety

and e�ciency. The utilization of complex attention networks, as presented in Driver

Action Recognition (DAR), further underscores the importance of hand classification

for driver safety. By focusing exclusively on vital behavioral elements including the

hand and head, this approach aligns perfectly with the analysis of data inside of
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the cabinet, ensuring an exhaustive understanding of driver behavior. The studies

above indicate that more than relying solely on hand classification for driver behavior

detection is required as it fails to capture the full spectrum of driver behavior and

intention. While hand movements provide valuable insights into driver actions, an all-

inclusive understanding requires considering factors including head position, eye gaze,

and body posture. Incorporating multiple factors leads to a better understanding of a

driver’s cognitive state, attention level, emotional response, and fatigue level [59, 66].

As technology advances, the focus on comprehending the holistic range of driver

behavior has led to integrating these multiple factors into driver assessment mod-

els. Notably, the area of “Hand Classification” has seen significant breakthroughs,

revolutionizing our grasp of driver interactions. Recent developments in the field of

hand classification present intriguing innovations using machine learning and com-

puter vision for understanding hand gestures and driver behavior. One study created

an algorithm that tracks a driver’s right hand and ear in real-time, processing video

frame images to identify if the driver is distracted. With an impressive accuracy score

of 74 percent, this algorithm can classify various actions, including everyday driving,

touch screen interaction, and phone conversations. Another study formulated an al-

gorithm that identifies hand gestures using three specific characteristics of a hand’s

shape, achieving 91 percent classification from a test set of 200 images [67, 68, 69].

Researchers in the realm of sign language innovated a system that interprets ges-

tures by thinning a segmented image resulting in a communication breakthrough for

sign language users. Further studies rolled out an Urdu Alphabet translation recog-

nition system with an accuracy rate of 97.4 percent, proving extremely helpful for

individuals with vocal and hearing disabilities. To improve human-computer inter-

action, a trailblazing system recognizes hand gestures as an alternative to classical

mouse and keyboard inputs. This system uses the AdaBoost algorithm to identify

the hand in a video feed and then applies multi-class support vector machines to
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understand the gesture [70, 71, 72].

In a similar vein, an approach for recognizing moving hand shapes was developed.

Keeping the focus on real-time image processing, researchers first extracted the hand

region and then identified the hand’s shape. In an e↵ort to boost secure access, a

hand image-based identification system was developed, achieving confident recogni-

tion in groups of about 500 people. Finally, the creation of a detailed video-based

dataset stands as a pioneering venture for hand detection in varied driving settings.

This dataset, encompassing various backgrounds, lighting conditions, users, and view-

points, serves as a potent tool for fine-tuning machine learning algorithm performance.

Notably, it also features annotations that o↵er detailed hand related insights, marking

significant advancements in the field of hand classification [73, 74, 75].

2.0.15 Facial Classification

As the global economy rapidly expands, the transportation sector is also swiftly ad-

vancing. Specifically, heavy trucks stand out for their impressive cargo capacity and

have become crucial in logistics and road transportation. In China, with 2022 sales

projected at 1.2 million units, the country’s total heavy truck ownership will reach

11.7 million by 2025. However, this growth has resulted in a corresponding rise in traf-

fic incidents, often due to drowsy driving. Fatigue is notably prevalent among these

drivers who undertake extensive drives to make ends meet, leading to exhaustion,

decreased attention, and potential accidents. Data from the US National Highway

Tra�c Safety Administration (NHTSA) indicates that 91,000 crashes involved drowsy

driving, leading to approximately 50,000 injuries and nearly 800 deaths. The tra�c

safety, sleep science, and public health communities generally agree that these figures

underestimate the true impact of drowsy driving. Additionally, a Chinese study high-

lighted the propensity for such incidents to occur at any time, especially during early

morning or mid-afternoon hours. These statistics underscore the serious threat posed

27



by drowsy driving, particularly with heavy trucks, marking it as a significant factor

in critical tra�c accidents. In recent years, there have been driver fatigue monitoring

systems with facial detection technology and precise infrared sensors developed to

e↵ectively identify signs of driver drowsiness. The system monitors facial movements

and detects subtle fatigue indicators, including increased blinking, drooping eyelids,

or prolonged eye closures, often unnoticed by the drivers. The detection system re-

mains una↵ected by external variables, including the time of day, the presence of

glasses, or reflective light. Enhanced by integrated pre-trained artificial intelligence

with advanced facial recognition capabilities, the system operates even without a

WiFi connection due to its inbuilt algorithms. The AI system is programmed to

recognize and audibly alert drivers about signs of fatigue or distraction, providing

real-time and reliable fatigue monitoring. This deployment of facial detection tech-

nology significantly boosts road safety by adeptly assessing drivers’ drowsiness levels

and reducing the risks associated with drowsy driving [76, 77, 78].

Facial Classification entails detecting and analyzing a driver’s facial features and

expressions, including yawning, blinking, or looking away from the road. Such anal-

ysis can o↵er insights into the driver’s level of attention and alertness, which are

vital for ensuring responsible driving. One facial classification approach employs the

FaceNet system to e�ciently carry out facial recognition, clustering, and verification.

The Euclidean Embedding method simplifies complex data by representing it more

linearly while keeping the critical relationships intact through a convolutional neural

network (CNN) to tackle facial recognition challenges. By examining feature vectors,

the FaceNet system can provide solutions that enhance facial recognition accuracy

under various conditions. Another multiple-resolution cascade network method com-

bines di↵erent layers with varying levels of detail to e�ciently process and extract

features from complex data, with high discriminative capabilities. This CNN Cascade

technique uses a sequence of convolutional neural networks to progressively filter and
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Ref. Summary Methodology Relevance

[79] Utilizes feature vectors in FaceNet for e�cient

face recognition, clustering, and verification

tasks.

CNN-based Eu-

clidean embedding

Explores facial recognition, presenting

solutions to pose and illumination issues,

relevant for enhanced biometric systems

in autonomous vehicles.

[80] Presents a multi-resolution cascade network to

handle pose, expression, and lighting issues in

facial recognition.

CNN Cascade with

discriminative capa-

bilities

Introduces a discriminative cascade sys-

tem for e�cient facial distinctions anal-

ysis, pertinent to vehicle cabin surveil-

lance.

[81] Explores appearance-based gaze estimation in

non-lab conditions using the MPIIGaze dataset

with 213,659 images from 15 participants.

Appearance-based

gaze estimation

Investigates gaze estimation under ev-

eryday conditions, contributing to im-

proved facial feature recognition within

autonomous vehicle cabins.

[82] Detects driver emotions unobtrusively via

smartphone-captured contextual features, out-

performing facial recognition by 7 percent and

ensuring privacy.

YOLOv5, Microsoft

Face Recogni-

tion, DeepLabV3,

OpenCV

Unobtrusive Sensor Feed Pipeline ana-

lyzes driver emotions less intrusively, rel-

evant to vision systems in autonomous

vehicle cabins.

[83] Proposes a hazardous driving image classifica-

tion system using a modified Shu✏eNet model,

balancing speed and accuracy for real-time

monitoring.

Shu✏eNet Proposes a solution for dangerous driv-

ing behavior monitoring, enhancing

safety within autonomous vehicle cabins.

[84] Suggests a deep-learning-based system for

drowsiness detection using a novel CNN model

for eye state classification, enhancing traveler

protection.

CNN - Deep Driver

Drowsiness Detector

(4D) Model

Uses a deep-learning-based system for

drowsiness detection via a novel CNN

model, important for driver state anal-

ysis in autonomous vehicle cabins.

[85] O↵ers a non-invasive approach for driver vig-

ilance classification via deep learning Hy-

MobLSTM model and transfer learning, analyz-

ing facial and eye components.

HyMobLSTM model

(MobileNetV3 and

LSTM)

Contributes to driver behavior analy-

sis inside autonomous vehicle cabins via

a non-invasive vision system, improving

safety and alertness monitoring.

[86] Presents Hypo-Driver, a real-time driver inat-

tention and fatigue detection system using

multi-view cameras and biosensors, outperform-

ing existing solutions.

Hypo-Driver sys-

tem: fused through

CNN, RNN-LSTM,

and DRNN

Hypo-Driver system employs multimodal

features for driver hypovigilance detec-

tion, aligning with vision-based systems

in autonomous vehicles for safety en-

hancement.

[87] Monitors driver behavior using image process-

ing and computer vision techniques to prevent

accidents, promising high accuracy and real-

world application potential.

OpenCV, Support

Vector Machine

(SVM)

Describes real-time driver monitoring us-

ing computer vision techniques, relevant

for understanding how such techniques

can enhance safety and behavior analy-

sis in autonomous vehicle cabins.

Table 2.2: Summary of research on Facial classification.

refine object detection. The result addresses challenges associated with pose, expres-

sion, and lighting. This cascade system uses a sequence of classifiers to progressively

refine and improve the classification accuracy of an object or pattern recognition
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task. In addition to these approaches, appearance-based gaze estimations further

augment facial recognition in everyday situations. By concentrating on real-world

scenarios, this method enhances the recognition of facial features and contributes to

a more accurate evaluation of a driver’s attention and alertness levels. Moreover,

driver emotion detection systems have been explored by analyzing di↵erent types of

information or characteristics surrounding a particular subject or situation, which

are considered together to gain a more comprehensive understanding. One research

experiment utilizes advanced machine learning models, including YOLOv5, Microsoft

Face Recognition API classifier, VGG13-based image classifier, DeepLabV3 semantic

segmentation, and OpenCV. The innovative unobtrusive sensor feed pipeline (USFP)

developed in this research provides a less intrusive method for analyzing driver emo-

tions inside an autonomous vehicle’s cabin, contributing significantly to developing

vision systems for autonomous vehicles [88, 89, 90].

