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ABSTRACT  

In this paper a self learning method, based on Abductive 
Networks, is being used for the development of a model that 
related pre-impact motorcycle speed to post-impact measurable 
data. The best results were obtained where the motorcycle wheel 
base reduction and the maximum crush of the vehicle were used 
as input the model. This result is, to some degree, similar to the 
results obtained in previous paper where these two parameters 
were assumed to be linearly related to the motorcycle pre-impact 
speed.   
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1.  INTRODUCTION 
 The increasing number of motorcycle accidents is a 
major concern to policy makers. The understanding the causes of 
this accidents by accident reconstruction tools, will allow law 
makers to address this issue by regulating design features, safety 
requirements, road design modifications etc.[1].  

 Different models, based both vehicle damage and on on-
site measurements, were reported in literature [2-9]. Some are 
based on physical principle like conservation of linear and/or 
angular momentum, and some based on correlation between 
measurable data. In both cases the results are not satisfactory in 
part due to the fact that very few crash tests are performed on 
motorcycles. 

 The method described in this paper falls into the second 
category where a correlation between measurable data and the 
motorcycle’s pre-impact speed is being searched. Previously, a 
specific model was assumed and then the measured data was 
correlated to it. Thus, the produced models were not necessarily 
the best ones and mostly simple as linear polynomials. In this 
case, a self learning method is being used which automatically 
will find the best model that will fit the data. As a result higher 

order polynomial might be found. In any case it should be 
emphasize that since the model are “just” correlation to measured 
data they do not shed any light on the physics of the crash.  

 This self learning method, which will be described in 
the following section, is called “Abductive Networks. This 
method was used successfully in many application one of which 
was to determine impact force and crush energy in vehicle 
collisions [10]. 

2.  AIM – ABDUCTIVE NETWORKS 
 

AIM [11] is a powerful supervised inductive learning tool for 
automatically synthesizing network models from a database of 
input and output values. The model emerging from the AIM 
synthesis process is a robust and compact transformation 
implemented as a layered abductive network of feed-forward 
functional elements as shown in Figure 1.Figure 
1

 

Figure 1: Example of Abductive Network. 
 

All the functional and connection elements are learned 
from the input data. Currently AIM has seven types of elements. 
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The algebraic form of each element is a polynomial where Wn are 
the coefficients determined by AIM and Xn are the input variables 
(Table 1 shows sample elements). All terms in an element’s 
equation may not appear in a node since AIM will throw out or 
carve terms which do not contribute significantly to the solution. 

 
Table 1: Example of elements definition. 
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The eligible inputs for each layer and the network 

synthesis strategy are defined in a set of rules and heuristics which 
are an inherent part of the synthesis algorithm. 

AIM automatically determines the best network 
structure, element types, coefficients and connectivity by 
minimizing a modeling criterion which attempts to select as 
accurate a network as possible without over fitting the data. The 
modeling criterion used within AIM is the Predicted Squared 
Error (PSE). The PSE is a heuristic measure of the expected 
network squared error for independent data not in the training 
database. The PSE is given by: 

PSE FSE KP= +  (1) 
 

where FSE is the fitting squared error of the model to the training 
data and KP is a complexity penalty term determined in AIM by 
the equation: 

22
* p

K
KP CPM s

N
=  (2) 

 

where K, N and sp
2 are determined by the database of examples 

used to synthesize the network and CPM, the Complexity Penalty 
Multiplier, is a variable the user can select. The default value of 
CPM is 1; a lower value decreases the complexity penalty impact 
and results in a more complex network and inversely for a higher 
value. 

To create a model using AIM one has to follow these steps: 

1. Decide what are the inputs and the output of the model. 
2. Create a database which includes sets of inputs and the 

corresponding outputs from the process being modeled. 
3. Train the abductive network using the above database. 
4. Evaluate model performance of the model using sets of 

inputs/outputs which were not used to train the network. 
5. Once the network (model) performs to satisfaction an 

explicit model can be derived and implemented. 
 

3. THE DATA SETS AND DATA 
ALLOCATION 

 Two data sets with experimental data were available to 
the authors: 

1. Data Set I: contains data from 47 crush tests that were 
performed by previously different investigators. 

2. Data Set II: contains data from 13 crush test that were 
performed by the authors. 

 Both data sets include the following information: 

a) Pre-collision motorcycle’s speed (VM). 

b) Motorcycle’s wheelbase reduction due to the 
impact (WR). 

c) Vehicle’s maximum crush (see Figure 2) (DC). 

d) The impact location with the car, “Hard” or “Soft” 
locations. “Hard” location is considered as a 
location 3” from a pillar or axle and a “Soft” 
location is any other place on the car (e.g. doors or 
fenders) (H or S). 

e) The weight of the motorcycle (WM). 

 

 
Figure 2: Vehicle’s maximum car crush. 