A hazardous driving classification system based on a modified Shu✏eNet lightweight

model has been proposed. This system e↵ectively reduces model complexity and

increases operational speed without compromising classification accuracy, making

it a potential solution for real-time monitoring of dangerous driving. Similarly, a

deep-learning-based drowsiness detection system has been proposed using a novel

CNN model to classify eye states. The HyMobLSTM model presents a non-intrusive

method putting emphasis on analyzing facial features and eye localization in order to

yield a more comprehensive interpretation. This model determines a driver’s alert-

ness by categorizing it into five levels based on head orientation and the eye position

relative to the eyelids. Transfer learning extracts additional features from the driver’s

eyes, serving as input vectors for the LSTM network [62, 63].

Another real-time driver inattention and fatigue detection system, Hypo-Driver,

utilizes multi-view cameras and biosignal sensors to extract hybrid features. The

Hypo-Driver system uses a combination of CNNs, RNNs, and deep residual neural
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networks (DRNN). This system achieves a high accuracy rate of 96.5 percent and

outperforms other top-rated driver fatigue detection systems. This is achieved by

extracting multimodal features and using deep learning models for driver’s decreased

alertness levels in individuals, often through the analysis of behavioral or physiological

indicators. In addition to the above, another project uses OpenCV, an open-source

computer vision library that provides tools and functions for image and video pro-

cessing, as well as support vector machine (SVM), a machine learning algorithm used

for the classification and regression tasks. The described systems above contribute

to understanding how computer vision and machine learning techniques can enhance

safety and behavior analysis in drivers, thereby improving the overall safety measures

within autonomous vehicles [87, 91].

Building on the use of machine learning and computer vision for driver monitor-

ing through hand classification, researchers have expanded into the realm of facial

classification. This advancement is opening new avenues for improving driver safety

through cutting-edge recognition and emotion perception technologies. One study ex-

plored how blocking facial features a↵ects emotion perception, while another mapped

facial features to emotional recognition. Significant strides were made in real-time

driver distraction detection by analyzing visual cues from the face and tracking eye

and head positions [92, 93, 94].

Furthermore, an AdaBoost algorithm-based system calculates gaze direction to

assess if drivers maintain eye contact with the road. Another study improved dis-

traction detection accuracy to 81.1 percent by analyzing eye activities and driving

performance data. In contrast, others employed facial cues to develop highly precise

classifiers for visual and cognitive distractions [95, 96, 97].

Researchers also optimized convolutional neural networks and introduced an uni-

fied face detection system through the wearable face recognition system, a notable

development for blind and visually impaired individuals. The rapidly advancing
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field of facial classification is creating breakthroughs in autonomous driving, human-

computer interaction, and communication aids for the visually impaired [98].

In summary, these Facial Classification methodologies have been put into prac-

tice to advance facial classification tasks. These strategies provide a comprehensive

approach to monitoring and analyzing driver behavior inside autonomous vehicle cab-

ins, enhancing safety measures and contributing to the development of autonomous

vehicles.

2.0.16 Body Posture Classification

Driving a vehicle demands prolonged periods of intense focus and repeated sitting

posture and movements. These factors inevitably cause fatigue. When the driver ex-

periences fatigue, their ability to maintain focus diminishes, and their reaction times

may su↵er, posing potential safety risks. Therefore, it is crucial to devise methods

that can promptly and accurately assess the level of vehicle drivers’ fatigue. This

assessment should be conducted to ensure operational safety and e�ciency without

interfering with the driver’s routine tasks. Body posture classification involves ana-

lyzing a driver’s body posture and movements, including slouching, leaning, or sudden

jerky movements. The result can provide insights into the driver’s fatigue, distraction,

or impairment level.

Firstly, in [107], researchers from China have found a deep learning technique: by

extracting features related to upper body posture, including the head, neck, chest,

shoulders, and arms, from images captured of train drivers to detect drivers’ fatigue

level. In [108], the researchers from Beijing Jiaoton University introduced a method

for detecting the fatigue state of drivers by analyzing their upper body postures

extracted by OpenPose framework and a Deep Belief Network - Back Propagation

Neural Network (“DBN-BPNN”) model. The model takes a “9-dimensional principal

eigenvector” of the driver’s upper body posture as input: the 9-dimensional principal
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Ref. Summary Methodology Relevance

[99] Proposes an ensemble model using deep con-

vnets for Human Body Posture Recognition

(HBPR), relevant for posture-based analysis in

autonomous vehicle cabins.

Bivarial Deep Con-

vnet Model

Uses deep convnets for human body pos-

ture mapping, relevant for individual

passenger analysis in autonomous vehi-

cle cabins.

[100] Classifies seven common driving activities using

pre-trained CNN models, contributing to driver

behavior analysis within autonomous vehicles.

AlexNet,

GoogLeNet,

ResNet50

Classifies driving activities and body

postures using CNNs, contributing to

driver behavior analysis in autonomous

vehicles.

[101] Proposes a drone surveillance system for hu-

man behavior analysis, including posture anal-

ysis via OpenPose, relevant for outdoor surveil-

lance and interaction with autonomous vehicles.

Pose Estimation,

OpenPose, Deep-

Sort, YOLO

Analyzes and classifies body postures

and behaviors using multiple algorithms,

applicable for passenger behavior analy-

sis in autonomous vehicles.

[102] Utilizes PoseNet for real-time 6-DOF camera re-

localization from single RGB images, relevant

for vehicle cabin monitoring and driver pose es-

timation.

23-layer deep CNN

(convolutional neu-

ral network) trained

in an end-to-end

manner to regress

the 6-DOF camera

pose.

Handles challenging lighting conditions

and motion blur, contributing to the de-

velopment of robust vision systems for

in-cabin analysis in autonomous vehicles.

[103] Uses MoveNet to predict subject-specific joint

angle profiles for di↵erent walking conditions,

applicable for pedestrian behavior analysis

around autonomous vehicles.

MoveNet Uses MoveNet’s user-specific prediction

capabilities from minimal input data,

showcasing potential for individualized

passenger analysis in autonomous vehi-

cles.

[104] Presents D3-Guard, a real-time drowsy driv-

ing detection system using built-in smartphone

audio devices and LSTM networks, applicable

for drowsiness monitoring in autonomous vehi-

cle cabins.

LSTM networks D3-Guard, an acoustic sensor-based sys-

tem for drowsiness detection, o↵ers in-

sights for vision systems in autonomous

vehicles, emphasizing alertness monitor-

ing and machine learning techniques like

LSTM networks.

[105] Introduces BiRSwinT network for fine-grained

driver behavior recognition, o↵ering enhanced

driver action learning and accuracy in driver be-

havior analysis.

Bilinear full-scale

residual Swin-

Transformer net-

work (BiRSwinT)

BiRSwinT’s approach to fine-grained

driver behavior recognition contributes

to driver behavior analysis in au-

tonomous vehicle cabins, enhancing de-

tection of subtle behaviors.

[106] Proposes a driver distraction detection system

using a blend of deep learning and machine

learning models, relevant for enhancing road-

way safety through distraction monitoring.

DenseNet and Ge-

netic Algorithms

(GA)

The real-time driver distraction detec-

tion via a Hybrid Genetic Deep Network

aligns with the objectives of in-cabin

driver behavior analysis in autonomous

vehicles.

[90] TLeverages MobileNetV2 for e�cient classifi-

cation of driver distraction behaviors, demon-

strating potential for reducing accidents caused

by distracted driving in autonomous vehicles.

MobileNetV2 Uses MobileNetV2 for driver distraction

classification, providing valuable insights

for machine learning-based vision sys-

tems in autonomous vehicle cabins.

Table 2.3: Summary of research on Body Posture classification.
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eigenvector is like the main road on a map with nine di↵erent directions, which

provides the most e�cient route to capture the essential features in a dataset or

system.

Next, the model applies a forward Restricted Boltzmann Machine (RBM) learning

algorithm to reconstruct the eigenvector and extract high-level distribution features.

The DBN-BPNN model includes four levels for classifying fatigue states. Results

from the experiment demonstrate an average detection accuracy of 92.7 percent using

the DBN-BPNN model, indicating the method’s high accuracy in detecting fatigue

among drivers. MoveNet, furthermore, is a deep neural network designed to predict

subject-specific joint angle profiles for various walking speeds and slopes, minimizing

input data requirements. MoveNet’s ability to predict highly user-specific profiles

from minimal input data shows the potential for using similar approaches in vision

systems analyzing the interior of autonomous vehicle cabins. By understanding and

adapting to individual passengers’ needs and preferences, MoveNet can contribute to

a more personalized and comfortable ride in autonomous vehicles.

In fact, Beijing Institute of Technology researchers introduced D3-Guard, a sys-

tem that detects driver drowsiness in real-time using the audio capabilities of a smart-

phone. It identifies unique sound patterns from behaviors like yawning and steering

and uses long short-term memory (LSTM) networks for e�cient detection. With an

average accuracy of over 93 percent in real-world testing, D3-Guard suggests that

sound-based detection can complement or even replace vision-based systems in self-

driving cars. The scaling method of the system preserves the original aspect ratio of

images or videos during resizing, ensuring high-quality output. Furthermore, another

study proposes the Residual Swin-Transformer (BiRSwinT), a network that recog-

nizes ten fine-grained driver behaviors. BiRSwinT employs a dual-stream structure

to process and analyze various data types, performing exceptionally well on the AUC

V1 and V2 datasets. This dual-stream design allows for the simultaneous processing
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of global and local cues of driver actions, enhancing the detection of subtle behaviors

and improving the overall safety of autonomous vehicles [104, 106, 83].

Another highly accurate system for detecting driver distraction consists of a blend

of deep learning and machine learning models, fine-tuned by a genetic algorithm. This

system adapts to new datasets in real-time, aiming to enhance tra�c precautions

through the Hybrid Genetic Deep Network. This model uses principles from genetic

algorithms and deep neural networks. It utilizes evolutionary techniques to optimize

the architecture and processes of deep learning networks. This approach aims to

enhance performance or e�ciency when studying driver behavior within self-driving

vehicle cabins [90].

Furthermore, the research from National Tsing Hua University (NTHU) [39] un-

derscores the proficiency of the MobileNetV2 model in categorizing driver activities,

achieving an impressive blend of speed and precision while preserving low computa-

tional demands – an essential characteristic for mobile system implementation. The

research leveraged two distinct datasets for their experiment: a 10-class dataset from

State Farm and a 2-class dataset. The clearly defined features in the State Farm

dataset allowed the model to successfully di↵erentiate between two classes, resulting

in superior predictive accuracy. However, the NTHU drowsiness dataset, in its re-

alistic depiction of driver behavior, o↵ered a more authentic training environment,

fostering progress toward real-world applications. In the context of mounting traf-

fic fatalities worldwide, specifically in areas like Malaysia where distraction-induced

accidents are prevalent, the application of deep learning techniques, specifically con-

volutional neural networks presents a promising avenue for e�cient identification and

classification of distracted driving behavior. Therefore, it contributes to the broader

objective of promoting safety in autonomous vehicles [85].

While machine learning techniques, particularly convolutional neural networks,

promise swift identification and classification of distracted driving behavior, innova-
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tions extend beyond this realm to improve driver safety. These advanced systems

now consider other vital parameters, including head and body movements, to gauge

a driver’s alertness, paving the way for comprehensive driver behavior assessment. In

the pursuit of creating safer roads, advanced systems are analyzing drivers’ alertness,

including their head and body movements, to prevent accidents due to fatigue or

distraction.

Procedures including the integration of the Microsoft Kinect range camera’s ca-

pabilities of capturing and analyzing 3D shapes of drivers, and fitting a human skele-

ton model to this data have been beneficial in evaluating nuanced driving behaviors

across varying demographics. When combined with machine learning techniques like

K-means clustering, SVMs, and HMMs, the result is a highly accurate recognition of

driving-related actions and postures [109, 110].

Algorithms like Part A�nity Fields (PAFs) have proven e�cient in detecting 2-

dimensional poses of multiple individuals in images, setting a benchmark for pose

detection. The use of tools like head trackers and vision-based foot behavior analysis,

along with video sequence trajectories, is enhancing the accuracy in action recogni-

tion and prediction of drivers’ foot behavior. This data contributes to body posture

classification as a significant component of autonomous vehicle safety. By detecting

diversions or measuring the driver’s head orientation, these advancements promise a

safer future for autonomous driving [111, 112].

In summary, these body posture classification methodologies contribute to the

advancement of safer driving. These strategies collectively provide a comprehensive

approach for monitoring and analyzing driver behavior inside autonomous vehicle

cabins, contributing to the development thereof and safer roads worldwide.
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2.0.17 Integration of Physiological Indicators Classification

Incorporating physiological indicators, including hand gestures, facial expressions,

and body postures, is essential for developing an all-in-one driver monitoring sys-

tem. This section outlines strategies for the physiological classification approaches to

establish a cohesive driver monitoring system. To further elaborate on the integra-

tion of the classifications, it is important to note that driver behavior classification

serves as a key component in predicting and preventing risky driving scenarios. Not

only can driver behavior classification provide real-time assistance to human drivers,

but it is also instrumental in shaping the development of autonomous vehicles. It is

worthwhile to recognize that human interaction with self-driving cars is an emerging

research area with profound implications for road safety, tra�c e�ciency, and overall

driving experience. The classification schema that divides driving behaviors into safe

and unsafe categories o↵ers a practical and simplified representation of the complexi-

ties involved in everyday driving. This classification system is the basis for analyzing

and predicting driver behavior. By assigning a binary value of “1” for safe driving

behaviors, and “0” for unsafe driving behaviors, researchers can create a streamlined

and consistent method of collecting and analyzing data. This data, in turn, provides

valuable insights that can help develop various interventions to enhance road safety.

In [113], researchers shed light on the significance of di↵erent body parts, in the

perception of emotions. While not directly addressing the process of integrating

hand, facial, and body posture classifications, the research provides valuable insights

for developing an emotion detection system. The study highlights the importance

of di↵erent body parts in accurately perceiving emotions, suggesting that emotion

classification is an essential component in a multi-modal system for a comprehensive

analysis. By incorporating these insights, a unified framework can be developed that

accounts for the importance of hands, employs a multi-modal approach, harnesses

shared mechanisms, and addresses challenges including the body inversion e↵ect,
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leading to the creation of a robust and accurate system for emotion recognition.

Another study [114], conducted by Chinese researchers, emphasizes the integra-

tion of deep learning-based segmentation to isolate the driver’s body parts, including

the head and hands, which play critical roles in identifying distraction. Two segmen-

tation architectures, Human Body Parts Segmentation (HBPS) and Cross-Domain

Complementary Learning (CDCL), were investigated. Despite similar performance

on the Pascal VOC dataset, the CDCL model performed significantly better under

low light conditions in the study’s specific dataset, e�ciently segmenting critical body

parts even in challenging lighting scenarios. This model facilitated the elimination of

irrelevant image regions and concentrated on hands and head-related regions essen-

tial for safe driving. The system achieved an impressive average accuracy of over 96

percent on the authors’ dataset and 95 percent on the public AUC dataset, indicat-

ing its substantial potential in developing comprehensive driver assistance systems by

integrating physiological indicators for driver behavior classification.

The AWAKE (System for E↵ective Assessment of Driver Vigilance and Warn-

ing According to Tra�c Risk Estimation) project, adopted by the European Union,

emphasizes the importance of combining driver state and performance measures to

detect driver fatigue e↵ectively. The project endeavors to demonstrate the viability of

driver vigilance monitoring systems, considering both technological and non-technical

aspects. It employed mainly the driver state measures, including the eyelid movement

and changes in steering grip, and driver behavior metrics like lane tracking, usage of

accelerator and brake, and steering position. These measures were then compared

against tra�c risk evaluations derived from digital navigation maps, anti-collision

devices, driver gaze sensors, and odometer readings. The project’s output is a set

of design guidelines for evaluating driver vigilance and warning signals, which, de-

spite leaving many research questions unanswered, are likely to influence the future

implementation of fatigue detection devices significantly [115].
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The proposed method in [116] integrates detection and tracking algorithms to

monitor distracted driving behavior based on facial and hand movements. The facial

detection and tracking involve using the Viola-Jones algorithm to detect the driver’s

face and an algorithm described in reference [117] to detect key facial features like

eyes, lips, and forehead. The centroids of the forehead and lips are tracked using the

KLT tracker algorithm. Hand detection focuses on a localized search region, typically

the lower-right or lower-left quarter of the frame, and employs a hand detection algo-

rithm from reference [118]. The centroid of the hand is tracked using the KLT tracker

as well. The tracking algorithms continuously estimate the displacement between con-

secutive centroids and calculate the tracking error based on feature di↵erences. If the

tracking error exceeds certain thresholds, reinitialization is performed by redetecting

the respective body part. The method emphasizes the significance of simultaneous

tracking of these body parts in capturing distracted driving behaviors. By analyzing

the trajectories and patterns of facial and hand movements, specific distracted driving

behaviors including talking on the phone, eating, or texting can be recognized. This

proposed method leverages the simplicity and e↵ectiveness of the algorithms, taking

into account the constrained setting of driving and marginal deformations of body

parts. The integration of two physiological indicators together, hand gestures and

facial expressions, enhances the understanding of distracted driving behaviors and

contributes to the development of comprehensive driver monitoring systems.

This study [120] investigates how a driver’s body and head characteristics can

influence the categorization of driving tasks, beginning with evaluating depth infor-

mation from facial landmarks and joints. The precision of task classification demon-

strated substantial di↵erences when relying exclusively on either head or body sig-

nals. The model, trained only with two-dimensional information like head rotation

and joint coordinates, showed accuracy levels comparable to those trained with com-

plete features. However, the classification accuracy decreased when only using head
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Method Year Dataset Feature Algorithm Accuracy

[113] 2023 Bochum

Emotional

Stimulus

Set

Full body,

particularly

the hand

Isolated Body Part Emo-

tion Recognition algorithm

64.7%

[117] 2022 ORL Face

Database

from ATT

and FEI

dataset

Face and Hand SVM 98.03%

[114] 2021 Driver

Monitoring

Dataset

and AUC

Full body Two di↵erent pre-trained

CNNs, VGG-19 and

Inception-v3

96%

[119] 2019 QVGA

ToF image

sequences

Body Key

Points

3D CNN-LSTM 85%

Table 2.4: Comparison of combined classifying models.

pose information. While the distracted driving behaviors were successfully detected,

it was challenging to di↵erentiate safe driving behaviors with similar head positions.