As mentioned before, the first step is to “train” the 
system by providing a set on input and the corresponding outputs 
to the system. The inputs are post impact measurable quantities 
such as motorcycle’s wheelbase reduction. The output, in the 
particular case, is only the pre-collision motorcycle’s speed. The 
training data set is selected randomly from the entire data set. 
Once a model is established (the network converged), the rest of 
the data is used to evaluate the prediction achieved by the model. 

4.  MODELING 
Model # 1 

This model relates to the model proposed in [2] where 
the motorcycle’s pre-collision impact speed was related only to its 
wheelbase reduction. Thus, the only input to this model is the 
wheelbase reduction of the motorcycle (WR) and the only output is 
the speed. The model has been trained using measurements from 
24 different crash tests from Set I.  

Upon convergence, the model was used to predict the 
motorcycle speed of the other 23 crash tests, from the same set, 
which were not used for training. The average error of the 
predicted speed was 8.45% and the maximum error was 23.8%.  
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At this point the model was used to predict the 
motorcycle’s speed user data set II. The average prediction error 
was 17.8%. 

This first model was more of a test to see how the 
prediction would be using only one variable and training the 
model with the data set #1.  It’s surprisingly successful as the 
average errors are under 20%. 

Model # 2 

This model relates to the model proposed in [2] where 
the motorcycle’s pre-collision speed (VM) was related to its 
wheelbase reduction (WR) and the maximum crush of the car (DC). 
Again, 24 different crushes, which were selected randomly, used 
to train the network. Once the model was obtained, upon 
convergence, an explicit formula can be extracted: 

2)(038.0)(40.005.248.13 CCRM DDWV +++= (3) 

The capability to obtain an explicit relationship is very 
advantageous compared to other self-learning methods. For 
example, we can determine the sensitivity of the speed prediction 
to the errors in the measurements of the wheelbase reduction and 
the vehicle’s maximum crush: 
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where: (∆VM) – Error in motorcycle’s speed 

(∆WR) – Error in the measurement of the motorcycle’s 
wheelbase reduction 

(∆DC) – Error in the measurement of the vehicle’s 
maximum crush 

As an example assume that (∆WR) = (∆DC) = 0.25”. It 
will result: 

)(019.06125.0)( CM DV +=∆    (5) 

Eq. (5) indicates that the error in the prediction of the 
motorcycle’s speed is linear with the value of the vehicle’s 
maximum crush measurement. Meaning that during the accident 
reconstruction process this value has to be measure with high 
accuracy. 

The model was used to predict the motorcycle’s pre-
impact speed of the other 23 cases in data set #1. The errors in the 
predictions of the motorcycle’s speed had average of 4.64% and 
the maximum of 11.47%. 

 

 

Figure 3: Histogram of the errors in prediction of the 
motorcycle speed using data set I. 

 

The same model was used to predict the motorcycle’s 
pre-impact speed of the cases provided in data set II. It resulted in 
an average error of 12.8% and maximum error of 22%. The 
histogram of these prediction errors are shown in Figure 4. 

Other Models 

 Few other models, which differ from each other by: 1) 
The set of inputs; 2) Inputs configuration; and 3) Training sets, 
were tried (see Table2). Observing the results given in Table 1, 
one can reach the following conclusions: 

1. One the training data and the verification data are from 
the same data set, the models are better (smaller errors)( 
tests 1,2 5,6 and 7). 

2. Some set of input produces better results (within the 
same set). Compare the results of models 1 and 2 and 5 
and 6. 

3. The fact that the mixed data set produced relatively 
inferior results is that the tests were probably controlled 
differently.     

 

Figure 4: Histogram of the errors in prediction motorcycle’s 
speed using model #2 and data set II 

 

Table 2: Other models 

 Inputs Data Set I Data Set II 

  Average 
Error 
[%] 

Max. 
Error 
[%] 

Average 
Error 
[%] 

Max 
Error 
[%] 

11 (WR),(DC), 

(H) or (S) 

4.24 11.6 25  

21 (WR),(WM) 6.27 21.74 23  

32 (WR),( DC) 5.61 20   

42 (WR),( WM) 7.49 17.42   

53 (WR),( DC) 59.78  8.64 13.69 

63 (WR),( DC) 48 102 1.89 7.63 

71 (WR),( DC) 

(WM) 

6.94 17.92 180.47  

 

(1)  Training with data set I 

(2)  Training with a mix from both data sets 
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(3)  Training with data set II 

 

4.  CONCLUSIONS 

 A simple self learning model for the estimation of a 
motorcycle’s pre-impact speed was presented. The model is not 
physical model and is based on the correlation of experimental 
data to the motorcycle speed. It was obtained automatically using 
the AIM system and it is reasonably accurate. The model is 
explicit in contrast to non-explicit model that can be obtained by 
other learning procedures such a Artificial Neural Networks. As 
such it provides better understanding to the effect of each 
measurement on the model and to the sensitivity of the model to 
each of the inputs. 
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