In other words, using only body features (the coordinates of the hand, wrist, elbow,

and shoulder joints) resulted in weaker detection of mirror-checking behaviors but a

higher degree of accuracy for detecting distraction behaviors. So, the head and body

characteristics are vital for comprehensively classifying driving tasks. Though there

was a slight dip in the overall detection accuracy, the selection of 18 features, which

includes yaw, pitch, roll, nose, hand, and shoulder coordinates, provided a reasonable

balance between accuracy and computational speed. The final result demonstrates
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the potential of such a system in e↵ectively combining physiological indicators to-

gether for the classification of driver behaviors using the unification of various body

part classifications.

In the study referenced as [119], the researchers built a model of the driver’s

posture classification consisting of nine key points – left/right shoulders, left/right

elbows, left/right hands, left/right hips, and the right knee. They selected a com-

bination of various body parts for their perceivability in denoting driving behaviors.

The team trained fully convolutional neural networks using their dataset to calculate

the pivotal points for each frame of the body independently. Then, they transposed

the data into three-dimensional camera coordinates using depth imagery, resulting in

a real-time 3D rendering of the driver’s physical stance. The focus is shifted from

individual actions to the real-time tracking of a combination of various body parts,

thereby enhancing the depth and precision of physiological indicator-based classifica-

tion of driver behaviors.

While research like [119] illustrates how real-time 3D imaging and tracking of

various body parts can enhance driver behavior analysis, the potential benefits of au-

tonomous vehicles extend beyond improved safety measures. These breakthroughs not

only revolutionize transportation policies and systems but also necessitate a thorough

understanding of the legal regulations governing autonomous vehicles. This under-

standing is crucial to adapt the existing road tra�c laws and navigate the regional

di↵erences in these regulations. Autonomous vehicle technologies potentially lower

transportation costs and increase accessibility, particularly for those with mobility

limitations. With a focus on the communication between autonomous vehicles and

infrastructure, opportunities arise to develop e�cient routing systems. Such technolo-

gies can revolutionize transportation policies. Meanwhile, in the U.K., connected and

autonomous vehicles are triggering a transformative change in the economy, promis-

ing benefits like improved safety, reduced congestion, and increased productivity.
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Vital innovation and research capabilities in the U.K. automotive sector help lever-

age these benefits e�ciently. From a legal perspective, a professional understanding

of autonomous vehicles’ legal regulations is crucial because it aids the discussions re-

lated to modifying existing road tra�c laws and the navigation of the variations in the

regulations across di↵erent regions, including the U.S. and Europe. In vision-based

human action recognition or labeling image sequences, varied advancements focus

on image representation and the subsequent classification process. Despite current

challenges and limitations, these advancements uncover potential areas for further

exploration and improvement. Finally, the accuracy in recognizing subtle driver be-

haviors can improve significantly by using a network like BiRSwinT. This network

combines global shape appearances and local discriminative cues of driver actions in

its structure, e↵ectively identifying multi-scale, local lines and can help drive future

research in recognizing driver behaviors [121, 122].

Developing a proficient and e↵ective driver monitoring system requires the concur-

rent examination and integration of numerous physiological indicators. The singular

analysis of distinct body parts, including facial expressions, hand movements, and

overall postures, can indeed yield meaningful insights into a driver’s actions. How-

ever, this individualized focus might need to look into the larger, more complex picture

of driving behavior due to the multifaceted nature of human actions and responses.

By integrating the findings from the analysis of various body parts, researchers can

achieve a more complete understanding of a driver’s behavior. This comprehensive

view enables them to design more precise, well-rounded interventions and assistance

systems. The full-body analysis holds the potential to uncover nuanced and complex

driving behaviors, enhancing the capability to predict and prevent risky scenarios

that might otherwise remain undetected. In summary, the core of driving behavior is

not encapsulated solely in the isolated movements of the hands or the face. Instead,

it is embodied in the complex interactions among all body parts. As the future is ap-
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proaching, marked by autonomous vehicles and sophisticated driver-assist systems, a

comprehensive, full-body analysis becomes increasingly significant in promoting safer

and more e�cient roads. In the light of this, focusing on the interplay of full-body

indicators becomes a crucial step toward a future characterized by increasing safety

and e�ciency in driving.

2.0.18 Pose Monitor AI Program

The Pose-Monitor AI Application is an open-source project that evaluates the user’s

body posture and provides real-time feedback to improve posture. The system utilizes

image processing techniques to distinguish between proper and improper postures,

generating a score based on the evaluation. If the rating falls beneath a pre-established

limit after 30fps, the system warns the user; if the score remains below the threshold

after another 30fps, it alerts the user to adjust their posture, using either a familiar

voice or a more severe tone if necessary. Incorporating the Pose-Monitor AI Applica-

tion into the Proposed AI system allows for adequate assessment of a driver’s posture

and behaviors in an autonomous vehicle. This integration enables the AI system to

leverage existing image processing techniques and real-time feedback mechanisms to

understand the driver’s overall condition better. Consequently, the Proposed AI sys-

tem can detect potential indications of fatigue, distraction, or impairment, ultimately

improving safety in autonomous vehicles. Additionally, the open-source nature of the

Pose-Monitor AI Application ensures that the AI system remains customizable and

adaptable, permitting developers to continuously refine the algorithms and techniques

used to analyze a driver’s body posture. This adaptability is crucial for tailoring the

AI system to address the specific needs of various autonomous vehicle manufacturers

and user groups.

With the potential to be added based on the hand classification and facial clas-

sification algorithms [116], the Pose-Monitor AI Application emerges as a practical
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solution, leveraging real-time feedback of the driver’s driving state. The technology’s

continuous monitoring at a rate of 30 frames per second ensures rapid detection of

any shifts in the driver’s physiological states or overall behavior. These changes could

indicate the onset of fatigue or distractions, triggering the system to alert the driver

or activate autonomous controls for enhanced safety.

The functionality of the Pose-Monitor AI Application extends beyond simple pos-

ture monitoring. It uncovers insightful behavioral indicators tied to the driver’s phys-

ical disposition. For instance, drivers’ subtle body adjustments can signal anxiety or

unease with the autonomous vehicle’s decisions. This understanding of drivers’ behav-

ior empowers the system to respond to drivers’ needs proactively. When integrated

with other AI modules, like emotion detection [123], the Pose-Monitor AI-based Ap-

plication contributes to a sweeping human behavior classification system. This inte-

grated system can o↵er a more accurate and in-depth understanding of the driver’s

state, considerably improving the autonomous vehicle’s interaction with its human

occupants.

The performance of the Pose-Monitor AI Applications in driver behavior analysis

sets the stage for exploring cutting-edge machine learning and AI systems aiming to

foster road safety. Distinct research approaches form an intriguing landscape of ad-

vanced tools; these range from real-time warning systems and neural network-based

activity recognition to novel hand pose estimation using 3D Convolutional Neural

Networks. Delving into the individual contributions of these unique studies reveals

their remarkable potential in expanding the scope of AI and machine learning in

understanding driver behavior and thus enhancing autonomous vehicle safety. The

proposed AI Monitor Program makes extensive use of machine learning and AI sys-

tems to enhance road safety. An activity recognition system based on deep CNNs

successfully identifies seven common driver activities. Four of these activities are clas-

sified as normal driving tasks and the rest as distractions, achieving an impressive 91.4
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percent accuracy rate. Another approach uses CNN to develop a real-time warning

system for driver distraction detection. A unique approach inhabits the use of cellular

neural networks and capacitive sensors on the steering wheel for real-time stress level

monitoring, improving detection accuracy by up to 92 percent [124, 125, 126].

Understanding driving behaviors like car-following, lane-changing, and risky driv-

ing can be improved using sensor data, onboard vehicle computer data, and feature

extraction methods. Deep-learning models have shown exceptional accuracy in iden-

tifying these behaviors, hence, implying their potential as a primary tool for under-

standing driver behavior. There also exists a new approach for real-time hand pose

estimation using 3D CNNs, which enhances real-time monitoring of human activ-

ity. An open-source tool, VGG Image Annotator (VIA), which operates in any web

browser, provides an e�cient way to manage labeled data required for AI systems.

Finally, a unique application tracks gaze direction to guide an automated surveillance

system and represents a novel approach in AI surveillance. Each research study o↵ers

unique insights and significant contributions to autonomous vehicle safety, extend-

ing the potential use of AI and machine learning in understanding driver behavior

[127, 128, 129].

In conclusion, the open-source nature of the Pose-Monitor AI Application opens

up avenues for customization. Developers can adapt and enhance the system to cater

to specific requirements, creating a versatile AI that fits various vehicle models, driv-

ing conditions, and user preferences. This ability to customize is pivotal in a rapidly

evolving landscape of autonomous vehicle technology. Furthermore, the Pose-Monitor

AI Application supports data-driven adjustments. Over time, accumulated posture

data can guide refinements in AI algorithms, fostering a more nuanced understanding

of human behavior patterns. This continuous learning process boosts the system’s

overall performance and safety measures. Incorporating the Pose-Monitor AI Appli-

cation into a vision system for autonomous vehicles, as part of a broader machine
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learning-based approach, can yield safer and more interactive autonomous driving

experiences.
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CHAPTER 3

METHODOLOGY

3.0.1 Leveraging CNNs and BiLSTMs for Distraction Detection

This research leverages the power of Convolutional Neural Networks to identify pat-

terns within images and Bidirectional Long Short-Term Memory networks to un-

derstand time-based relationships in driver behavior. Data augmentation is used

to expand data variability. Various CNN architectures (InceptionV3, ResNet, Mo-

bileNetV3, E�cientNet) are tested with and without BiLSTM, for a comparative

analysis of their e↵ectiveness. Performance is evaluated using accuracy and test loss.

We employ a CNN+BiLSTM architecture to analyze complex patterns in distracted

driving behavior. We introduce a novel ‘Union Dataset,’ created by combining the

strengths of the AUC and State Farm datasets, to provide a more comprehensive

training data source. We utilize three datasets seperately: the AUC dataset (12,537

images), the State Farm dataset (22,458 images), and a Union Dataset (34,995 im-

ages) for comprehensive training and evaluation.

3.0.2 Data Augmentation in Enhancing Model Generalization

To strengthen model robustness and prevent overfitting, we employ data augmen-

tation techniques. These image transformations simulate diverse driving conditions,

artificially expanding our dataset and enhancing model generalizability for real-world

scenarios. We apply random rotations, shifts, shear transformations, zooms, and

horizontal flips to the Union Dataset’s images, uniformly resized to 224x224 pixels.
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3.0.3 Experimental Setup

After enhancing our dataset with data augmentation, we followed these steps in our

experimental setup:

1. Data Augmentation: As detailed in the previous section.

2. Train the Model: We trained the models using the augmented datasets, with

a focus on capturing the complex behavioral indicators of distraction associated

with distracted driving behaviors.

3. Test the Model: The trained models were then evaluated using a separate set

of images to accurately assess their performance in detecting distracted driving

behaviors.

4. Plot Experiment Results: We plotted the results from the testing phase to

visualize the models’ e�cacy across di↵erent scenarios.

5. Compare with Di↵erent Models and Datasets: We conducte performance

comparisons between various model configurations and datasets to identify the

most e↵ective approach.

6. Draw Experimental Conclusion: Insights and conclusions were drawn based

on comparative analysis, which will guide future research directions.

3.0.4 Model Configurations

We explore a variety of configurations, including:

• InceptionV3 + BiLSTM - This setup aims to reduce grid size and employing

label smoothing, in conjunction with BiLSTM to analyze temporal patterns.

• ResNet + BiLSTM - Utilizes ResNet’s capability for residual learning to-

gether with BiLSTM to recognize long-term dependencies.
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• MobileNet + BiLSTM - Leverages MobileNet for its e�ciency, paired with

BiLSTM, rendering it suitable for real-time applications.

• E�cientNet + BiLSTM - Combines E�cientNet’s scalable architecture with

BiLSTM to improve processing of temporal information.

For each configuration, we assess the impact of integrating BiLSTM layers. This

analysis help us leverage the unique strengths of CNN architectures in detecting

distracted driving behaviors.

3.0.5 Assessing Performance

Performance is evaluated based on accuracy and test loss as primary metrics. These

metrics indicate the models’ ability to accurately identify distracted driving behaviors.

Our analysis of existing models using diverse datasets demonstrates their e↵ectiveness

in handling a wide range of driving scenarios, while variations in test loss o↵er insights

into each model’s reliability and prediction confidence. This assessment is essential

in highlighting the specific advantages of each setup, facilitating the development of

more precise models for distracted driving detection.

3.0.6 Challenges and Considerations

Our research faces several challenges, including finding the appropriate CNN models,

troubleshooting the code during the experimental phase, and selecting the model’s

dataset. Our research acknowledges several challenges, including the representative-

ness of the Union Dataset and the potential for models’ complexity to induce overfit-

ting. To address these issues, we employ a wide range of data augmentation, rigorous

validation, and careful data collection and labeling practices to mitigate biases and

promote dataset diversity.

49



3.1 DATASETS: STATE FARM AND AUC-DDD, AND RATIONALE

FOR MERGING

To comprehensively evaluate the e↵ectiveness of the chosen approach, we leverage

the strengths of three complementary datasets: the State Farm Dataset, the AUC-

DDD Dataset, and the Union Dataset. The latter combines the first two, creating a

comprehensive resource for assessing distracted driving.

3.1.1 State Farm Dataset

Originating from the State Farm Distracted Driver Detection competition, this dataset

contains 22,458 annotated images showcasing various distracted driving behaviors. It

is a key asset for identifying and understanding unsafe driving actions across diverse

scenarios.

3.1.2 AUC Dataset

Developed through a collaborative research initiative between the American Uni-

versity in Cairo, the Technical University of Munich, and Valeo Egypt, the AUC

Distracted Driver Dataset includes 12,537 annotated images. This dataset expands

the research scope by including diverse driving behaviors not found in the State Farm

Dataset, enhancing our ability to understand and detect distractions [7].

3.1.3 Union Dataset

The Union Dataset emerges from the integration of the State Farm and AUC-DDD

Datasets, totaling 34,995 annotated images. This merged dataset aims to provide a

more comprehensive representation of distracted driving behaviors by leveraging the

strengths of both datasets. It encompasses a wide variety of distractions, demographic

variables, and driving conditions, serving as a vital tool for developing and evaluating

AI models in driver behavior detection.
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The datasets are categorized into ten classes representing di↵erent driving be-

haviors, ranging from attentive driving to various distractions. The datasets contain

distracted behaviors, such as using a phone, engaging with the entertainment system,

personal grooming, and interaction with passengers. This categorization facilitates

a detailed analysis of driver behavior, aiding in the creation of AI models adept at

identifying and classifying a broad array of unsafe driving actions.

Our analysis of driver distraction detection models suggests that existing methods

may not fully capture real-world complexities, leading to decreased accuracy.

Figure 3.1: Ten Classes of Driver Distraction training example from AUC-DDD [7]

Each dataset categorizes ten behaviors into ten classes (C0 to C9):

1. C0: Safe Driving – Full attention is on driving.

2. C1: Texting (Right Hand) – Engaging in texting with the right hand.

3. C2: Calling (Right Hand) – Making a call with the right hand.

4. C3: Texting (Left Hand) – Engaging in texting with the left hand.

5. C4: Calling (Left Hand) – Making a call with the left hand.

6. C5: Radio Interaction – Adjusting the radio settings.

7. C6: Drinking – Consuming a beverage.

8. C7: Reaching Back – Reaching for something in the back seat.
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9. C8: Grooming – Engaging in personal grooming.

10. C9: Conversing – Talking to a passenger.

Our research employs a refined 10-class classification system to facilitate the de-

velopment of CNN-based driver distraction detection models. This system is designed

to recognize a wide spectrum of driver behaviors. As illustrated in Figure 3.1, this

analysis employs a two-category classification system to distinguish between safe and

unsafe driving behaviors for in-depth investigation. Only Category C0 is considered

safe, whereas the other categories (C1 to C9) signify unsafe driving behaviors.

3.2 ARCHITECTURAL DESIGN: CNN, TIME DISTRIBUTED LAYER,

AND BILSTM

This analysis employs Time Distributed Layers, CNNs, and BiLSTMs to extract both

spatial and temporal information from driving action sequences. This integrated ap-

proach o↵ers a deeper understanding of driver behavior compared to earlier methods,

particularly for tasks like distraction detection where sequential context is critical.

We explore various CNN architectures, including InceptionV3, ResNet, MobileNetV3,

E�cientNet, MoveNet, and DenseNet. MoveNet’s reduced accuracy and DenseNet’s

higher processing cost made them less suitable for our real-time application, where

both speed and precision are essential. This exploration guide us towards the follow-

ing architectures, chosen for their balance of e�ciency and accuracy:

• InceptionV3+BiLSTM: Enhances feature extraction through InceptionV3’s

e�cient design and adds BiLSTM for analyzing how driving actions change over

time.

• ResNet+BiLSTM: Leverages ResNet’s residual learning framework to facil-

itate the training of deep networks, which is paired with BiLSTM to capture

long-term dependencies.
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• MobileNetV3+BiLSTM: MobileNetV3’s e�cient design for real-time anal-

ysis on mobile devices and adds BiLSTM for understanding temporal patterns.

• E�cientNet+BiLSTM: Takes advantage of E�cientNet’s scalable architec-

ture, which uniformly scales all dimensions of the model, integrating BiLSTM

to e↵ectively process temporal information.

Time Distributed Layers are employed in all these models to maintain consistent

dimensionality for inputs and outputs across sequences, enabling the network to pro-

cess and produce outputs for each timestamp. This capability is crucial for capturing

nuances and variations in driver behavior over time, providing a deeper and more

comprehensive understanding.

3.3 EXPERIMENTAL SETUP: DATA PREPARATION, TRAINING,

AND EVALUATION METRICS

Our experiment leverage the powerful computational capabilities of a MacBook Air

(M2 chip, 16GB RAM, 512GB SSD) to accelerate model development and analysis.

Python, TensorFlow, and Keras provide the essential tools for data handling, image

processing, and model building. We chose Visual Studio Code for its robust Python

support.

The following steps outline the preparation of our development environment:

3.3.1 Preliminary Setup

Library Imports

To support the various aspects of driver behavior detection, including data han-

dling, image processing, and machine learning tasks, several libraries were imported:

• Data and Visualization: pandas for data manipulation, numpy for numerical

operations, and matplotlib.pyplot & seaborn for data visualization played a
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key role in in analyzing and presenting the data.

• Image Processing: opencv-python (cv2) and ImageDataGenerator were

used for image preprocessing and augmentation, preparing the data for model

training in a way that boosts the model’s ability to generalize from the training

data.

• Deep Learning: TensorFlow and TensorFlow Hub were essential for accessing

a wide range of pre-trained models and deep learning functionalities. Models

such as ResNet50, InceptionV3, EfficientNet, MobileNetV3-Small were in-

vestigated for their potential application in detecting driver behavior through

pose estimation.

3.3.2 Model Selection for Pose Estimation

For this experiment focusing on driver behavior detection, we selecte MoveNet, a Ten-

sorFlow Lite pose estimation model known for its strong performance in predicting

human joint locations from RGB images. MoveNet is available in two variants, Light-

ning and Thunder, catering to di↵erent performance and accuracy needs. Lightning

is designed for faster, real-time applications on limited hardware, making it suitable

for quick assessments. On the other hand, Thunder, chosen for this experiment, of-

fers higher accuracy in pose estimation, crucial for the detailed analysis required in

detecting driver behaviors. This distinction allows us to tailor the experiment to our

specific requirements for precision and computational e�ciency.

Establishing a Streamlined Workflow

E�cient project organization is crucial for maintaining a streamlined workflow.

The structure includes a dedicated directory for the TensorFlow example scripts,

enhancing the project with valuable resources for pose estimation and ensuring an

organized system for managing scripts, models, and data.
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3.3.3 Environment Configuration

After importing the necessary libraries, we optimize the training dataset’s file path.

This streamlined the use of external scripts for pose estimation, enhancing our driver

behavior analysis.
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CHAPTER 4

RESULTS AND ANALYSIS

4.1 PERFORMANCE COMPARISON: BASELINE MODELS V.S. PRO-

POSED MODEL

Figure 4.1: Comparative Performance of Deep Learning Models on Union, AUC, and

State Farm Datasets
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This study performs a comprehensive evaluation comparing the performance of

baseline CNN models with a CNN-BiLSTM architecture incorporating temporal anal-

ysis. The baseline architectures include InceptionV3, ResNet, MobileNet, and E�-

cientNet, each renowned for their unique feature extraction capabilities and opera-

tional e�ciencies in image recognition tasks.

This analysis investigates the integration of BiLSTM layers with CNN archi-

tectures to enhance temporal data analysis, a crucial aspect for understanding the

sequence-dependent nature of distracted driving behaviors.

The comparison is based on several performance metrics, including testing accu-

racy and testing loss across the AUC Dataset, State Farm Dataset, and the Union

Dataset.

Table 4.1: Performance on Union Dataset

Model Test Accuracy (%) Test Loss Time (s/epoch)

ResNet + BiLSTM 98.83 0.0468 1429

ResNet 98.6 0.1784 1154

InceptionV3 + BiLSTM 99.6 0.014 678.5

InceptionV3 99.6 0.022 657.5

E�cientNet + BiLSTM 83.02 0.529 810

E�cientNet 12.62 2.66 1214

MobileNetV3 + BiLSTM 12.61 2.405 229

MobileNetV3 22.01 3.178 232.5

Table 4.1 provides compelling evidence for the value of both BiLSTM layers and

the Union Dataset in enhancing distracted driving detection. The integration of

BiLSTM layers leads to considerable improvements in accuracy across all models,

a trend particularly pronounced on the diverse and comprehensive Union Dataset.

This underscores the critical role of temporal analysis – where the BiLSTM’s ability
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to interpret sequences of images markedly improves detection capabilities – in un-

derstanding complex driving behaviors that evolve over time. The Union Dataset’s

rich variety further amplifies model generalization capabilities, demonstrating the

significance of comprehensive training data for real-world application. Notably, the

ResNet+BiLSTM configuration emerges as a standout performer, achieving consis-

tently high accuracies and underscoring the e↵ective synergy between advanced fea-

ture extraction and temporal pattern recognition.

Table 4.2: Performance on AUC Dataset

Model Test Accuracy (%) Test Loss Time (s/epoch)

ResNet + BiLSTM 97.76 0.0898 391

ResNet 99.04 0.0263 450.5

InceptionV3 + BiLSTM 64.8 1.441 254.5

InceptionV3 57.17 2.376 255

E�cientNet + BiLSTM 23.22 2.271 355

E�cientNet 17.69 3.509 733

MobileNetV3 + BiLSTM 9.89 2.366 108.5

MobileNetV3 10.78 2.759 100.5

While the Union Dataset demonstrates clear benefits, the AUC Dataset reveals

challenges and the potential for dataset-specific adaptation. Table 4.2 reveals the

challenges and complexities introduced by dataset variability. Despite the integra-

tion of BiLSTM layers, models demonstrate lower overall accuracies on the AUC

Dataset compared to the Union Dataset. This highlights the influence of dataset

characteristics on model robustness and emphasizes the need for further exploration

of dataset-specific factors. The contrast with the Union Dataset findings underscores

the importance of diverse training data for maximizing accuracy. Interestingly, the

AUC Dataset shows greater e�ciency gains when BiLSTM layers are integrated,

58



suggesting potential benefits for deployment on resource-limited devices. Future re-

search should focus on domain-specific dataset adaptation or fine-tuning strategies to

address the limitations revealed by the AUC Dataset and fully realize the potential

of BiLSTM across diverse driving scenarios.

Table 4.3: Performance on State Farm Dataset

Model Test Accuracy (%) Test Loss Time (s/epoch)

ResNet + BiLSTM 99.02 0.0479 773.5

ResNet 99.24 0.0348 746

InceptionV3 + BiLSTM 99.06 0.0314 412.5

InceptionV3 99.24 0.0348 383

E�cientNet + BiLSTM 52.58 1.764 481

E�cientNet 20.05 2.85 802.5

MobileNetV3 + BiLSTM 9.45 2.313 131

MobileNetV3 10.56 3.457 123.5

The findings from Table 4.3, regarding the State Farm Dataset, further corrobo-

rate the results obtained with the Union Dataset, demonstrating the substantial and

consistent benefits of integrating BiLSTM layers within CNN frameworks across a va-

riety of datasets. This alignment signifies the broad applicability of temporal analysis,

made possible by BiLSTM, in detecting distracted driving behaviors within diverse

driving contexts. The ResNet+BiLSTM model stands out, o↵ering both speed and

accuracy, which highlights its potential for real-world mobile deployment. This bal-

ance between computational e�ciency and detection e�cacy is crucial for embedded

systems within vehicles. The consistency of improvement across datasets underscores

the transformative potential of temporal analysis. Future research should focus on

model compression techniques and smaller BiLSTM variants to further optimize this

balance between BiLSTM’s benefits and the need for e�cient real-time operation.
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This would significantly advance the integration of these sophisticated methods into

automotive safety systems, paving the way for advancements in autonomous driving

solutions.

The results show a marked improvement in model performance with the addition of

BiLSTM layers. For instance, while the ResNet baseline model achieve commendable

accuracies, the ResNet+BiLSTM configuration outperformed the standalone ResNet

model across all datasets. Specifically, the ResNet+BiLSTM model reachs near-

perfect accuracies, significantly higher than the baseline ResNet model, particularly

on the Union Dataset. This shows the cooperative e↵ect of combining advanced

feature extraction with temporal pattern recognition.

This comparative analysis reveals the superiority of the proposed CNN+BiLSTM

model over the baseline models, highlighting the value added by integrating BiLSTM

layers. The results demonstrates the importance of considering temporal dynamics

alongside spatial features in detecting distracted driving behaviors, a critical aspect

that baseline CNN models alone fail to address adequately.

4.2 IMPACT OF THE BILSTM LAYER AND UNION DATASET

Figure 4.2: Test Accuracy trends for CNN models with versus without BiLSTM
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The integration of BiLSTM layers within CNN architectures demonstrably en-

hances the models’ ability to capture and analyze temporal sequences of driving

behavior. BiLSTM layers enable the model to process not just individual images but

sequences of images, thereby recognizing patterns over time, which is fundamental in

distinguishing between various forms of distracted driving.

Figure 4.3: Test Accuracy Across Models and Datasets

Analysis of performance metrics, as shown in Figures 4.2 and 4.3, highlights the

e↵ectiveness of a BiLSTM layer for modeling temporal patterns in driver behavior.

The models equipped with BiLSTM layers consistently demonstrate superior accuracy

and lower loss rates compared to their counterparts without BiLSTM. This improve-

ment is attributable to the BiLSTM’s capability to capture long-term dependencies

and sequential patterns that are common in distracted driving scenarios.

Moreover, the Union Dataset plays a pivotal role in enhancing the models’ per-

formance. By amalgamating the AUC and State Farm datasets, we create a more

diverse and comprehensive dataset, covering a wider range of distracted driving be-
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haviors across di↵erent demographics and driving conditions. This diversity is in-

strumental in training more robust and generalizable models. The Union Dataset’s

diversity and volume o↵er a valuable training environment for analyzing the e↵ec-

tiveness of CNN+BiLSTM architectures. This rich dataset potentially enhances the

models’ ability to generalize to unseen scenarios, as suggested in Figure 5.1.

The synergy between the BiLSTM layers and the Union Dataset is evident in the

models’ improved performance metrics. Models trained on the Union Dataset with

BiLSTM integration exhibit higher predictive accuracy, showcasing the combined

e↵ect of diverse training data and advanced temporal analysis. This indicates that

both the BiLSTM layer and the use of a comprehensive Union Dataset are crucial for

developing highly e↵ective models for detecting distracted driving behaviors, thereby

contributing to the advancement of driver monitoring systems in autonomous vehicles.
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CHAPTER 5

DISCUSSION

5.1 ANALYSIS OF THE BILSTM LAYER’S EFFECTIVENESS

Our analysis demonstrates that integrating a BiLSTM layer enhances model perfor-

mance, as depicted in Figure 4.2. This advancement highlights the value of analyzing

temporal sequences for understanding distracted driving behaviors that change over

time. The disparity in performance between models with and without the BiLSTM

layer, highlighted in our results, confirms the hypothesis that temporal dependencies

play a crucial role in accurately identifying distracted driving patterns.

5.2 CONTRIBUTIONS AND LIMITATIONS OF THE UNION DATASET

Our analysis underscores the critical role of the Union Dataset in enhancing model

generalization. Figures 4.3 and 5.1 demonstrate how its diverse scenarios improve

model performance on unseen data. Its diverse range of scenarios and behaviors

provides a comprehensive training environment, leading to higher accuracy and ro-

bustness in real-world applications. However, despite its contributions, the Union

Dataset also presents limitations, such as the increased computational demand and

training time, which could hinder scalability and e�ciency in some contexts.

5.3 COMPARISON WITH EXISTING LITERATURE

Our research builds upon existing literature emphasizing the importance of combining

spatial and temporal data analysis for detecting complex behaviors such as distracted

driving. The higher performance metrics achieved when integrating a BiLSTM layer
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Figure 5.1: Training Time E�ciency Across Models and Datasets

with CNN architectures, particularly on the Union Dataset, underscore the potential

benefits of temporal analysis for distraction detection.

This analysis shows significant performance gains with the ResNet+BiLSTM ar-

chitecture compared to a standalone ResNet-50 baseline. On the State Farm dataset,

it achieved 87.92% accuracy [130] aand on the AUC-DDD dataset, 87.7% accuracy

[131]. Our analysis demonstrates that the E�cientNet+BiLSTM configuration yields

higher accuracies on these datasets compared to previously reported results for stan-

dalone E�cientNet models. These comparisons highlight the value of the BiLSTM

layer in enhancing model performance.

While the Union Dataset improved model generalization, it’s important to ac-

knowledge potential trade-o↵s, such as the increased computational demand and

training time (Figure 5.1). Our work extends current research by demonstrating
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the e↵ectiveness of combining BiLSTM layers with a diverse dataset, o↵ering ad-

vancements in accuracy for real-world autonomous vehicle safety systems.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 SUMMARY OF FINDINGS

This research conclusively demonstrates that integrating BiLSTM layers greatly im-

proves the performance of CNN models in detecting distracted driving behaviors.

The Union Dataset’s comprehensive nature has further augmented the models’ e↵ec-

tiveness, enabling superior generalization capabilities compared to using single-source

datasets. Notably, the ResNet+BiLSTM model emerged as the standout configura-

tion, o↵ering high accuracy and stability across diverse testing scenarios.

6.2 IMPLICATIONS FOR AUTONOMOUS VEHICLE SAFETY AND

AI

Improving distracted driving detection holds the potential to directly save lives by

enabling AI systems to prevent accidents caused by inattentive drivers. The impli-

cations of our findings extend to the broader context of autonomous vehicle safety

and artificial intelligence. By o↵ering tools to improve the accuracy and reliability

of distracted driving detection, this research has the potential to support the devel-

opment of safer, more intelligent autonomous driving systems. The integration of

temporal data analysis through BiLSTM layers represents a significant step forward

in understanding and mitigating driver distractions, a critical factor in preventing

accidents and improving road safety.
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6.3 SUGGESTIONS FOR FUTURE RESEARCH

In our ongoing research e↵orts, we are building upon the foundation laid by our

recently published survey paper, Comprehensive Study of Driver Behavior Monitoring

Systems Using Computer Vision and Machine Learning Techniques. Our initial work

highlighted a limitation in existing distracted driving datasets, such as State Farm

and AUC-DDD, due to their unrealistic camera angles. To address this, we are

developing a unique dataset featuring realistic camera positions and a broader range

of distraction behaviors (e.g., yawning, prolonged eye closure). We anticipate this

dataset will significantly improve the real-world adaptability of distraction detection

models in autonomous vehicles.

Additionally, we are exploring the Vision Transformer, a novel machine learning

model. By fine-tuning it for distracted driving detection, we seek to gain deeper

insights into driver states and enhance detection accuracy. Furthermore, we propose

a binary classification approach (attentive vs. unattentive driving) to streamline the

detection process and improve detection rates without sacrificing accuracy [132].

Building upon the insights of our initial study, our ongoing research addresses lim-

itations and explores new avenues for applying AI techniques to enhance autonomous

vehicle safety.
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[56] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Action recognition by dense
trajectories,” in CVPR 2011, pp. 3169–3176, 2011.

[57] C. Feichtenhofer, A. Pinz, and R. P. Wildes, “Spatiotemporal multiplier net-
works for video action recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4768–4777, 2017.

[58] M. Tan and Q. Le, “E�cientnet: Rethinking model scaling for convolutional
neural networks,” in International conference on machine learning, pp. 6105–
6114, PMLR, 2019.

[59] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: E�cient convolutional neural net-
works for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[60] A. Mujahid, M. Aslam, M. U. G. Khan, A. M. Martinez-Enriquez, and N. U.
Haq, “Multi-class confidence detection using deep learning approach,” Applied
Sciences, vol. 13, no. 9, 2023.

[61] R. Bakshi, “Hand hygiene video classification based on deep learning,” Name
of the Journal, vol. Volume number, no. Issue number, p. Page range, 2021.

72



[62] I. Jegham, I. Alouani, A. B. Khalifa, and M. A. Mahjoub, “Deep learning-based
hard spatial attention for driver in-vehicle action monitoring,” Expert Systems
with Applications, vol. 219, p. 119629, 2023.

[63] R. Greer, L. Rakla, A. Gopalan, and M. Trivedi, “(safe) smart hands: Hand
activity analysis and distraction alerts using a multi-camera framework,” arXiv
preprint arXiv:2301.05838, 2023.

[64] H. A. Abosaq, M. Ramzan, F. Althobiani, A. Abid, K. M. Aamir, H. Ab-
dushkour, M. Irfan, M. E. Gommosani, S. M. Ghonaim, V. R. Shamji, and
S. Rahman, “Unusual driver behavior detection in videos using deep learning
models,” Sensors, vol. 23, no. 1, 2023.

[65] R. Bakshi, “Hand pose classification based on neural networks,” arXiv preprint
arXiv:2108.04529, 2021.

[66] R. Bajpai and D. Joshi, “Movenet: A deep neural network for joint profile
prediction across variable walking speeds and slopes,” IEEE Transactions on
Instrumentation and Measurement, vol. 70, pp. 1–11, 2021.

[67] L. Li, B. Zhong, C. Hutmacher Jr, Y. Liang, W. J. Horrey, and X. Xu, “Detec-
tion of driver manual distraction via image-based hand and ear recognition,”
Accident Analysis & Prevention, vol. 137, p. 105432, 2020.

[68] A. Jinda-Apiraksa, W. Pongstiensak, and T. Kondo, “A simple shape-based ap-
proach to hand gesture recognition,” in ECTI-CON2010: The 2010 ECTI Inter-
national Confernce on Electrical Engineering/Electronics, Computer, Telecom-
munications and Information Technology, pp. 851–855, IEEE, 2010.

[69] A. Jinda-Apiraksa, W. Pongstiensak, and T. Kondo, “Shape-based finger pat-
tern recognition using compactness and radial distance,” in The 3rd Interna-
tional Conference on Embedded Systems and Intelligent Technology (ICESIT
2010), Chiang Mai, Thailand, pp. –, 2010.

[70] R. Rokade, D. Doye, and M. Kokare, “Hand gesture recognition by thin-
ning method,” in 2009 International Conference on Digital Image Processing,
pp. 284–287, IEEE, 2009.

[71] H. Tauseef, M. A. Fahiem, and S. Farhan, “Recognition and translation of hand
gestures to urdu alphabets using a geometrical classification,” in 2009 Second
International Conference in Visualisation, pp. 213–217, IEEE, 2009.

[72] Y. Liu and P. Zhang, “Vision-based human-computer system using hand ges-
tures,” in 2009 International Conference on Computational Intelligence and
Security, vol. 2, pp. 529–532, IEEE, 2009.

[73] N. Yasukochi, A. Mitome, and R. Ishii, “A recognition method of restricted
hand shapes in still image and moving image as a man-machine interface,” in
2008 Conference on Human System Interactions, pp. 306–310, IEEE, 2008.

73



[74] E. Yoruk, E. Konukoglu, B. Sankur, and J. Darbon, “Shape-based hand recog-
nition,” IEEE transactions on image processing, vol. 15, no. 7, pp. 1803–1815,
2006.

[75] N. Das, E. Ohn-Bar, and M. M. Trivedi, “On performance evaluation of driver
hand detection algorithms: Challenges, dataset, and metrics,” in 2015 IEEE
18th international conference on intelligent transportation systems, pp. 2953–
2958, IEEE, 2015.

[76] R. I. China, “Global and china heavy truck industry report, 2021-2027,” Jan-
uary 2022. Report ID: 6228542, Number of Pages: 130, Format: PDF.

[77] N. H. T. S. A. (NHTSA), “Risky driving: Drowsy driving,” Access Year. Ac-
cessed: 2023-09-02.

[78] M. Zhu, F. Liang, D. Yao, J. Chen, H. Li, L. Han, Y. Liu, and Z. Zhang,
“Heavy truck driver’s drowsiness detection method using wearable eeg based
on convolution neural network,” in 2020 IEEE Intelligent Vehicles Symposium
(IV), pp. 195–201, IEEE, 2020.

[79] F. Schro↵, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for
face recognition and clustering,” in 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 815–823, 2015.

[80] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua, “A convolutional neural network
cascade for face detection,” in 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5325–5334, 2015.

[81] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “Appearance-based gaze estima-
tion in the wild,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4511–4520, 2015.

[82] D. Bethge, L. F. Coelho, T. Kosch, S. Murugaboopathy, U. v. Zadow,
A. Schmidt, and T. Grosse-Puppendahl, “Technical design space analysis for
unobtrusive driver emotion assessment using multi-domain context,” Proceed-
ings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 6, no. 4, pp. 1–30, 2023.

[83] W. Song, G. Zhang, and Y. Long, “Identification of dangerous driving state
based on lightweight deep learning model,” Computers and Electrical Engineer-
ing, vol. 105, p. 108509, 2023.

[84] I. Jahan, K. Uddin, S. A. Murad, M. Miah, T. Z. Khan, M. Masud, S. Aljah-
dali, and A. K. Bairagi, “4d: a real-time driver drowsiness detector using deep
learning,” Electronics, vol. 12, no. 1, p. 235, 2023.

[85] B. Akrout and S. Fakhfakh, “How to prevent drivers before their sleepiness
using deep learning-based approach,” Electronics, vol. 12, no. 4, p. 965, 2023.

74



[86] Q. Abbas, M. E. Ibrahim, S. Khan, and A. R. Baig, “Hypo-driver: a multiview
driver fatigue and distraction level detection system,” CMC-computers Mater
Contin, vol. 71, no. 1, pp. 1999–2017, 2022.

[87] D. Patil, V. Lokhande, P. Patil, P. Patil, and S. Gaikwad, “Real-time driver
behaviour monitoring system invehicles using image processing,” International
Journal of Advances in Engineering and Management (IJAEM), vol. 4, no. 5,
pp. 1890–1894, 2022.

[88] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua, “A convolutional neural network
cascade for face detection,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 5325–5334, 2015.

[89] B. Esmaeili, A. AkhavanPour, and A. Bosaghzadeh, “An ensemble model for
human posture recognition,” in 2020 International Conference on Machine Vi-
sion and Image Processing (MVIP), pp. 1–7, IEEE, 2020.

[90] M. H. Z. M. Fodli, F. H. K. Zaman, N. K. Mun, and L. Mazalan, “Driving
behavior recognition using multiple deep learning models,” in 2022 IEEE 18th
International Colloquium on Signal Processing & Applications (CSPA), pp. 138–
143, IEEE, 2022.

[91] N. Oliver, B. Rosario, and A. Pentland, “A bayesian computer vision system
for modeling human interactions,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 8, pp. 831–843, 2000.

[92] T. Quettier, F. Gambarota, N. Tsuchiya, and P. Sessa, “Blocking facial mimicry
during binocular rivalry modulates visual awareness of faces with a neutral
expression,” Scientific Reports, vol. 11, no. 1, p. 9972, 2021.

[93] L. Karthik, G. Kumar, T. Keswani, A. Bhattacharyya, S. S. Chandar, and
K. Bhaskara Rao, “Protease inhibitors from marine actinobacteria as a potential
source for antimalarial compound,” PloS one, vol. 9, no. 3, p. e90972, 2014.

[94] L. Alam and M. M. Hoque, “Real-time distraction detection based on driver’s
visual features,” in 2019 International Conference on Electrical, Computer and
Communication Engineering (ECCE), pp. 1–6, IEEE, 2019.

[95] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of
simple features,” in Proceedings of the 2001 IEEE computer society conference
on computer vision and pattern recognition. CVPR 2001, vol. 1, pp. I–I, Ieee,
2001.

[96] Y. Liang, M. L. Reyes, and J. D. Lee, “Real-time detection of driver cognitive
distraction using support vector machines,” IEEE transactions on intelligent
transportation systems, vol. 8, no. 2, pp. 340–350, 2007.

75



[97] N. Li and C. Busso, “Analysis of facial features of drivers under cognitive and
visual distractions,” in 2013 IEEE International Conference on Multimedia and
Expo (ICME), pp. 1–6, IEEE, 2013.

[98] L. B. Neto, F. Grijalva, V. R. M. L. Maike, L. C. Martini, D. Florencio,
M. C. C. Baranauskas, A. Rocha, and S. Goldenstein, “A kinect-based wearable
face recognition system to aid visually impaired users,” IEEE Transactions on
Human-Machine Systems, vol. 47, no. 1, pp. 52–64, 2016.

[99] B. Esmaeili, A. Akhavanpour, and A. Bosaghzadeh, “An ensemble model for
human posture recognition,” 2020 International Conference on Machine Vision
and Image Processing (MVIP), pp. 1–7, 2020.

[100] Y. Xing, C. Lv, H. Wang, D. Cao, E. Velenis, and F.-Y. Wang, “Driver activity
recognition for intelligent vehicles: A deep learning approach,” IEEE Transac-
tions on Vehicular Technology, vol. 68, no. 6, pp. 5379–5390, 2019.

[101] M.-F. R. Lee, Y.-C. Chen, and C.-Y. Tsai, “Deep learning-based human body
posture recognition and tracking for unmanned aerial vehicles,” Processes,
vol. 10, no. 11, 2022.

[102] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional network for
real-time 6-dof camera relocalization,” in Proceedings of the IEEE international
conference on computer vision, pp. 2938–2946, 2015.

[103] R. Bajpai and D. Joshi, “Movenet: A deep neural network for joint profile
prediction across variable walking speeds and slopes,” IEEE Transactions on
Instrumentation and Measurement, vol. 70, pp. 1–11, 2021.

[104] Y. Xie, F. Li, Y. Wu, S. Yang, and Y. Wang, “D3-guard: Acoustic-based
drowsy driving detection using smartphones,” in IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, pp. 1225–1233, 2019.

[105] W. Yang, C. Tan, Y. Chen, H. Xia, X. Tang, Y. Cao, W. Zhou, L. Lin, and
G. Dai, “Birswint: Bilinear full-scale residual swin-transformer for fine-grained
driver behavior recognition,” Journal of the Franklin Institute, vol. 360, no. 2,
pp. 1166–1183, 2023.

[106] A. A. Aljohani, “Real-time driver distraction recognition: A hybrid genetic deep
network based approach,” Alexandria Engineering Journal, vol. 66, pp. 377–389,
2023.

[107] C. Fan, S. Huang, S. Lin, D. Xu, Y. Peng, and S. Yi, “Types, risk factors,
consequences, and detection methods of train driver fatigue and distraction,”
Computational Intelligence and Neuroscience, vol. 2022, p. 8328077, Mar 2022.
PMID: 35371223; PMCID: PMC8970922.

76



[108] Z. Zheng, S. Dai, Y. Liang, and X. Xie, “Driver fatigue analysis based on upper
body posture and dbn-bpnn model,” in 2019 IEEE 4th Advanced Information
Technology, Electronic and Automation Control Conference (IAEAC), vol. 1,
pp. 574–581, 2019.

[109] A. Kondyli, V. P. Sisiopiku, L. Zhao, and A. Barmpoutis, “Computer assisted
analysis of drivers’ body activity using a range camera,” IEEE Intelligent Trans-
portation Systems Magazine, vol. 7, no. 3, pp. 18–28, 2015.

[110] S. Gaglio, G. L. Re, and M. Morana, “Human activity recognition process using
3-d posture data,” IEEE Transactions on Human-Machine Systems, vol. 45,
no. 5, pp. 586–597, 2014.

[111] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose
estimation using part a�nity fields,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 7291–7299, 2017.

[112] M. Rezaei and R. Klette, “Look at the driver, look at the road: No distraction!
no accident!,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 129–136, 2014.

[113] E. Blythe, L. Garrido, and M. R. Longo, “Emotion is perceived accurately from
isolated body parts, especially hands,” Available at SSRN, 2023.

[114] A. Ezzouhri, Z. Charouh, M. Ghogho, and Z. Guennoun, “Robust deep learning-
based driver distraction detection and classification,” IEEE Access, vol. 9,
pp. 168080–168092, 2021.

[115] A. Heitmann, R. Guttkuhn, A. Aguirre, U. Trutschel, and M. Moore-Ede,
“Technologies for the monitoring and prevention of driver fatigue,” in Driv-
ing Assessment Conference, 1, pp. 81–86, University of Iowa, 2001.

[116] T. Billah, S. M. Rahman, M. O. Ahmad, and M. Swamy, “Recognizing dis-
tractions for assistive driving by tracking body parts,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 29, no. 4, pp. 1048–1062, 2018.

[117] S. M. Rahman, T. Howlader, and D. Hatzinakos, “On the selection of 2d
krawtchouk moments for face recognition,” Pattern Recognition, vol. 54, pp. 83–
93, 2016.

[118] M. Panwar and P. S. Mehra, “Hand gesture recognition for human computer in-
teraction,” in 2011 International Conference on Image Information Processing,
pp. 1–7, IEEE, 2011.

[119] P. Weyers, D. Schiebener, and A. Kummert, “Action and object interaction
recognition for driver activity classification,” in 2019 IEEE Intelligent Trans-
portation Systems Conference (ITSC), pp. 4336–4341, 2019.

77



[120] Y. Xing, C. Lv, Z. Zhang, H. Wang, X. Na, D. Cao, E. Velenis, and F.-Y. Wang,
“Identification and analysis of driver postures for in-vehicle driving activities
and secondary tasks recognition,” IEEE Transactions on Computational Social
Systems, vol. 5, no. 1, pp. 95–108, 2018.
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